Energy Contour Forecasting Optimization with Smart Metering in Distribution Power Networks
Abstract
:1. Introduction
2. Energy Contour in the Context of Smart Metering Availability
2.1. Smart Metering as a Component of Smart Grid for Energy Forecasting
2.2. Energy Contour as Overview Approach vs. Smartgrid
3. Electricity Forecasting in Power Distribution Networks
4. Energy Contour Forecasting Problem Formulation
4.1. Framework of Electricity Forecasting
4.2. Optimization Mathematical Model
4.3. Electricity Forecasting Principle
- Time domain representation (signal waveform). In this case, the signal is the representation of the energy contour reported hour by hour for the electricity distribution branch, represented in Figure 3;
- Representation in the frequency domain (frequency spectrum of the signal). In this case, the signal which represents the energy contour reported hour by hour for the considered electricity distribution branch, was decomposed into a Fourier series.
Algorithm 1: Estimation of energy contour by frequency feature. |
5. Energy Contour Forecasting Using Complex Features Components Analysis (ECF) Evaluation—Case Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMI | Advanced Metering Infrastructure |
ECF | Estimation of Energy Contour by Frequency Feature Based Method |
EMD | Empirical Mode Decomposition |
GPRS | General Packet Radio Services |
GSM | Global System for Mobile communication |
IoT | Internet of Things |
OTC | Own Technological Consumption |
PLC | Power Line Communication |
PSO | Particle Swarm Optimization |
RES | Renewable energy sources |
RF | Radio Frequency |
SM | Smart Meter |
SVM | Support Vector Machine |
SVR | Support Vector Regression |
References
- Maciejowska, K.; Nitka, W.; Weron, T. Day-ahead vs. Intraday—Forecasting the price spread to maximize economic benefits. Energies 2019, 12, 631. [Google Scholar] [CrossRef] [Green Version]
- Ziel, F. Modeling the impact of wind and solar power forecasting errors on intraday electricity prices. In Proceedings of the 2017 14th International Conference on the European Energy Market (EEM), Dresden, Germany, 6–9 June 2017; pp. 1–5. [Google Scholar]
- Kath, C.; Ziel, F. The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts. Energy Econ. 2018, 76, 411–423. [Google Scholar] [CrossRef] [Green Version]
- Ziel, F.; Weron, R. Day-ahead electricity price forecasting with high-dimensional structures: Univariate vs. multivariate modeling frameworks. Energy Econ. 2018, 70, 396–420. [Google Scholar] [CrossRef] [Green Version]
- Weron, R. Electricity price forecasting: A review of the state-of-the-art with a look into the future. Int. J. Forecast. 2014, 30, 1030–1081. [Google Scholar] [CrossRef] [Green Version]
- Nowotarski, J.; Weron, R. Recent advances in electricity price forecasting: A review of probabilistic forecasting. Renew. Sustain. Energy Rev. 2018, 81, 1548–1568. [Google Scholar] [CrossRef]
- Sharma, N.; Chakraborty, A.K. Implementation of Dynamic Controls for Grid-Tied-Inverters through Next-Generation Smart Meters and Its Application in Modernized Grid. Energies 2022, 15, 988. [Google Scholar] [CrossRef]
- Amjady, N.; Hemmati, M. Energy price forecasting-problems and proposals for such predictions. IEEE Power Energy Mag. 2006, 4, 20–29. [Google Scholar] [CrossRef]
- Ahmad, T.; Madonski, R.; Zhang, D.; Huang, C.; Mujeeb, A. Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: Key developments, challenges, and future research opportunities in the context of smart grid paradigm. Renew. Sustain. Energy Rev. 2021, 160, 112128. [Google Scholar] [CrossRef]
- Lorenz, P.; Pinner, D.; Seitz, T. The economics of solar power. McKinsey Q. 2008, 4, 66–78. [Google Scholar]
