Sensor Networks: Physical and Social Sensing in the IoT
Acknowledgments
Conflicts of Interest
References
- Zhou, Y.; De, S.; Wang, W.; Moessner, K.; Palaniswami, M.S. Spatial Indexing for Data Searching in Mobile Sensing Environments. Sensors 2017, 17, 1427. [Google Scholar] [CrossRef] [Green Version]
- Vailshery, L.S.; IoT and non-IoT connections worldwide 2010–2025. Statista. Available online: https://www.statista.com/statistics/1101442/iot-number-of-connected-devices-worldwide/ (accessed on 3 January 2023).
- Zhou, Y.; De, S.; Ewa, G.; Perera, C.; Moessner, K. Data-Driven Air Quality Characterization for Urban Environments: A Case Study. IEEE Access 2018, 6, 77996–78006. [Google Scholar] [CrossRef]
- Gligoric, N.; Popovic, T.; Drajic, D.; Gajinov, S.; Krco, S. Qualitative parameter analysis for Botrytis cinerea forecast modelling using IoT sensor networks. J. Netw. Netw. Appl. 2022, 3, 129–135. [Google Scholar]
- Catarinucci, L.; De Donno, D.; Mainetti, L.; Palano, L.; Patrono, L.; Stefanizzi, M.L.; Tarricone, L. An IoT-Aware Architecture for Smart Healthcare Systems. IEEE Internet Things J. 2015, 2, 515–526. [Google Scholar] [CrossRef]
- De, S.; Zhou, Y.; Larizgoitia Abad, I.; Moessner, K. Cyber–Physical–Social Frameworks for Urban Big Data Systems: A Survey. Appl. Sci. 2017, 7, 1017. [Google Scholar] [CrossRef] [Green Version]
- Pu, J.; Zhang, J.; Shao, H.; Zhang, T.; Rao, Y. egoDetect: Visual Detection and Exploration of Anomaly in Social Communication Network. Sensors 2020, 20, 5895. Available online: https://www.mdpi.com/1424-8220/20/20/5895 (accessed on 3 January 2023). [CrossRef] [PubMed]
- de Moura, I.R.; Teles, A.S.; Endler, M.; Coutinho, L.R.; da Silva E Silva, F.J. Recognizing Context-Aware Human Sociability Patterns Using Pervasive Monitoring for Supporting Mental Health Professionals. Sensors 2021, 21, 86. Available online: https://www.mdpi.com/1424-8220/21/1/86 (accessed on 3 January 2023). [CrossRef] [PubMed]
- Zurbuchen, N.; Wilde, A.; Bruegger, P. A Machine Learning Multi-Class Approach for Fall Detection Systems Based on Wearable Sensors with a Study on Sampling Rates Selection. Sensors 2021, 21, 938. Available online: https://www.mdpi.com/1424-8220/21/3/938 (accessed on 3 January 2023). [CrossRef] [PubMed]
- Iggena, T.; Bin Ilyas, E.; Fischer, M.; Tönjes, R.; Elsaleh, T.; Rezvani, R.; Pourshahrokhi, N.; Bischof, S.; Fernbach, A.; Parreira, J.X.; et al. IoTCrawler: Challenges and Solutions for Searching the Internet of Things. Sensors 2021, 21, 1559. Available online: https://www.mdpi.com/1424-8220/21/5/1559 (accessed on 3 January 2023). [PubMed]
- Linan-Reyes, M.; Garrido-Zafra, J.; Gil-de-Castro, A.; Moreno-Munoz, A. Energy Management Expert Assistant, a New Concept. Sensors 2021, 21, 5915. Available online: https://www.mdpi.com/1424-8220/21/17/5915 (accessed on 3 January 2023). [CrossRef] [PubMed]
- Lohan, E.S.; Shubina, V.; Niculescu, D. Perturbed-Location Mechanism for Increased User-Location Privacy in Proximity Detection and Digital Contact-Tracing Applications. Sensors 2022, 22, 687. Available online: https://www.mdpi.com/1424-8220/22/2/687 (accessed on 3 January 2023). [CrossRef]
- Gascón, A.; Casas, R.; Buldain, D.; Marco, Á. Providing Fault Detection from Sensor Data in Complex Machines That Build the Smart City. Sensors 2022, 22, 586. Available online: https://www.mdpi.com/1424-8220/22/2/586 (accessed on 3 January 2023). [CrossRef]
- Sabbioni, A.; Villano, T.; Corradi, A. An Architecture for Service Integration to Fully Support Novel Personalized Smart Tourism Offerings. Sensors 2022, 22, 1619. Available online: https://www.mdpi.com/1424-8220/22/4/1619 (accessed on 3 January 2023). [CrossRef]
- Murakami, R.; Chakraborty, B. Investigating the Efficient Use of Word Embedding with Neural-Topic Models for Interpretable Topics from Short Texts. Sensors 2022, 22, 852. Available online: https://www.mdpi.com/1424-8220/22/3/852 (accessed on 3 January 2023). [CrossRef] [PubMed]
- Pennington, J.; Socher, R.; Manning, C.D. GloVe: Global Vectors for Word Representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; Association for Computational Linguistics: Doha, Qatar, 2014; pp. 1532–1543. [Google Scholar]
- Ali, W.; Din, I.U.; Almogren, A.; Kim, B.S. A Novel Privacy Preserving Scheme for Smart Grid-Based Home Area Networks. Sensors 2022, 22, 2269. Available online: https://www.mdpi.com/1424-8220/22/6/2269 (accessed on 3 January 2023). [CrossRef]
- Majid, M.; Habib, S.; Javed, A.R.; Rizwan, M.; Srivastava, G.; Gadekallu, T.R.; Lin, J.C.W. Applications of Wireless Sensor Networks and Internet of Things Frameworks in the Industry Revolution 4.0: A Systematic Literature Review. Sensors 2022, 22, 2087. Available online: https://www.mdpi.com/1424-8220/22/6/2087 (accessed on 3 January 2023). [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De, S.; Moessner, K. Sensor Networks: Physical and Social Sensing in the IoT. Sensors 2023, 23, 1451. https://doi.org/10.3390/s23031451
De S, Moessner K. Sensor Networks: Physical and Social Sensing in the IoT. Sensors. 2023; 23(3):1451. https://doi.org/10.3390/s23031451
Chicago/Turabian StyleDe, Suparna, and Klaus Moessner. 2023. "Sensor Networks: Physical and Social Sensing in the IoT" Sensors 23, no. 3: 1451. https://doi.org/10.3390/s23031451
APA StyleDe, S., & Moessner, K. (2023). Sensor Networks: Physical and Social Sensing in the IoT. Sensors, 23(3), 1451. https://doi.org/10.3390/s23031451