- Corizzo, R.; Ceci, M.; Fanaee-T, H.; Gama, J. Multi-aspect renewable energy forecasting. Inf. Sci. 2021, 546, 701–722. [Google Scholar] [CrossRef]
- Morstyn, T.; McCulloch, M.D. Multiclass energy management for peer-to-peer energy trading driven by prosumer preferences. IEEE Trans. Power Syst. 2018, 34, 4005–4014. [Google Scholar] [CrossRef]
- Jebli, I.; Belouadha, F.Z.; Kabbaj, M.I.; Tilioua, A. Prediction of solar energy guided by pearson correlation using machine learning. Energy 2021, 224, 120109. [Google Scholar] [CrossRef]
- Wang, F.; Lu, X.; Chang, X.; Cao, X.; Yan, S.; Li, K.; Catalão, J.P. Household profile identification for behavioral demand response: A semi-supervised learning approach using smart meter data. Energy 2022, 238, 121728. [Google Scholar] [CrossRef]
- Redl, C.; Haas, R.; Huber, C.; Böhm, B. Price formation in electricity forward markets and the relevance of systematic forecast errors. Energy Econ. 2009, 31, 356–364. [Google Scholar] [CrossRef]
- Maslov, I.; Khaliyeva, A.; Baranov, A. Development of Automated Information-Measuring Systems for Electric Power Measurement. In Proceedings of the 2021 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), Sochi, Russia, 17–21 May 2021; pp. 53–57. [Google Scholar]
- Ferreira, M.; Neves, A.; Gorjao, R.; Cruz, C.; Pardal, M.L. Smart meter data processing: A showcase for simple and efficient textual processing. arXiv 2022, arXiv:2212.13656. [Google Scholar]
- Fang, X.; Misra, S.; Xue, G.; Yang, D. Smart grid—The new and improved power grid: A survey. IEEE Commun. Surv. Tutor. 2011, 14, 944–980. [Google Scholar] [CrossRef]
- Stiri, S.; Chaoub, A.; Grilo, A.; Bennani, R.; Lakssir, B.; Tamtaoui, A. Optimal Placement of Data Concentrators and Repeaters in PLC-enabled Smart Grids. In Proceedings of the 2021 IEEE Madrid PowerTech, Madrid, Spain, 28 June–2 July 2021; pp. 1–6. [Google Scholar]
- Stagnaro, C.; Benedettini, S. Smart meters: The gate to behind-the-meter? In Behind and Beyond the Meter; Academic Press: Cambridge, MA, USA, 2020; pp. 251–265. [Google Scholar]
- Carmichael, R.; Gross, R.; Hanna, R.; Rhodes, A.; Green, T. The Demand Response Technology Cluster: Accelerating UK residential consumer engagement with time-of-use tariffs, electric vehicles and smart meters via digital comparison tools. Renew. Sustain. Energy Rev. 2021, 139, 110701. [Google Scholar] [CrossRef]
- Wang, Y.; Bennani, I.L.; Liu, X.; Sun, M.; Zhou, Y. Electricity Consumer Characteristics Identification: A Federated Learning Approach. IEEE Trans. Smart Grid 2021, 12, 3637–3647. [Google Scholar] [CrossRef]
- Mota, F.P.; Steffens, C.R.; Adamatti, D.F.; Botelho, S.S.D.C.; Rosa, V. A persuasive multi-agent simulator to improve electrical energy consumption. J. Simul. 2021, 1–15. [Google Scholar] [CrossRef]
- Maruthakutti, M.; Nachimuthu, L. Role of Smart Metering and Implementation Issues in Smart Grid. In Optimizing and Measuring Smart Grid Operation and Control; IGI Global: Hershey, PA, USA, 2021; pp. 29–47. [Google Scholar]
- Jardini, J.A.; Tahan, C.M.; Gouvea, M.R.; Ahn, S.U.; Figueiredo, F.M. Daily load profiles for residential, commercial and industrial low voltage consumers. IEEE Trans. Power Deliv. 2000, 15, 375–380. [Google Scholar] [CrossRef] [Green Version]
- Gligor, A.; Vlasa, I.; Dumitru, C.D.; Saimac, E.; Munteanu, C. New Approach using Optimization Method in Forecasting of the Own Technical Consumption in Distribution Power Grids. In Proceedings of the 2021 9th International Conference on Modern Power Systems (MPS), Cluj-Napoca, Romania, 16–17 June 2021; pp. 1–7. [Google Scholar]
- Suresh, M. Analyzing and Forecasting of Electricity Consumption by Integration of Autoregressive Integrated Moving Average Model with Neural Network on Smart Meter Data. Turk. J. Comput. Math. Educ. (TURCOMAT) 2021, 12, 1986–1997. [Google Scholar]
- Jiang, H.; Li, J.; Zhao, P.; Zeng, F.; Xiao, Z.; Iyengar, A. Location privacy-preserving mechanisms in location-based services: A comprehensive survey. ACM Comput. Surv. (CSUR) 2021, 54, 1–36. [Google Scholar] [CrossRef]
- Albano, M.; Ferreira, L.L.; Pinho, L.M. Convergence of Smart Grid ICT architectures for the last mile. IEEE Trans. Ind. Inform. 2014, 11, 187–197. [Google Scholar] [CrossRef]
- Werth, A.; Gravino, P.; Prevedello, G. Impact analysis of COVID-19 responses on en-ergy grid dynamics in Europe. Appl. Energy 2021, 281, 116045. [Google Scholar] [CrossRef]
- Krarti, M.; Aldubyan, M. Review analysis of COVID-19 impact on electricity demand for residential buildings. Renew. Sustain. Energy Rev. 2021, 143, 110888. [Google Scholar] [CrossRef] [PubMed]
- Hong, T.; Pinson, P.; Fan, S. Global Energy Forecasting Competition 2012. Int. J. Forecast. 2014, 30, 357–363. [Google Scholar] [CrossRef]
- Vimmerstedt, L.; Jadun, P.; Kinchin, C.; Muratori, M.; Elgowainy, A.; Gohlke, D.; Rousseau, A. Annual Technology Baseline: The 2020 Transportation Update (No. NREL/PR-6A20-77319); National Renewable Energy Lab. (NREL): Golden, CO, USA, 2020. [Google Scholar]
- Bates, S.M. Understanding How the Public Sector Organises and Controls the Outsourcing of Human Services. Ph.D. Thesis, University of Technology Sydney, Ultimo, Australia, 2021. [Google Scholar]
- Fu, C.W.; Nguyen, T.T. Models for long-term energy forecasting. In Proceedings of the 2003 IEEE Power Engineering Society General Meeting (IEEE Cat. No. 03CH37491), Toronto, ON, Canada, 13–17 July 2003; Volume 1, pp. 235–239. [Google Scholar]
- Ciulla, G.; D’Amico, A. Building energy performance forecasting: A multiple linear regression approach. Appl. Energy 2019, 253, 113500. [Google Scholar] [CrossRef]
- Padmakumari, K.; Mohandas, K.P.; Thiruvengadam, S. Long term distribution demand forecasting using neuro fuzzy computations. Int. J. Electr. Power Energy Syst. 1999, 21, 315–322. [Google Scholar] [CrossRef]
- Hao, J.; Liu, D.; Li, Z.; Chen, Z.; Kong, L. Power system load forecasting based on fuzzy clustering and gray target theory. Energy Procedia 2012, 16, 1852–1859. [Google Scholar] [CrossRef] [Green Version]
- Ciabattoni, L.; Grisostomi, M.; Ippoliti, G.; Longhi, S. Fuzzy logic home energy consumption modeling for residential photovoltaic plant sizing in the new Italian scenario. Energy 2014, 74, 359–367. [Google Scholar] [CrossRef]
- Niu, D.; Wang, Y.; Wu, D.D. Power load forecasting using support vector machine and ant colony optimization. Expert Syst. Appl. 2010, 37, 2531–2539. [Google Scholar] [CrossRef]
- Smola, A.J.; Schölkopf, B. A tutorial on support vector regression. Stat. Comput. 2004, 14, 199–222. [Google Scholar] [CrossRef] [Green Version]
- Ghelardoni, L.; Ghio, A.; Anguita, D. Energy load forecasting using empirical mode decomposition and support vector regression. IEEE Trans. Smart Grid 2013, 4, 549–556. [Google Scholar] [CrossRef]
- Fan, G.F.; Wei, X.; Li, Y.T.; Hong, W.C. Forecasting electricity consumption using a novel hybrid model. Sustain. Cities Soc. 2020, 61, 102320. [Google Scholar] [CrossRef]
- Pełka, P. Analysis and Forecasting of Monthly Electricity Demand Time Series Using Pattern-Based Statistical Methods. Energies 2023, 16, 827. [Google Scholar] [CrossRef]
- Laouali, I.H.; Qassemi, H.; Marzouq, M.; Ruano, A.; Dosse, S.B.; El Fadili, H. A Non Linear Autoregressive Neural Network Model for Forecasting Appliance Power Consumption. In WITS 2020 Lecture Notes in Electrical Engineering; Bennani, S., Lakhrissi, Y., Khaissidi, G., Mansouri, A., Khamlichi, Y., Eds.; Springer: Singapore, 2021; Volume 745, pp. 759–768. [Google Scholar]
- Özen, K.; Yıldırım, D. Application of bagging in day-ahead electricity price forecasting and factor augmentation. Energy Econ. 2021, 103, 105573. [Google Scholar] [CrossRef]
- Uniejewski, B.; Weron, R. Regularized quantile regression averaging for probabilistic electricity price forecasting. Energy Econ. 2021, 95, 105121. [Google Scholar] [CrossRef]
- Sgarlato, R.; Ziel, F. The Role of Weather Predictions in Electricity Price Forecasting Beyond the Day-Ahead Horizon. IEEE Trans. Power Syst. 2022, 9788043. [Google Scholar] [CrossRef]
- Fernández Bandera, C.; Bastos Porsani, G.; Fernández-Vigil Iglesias, M. A demand side management approach to increase self-consumption in buildings. Build. Simul. 2023, 16, 317–335. [Google Scholar] [CrossRef]
- Santos, K.V.d.; Higino Silva Santos, L.; Bañol Arias, N.; López, J.C.; Rider, M.J.; da Silva, L.C.P. Optimal Sizing and Allocation of Distributed Energy Resources in Microgrids Considering Internal Network Reinforcements. J. Control Autom. Electr. Syst. 2022, 34, 106–119. [Google Scholar] [CrossRef]
- Azimi Nasab, M.; Zand, M.; Eskandari, M.; Sanjeevikumar, P.; Siano, P. Optimal Planning of Electrical Appliance of Residential Units in a Smart Home Network Using Cloud Services. Smart Cities 2021, 4, 1173–1195. [Google Scholar] [CrossRef]
- Zhu, Y.; Dong, Z.; Cheng, Z.; Huang, X.; Dong, Y.; Zhang, Z. Neural network extended state-observer for energy system monitoring. Energy 2023, 263, 125736. [Google Scholar] [CrossRef]
- Khan, Z.A.; Ullah, A.; Haq, I.U.; Hamdy, M.; Maurod, G.M.; Muhammad, K.; Baik, S.W. Efficient short-term electricity load forecasting for effective energy management. Sustain. Energy Technol. Assess. 2022, 53, 102337. [Google Scholar] [CrossRef]
- Van Der Heijden, T.; Lago, J.; Palensky, P.; Abraham, E. Electricity price forecasting in European Day Ahead Markets: A greedy consideration of market integration. IEEE Access 2022, 9, 119954–119966. [Google Scholar] [CrossRef]
- Kontogiannis, D.; Bargiotas, D.; Daskalopulu, A.; Arvanitidis, A.I.; Tsoukalas, L.H. Error Compensation Enhanced Day-Ahead Electricity Price Forecasting. Energies 2022, 15, 1466. [Google Scholar] [CrossRef]
- Tschora, L.; Pierre, E.; Plantevit, M.; Robardet, C. Electricity price forecasting on the day-ahead market using machine learning. Appl. Energy 2022, 313, 118752. [Google Scholar] [CrossRef]
- Lahouar, A.; Slama, J.B.H. Random forests model for one day ahead load forecasting. In Proceedings of the IREC2015 The Sixth International Renewable Energy Congress, Sousse, Tunisia, 24–26 March 2015; pp. 1–6. [Google Scholar]
- Meng, A.; Wang, P.; Zhai, G.; Zeng, C.; Chen, S.; Yang, X.; Yin, H. Electricity price forecasting with high penetration of renewable energy using attention-based LSTM network trained by crisscross optimization. Energy 2022, 254, 124212. [Google Scholar] [CrossRef]
- Lee, M.H.L.; Ser, Y.C.; Selvachandran, G.; Thong, P.H.; Cuong, L.; Son, L.H.; Tuan, N.T.; Gerogiannis, V.C. A Comparative Study of Forecasting Electricity Consumption Using Machine Learning Models. Mathematics 2022, 10, 1329. [Google Scholar] [CrossRef]
- Leite Coelho da Silva, F.; da Costa, K.; Canas Rodrigues, P.; Salas, R.; López-Gonzales, J.L. Statistical and Artificial Neural Networks Models for Electricity Consumption Forecasting in the Brazilian Industrial Sector. Energies 2022, 15, 588. [Google Scholar] [CrossRef]
- Qiu, X.; Ren, Y.; Suganthan, P.N.; Amaratunga, G.A. Empirical mode decomposition based ensemble deep learning for load demand time series forecasting. Appl. Soft Comput. 2017, 54, 246–255. [Google Scholar] [CrossRef]
Used Approach | Addressed Problem | Relevant References |
---|---|---|
Regressive, auto-regressive models | Day-ahead electricity price forecasting | [1] |
Electricity demand forecasting | [44,45] | |
Probabilistic, statistical forecasting or regression analysis | Day-ahead electricity price forecasting | [46] |
Electricity price forecasting | [47,48] | |
Empirical approach | Power demand forecasting | [49] |
Mixed-integer linear programming | Energy provisioning from RES | [50] |
Fuzzy logic | Energy provisioning from RES | [39] |
Neuro fuzzy model | Long term electricity distribution demand forecasting | [37] |
Fuzzy clustering and vague decision-making | Power load forecasting | [38] |
Bio-inspired and AI hybrid algorithm | Electricity demand forecasting | [43] |
Neural networks and evolutionary computation | Demand side management | [45,51] |
Energy provisioning from non-conventional sources | [52,53] | |
Machine learning | Day-ahead electricity price forecasting | [54,55,56,57] |
Electricity demand forecasting | [40,41,42,53,58,59,60,61] |
Analysis Day | The Amount of Electricity Flow [MWh] | The Amount of Forecasted Electricity by Method 1 [MWh] | The Amount of Forecasted Electricity by Method 2 [MWh] | Method 1 Deviation [%] | Method 2 Deviation [%] |
---|---|---|---|---|---|
hour 00-01 | 160,613 | 134,218 | 163,069 | 16.07 | |
hour 01-02 | 153,148 | 124,566 | 154,011 | 12.87 | |
hour 02-03 | 148,114 | 133,338 | 147,598 | 11.43 | |
hour 03-04 | 147,070 | 125,470 | 145,757 | 8.44 | |
hour 04-05 | 147,025 | 126,537 | 145,846 | 8.36 | |
hour 05-06 | 147,860 | 95,263 | 150,130 | 10.42 | |
hour 06-07 | 151,654 | 113,540 | 153,984 | 7.77 | |
hour 07-08 | 172,822 | 135,765 | 171,093 | 5.41 | |
hour 08-09 | 191,666 | 127,062 | 189,909 | 6.34 | |
hour 09-10 | 198,196 | 131,865 | 199,027 | 9.82 | |
hour 10-11 | 200,227 | 125,515 | 201,747 | 11.01 | |
hour 11-12 | 200,494 | 118,369 | 201,787 | 17.84 | |
hour 12-13 | 201,258 | 118,369 | 200,379 | 17.84 | |
hour 13-14 | 200,654 | 118,369 | 198,563 | 17.84 | |
hour 14-15 | 194,784 | 118,369 | 195,813 | 17.84 | |
hour 15-16 | 191,297 | 118,369 | 194,706 | 17.84 | |
hour 16-17 | 186,169 | 118,369 | 186,001 | 17.84 | |
hour 17-18 | 184,847 | 118,369 | 182,207 | 17.84 | |
hour 18-19 | 188,604 | 118,369 | 187,107 | 17.84 | |
hour 19-20 | 195,864 | 118,369 | 196,303 | 17.84 | |
hour 20-21 | 209,054 | 118,369 | 210,886 | 17.84 | |
hour 21-22 | 202,487 | 118,369 | 202,354 | 17.84 | |
hour 22-23 | 192,127 | 118,369 | 189,418 | 17.84 | |
hour 23-00 | 176,431 | 118,369 | 175,819 | 17.84 | |
TOTAL | 4,343,102 | 1,491,507 | 156,029 | 10.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dumitru, C.-D.; Gligor, A.; Vlasa, I.; Simo, A.; Dzitac, S. Energy Contour Forecasting Optimization with Smart Metering in Distribution Power Networks. Sensors 2023, 23, 1490. https://doi.org/10.3390/s23031490
Dumitru C-D, Gligor A, Vlasa I, Simo A, Dzitac S. Energy Contour Forecasting Optimization with Smart Metering in Distribution Power Networks. Sensors. 2023; 23(3):1490. https://doi.org/10.3390/s23031490
Chicago/Turabian StyleDumitru, Cristian-Dragoș, Adrian Gligor, Ilie Vlasa, Attila Simo, and Simona Dzitac. 2023. "Energy Contour Forecasting Optimization with Smart Metering in Distribution Power Networks" Sensors 23, no. 3: 1490. https://doi.org/10.3390/s23031490
APA StyleDumitru, C. -D., Gligor, A., Vlasa, I., Simo, A., & Dzitac, S. (2023). Energy Contour Forecasting Optimization with Smart Metering in Distribution Power Networks. Sensors, 23(3), 1490. https://doi.org/10.3390/s23031490