Prediction of Mineral Composition in Wheat Flours Fortified with Lentil Flour Using NIR Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Mineral Content
2.3. NIR Spectroscopy and Chemometric Methods
3. Results
3.1. Spectra Collection
3.2. Discrimination of the Percentage of Lentil Flour in Fortified Flour
3.3. Mineral Composition of Lentil Flours
3.4. Determination of Mineral Composition by NIRS
3.4.1. NIR Calibration Equation of Mineral Content
3.4.2. Internal and External Validation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pachón, H.; Spohrer, R.; Mei, Z.; Serdula, M.K. Evidence of the effectiveness of flour fortification programs on iron status and anemia: A systematic review. Nutr. Rev. 2015, 73, 780–795. [Google Scholar] [CrossRef]
- Rizkalla, S.W.; Bellisle, F.; Slama, G. Health benefits of low glycaemic index foods, such as pulses, in diabetic patients and healthy individuals. Br. J. Nutr. 2002, 88, 255–262. [Google Scholar] [CrossRef]
- Faris, M.A.I.E.; Takruri, H.R.; Issa, A.Y. Role of lentils (Lens culinaris L.) in human health and nutrition: A review. Mediterr. J. Nutr. Metab. 2013, 6, 3–16. [Google Scholar] [CrossRef]
- Magalhães, S.C.Q.; Taveira, M.; Cabrita, A.R.J.; Fonseca, A.J.M.; Valentão, P.; Andrade, P.B. European marketable grain legume seeds: Further insight into phenolic compounds profiles. Food Chem. 2017, 215, 177–184. [Google Scholar] [CrossRef]
- Alvarez-Jubete, L.; Wijngaard, H.; Arendt, E.K.; Gallagher, E. Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa buckwheat and wheat as affected by sprouting and baking. Food Chem. 2010, 119, 770–778. [Google Scholar] [CrossRef]
- Angioloni, A.; Collar, C. Nutritional and functional added value of oat, Kamut®, spelt, rye and buckwheat versus common wheat in breadmaking. J. Sci. Food Agric. 2011, 91, 1283–1292. [Google Scholar] [CrossRef]
- Preedy, V.R.; Watson, R. Flour and Breads and Their Fortification in Health and Disease Prevention; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Prodhan, U.K.; Linkon, K.M.M.R.; Al-Amin, M.F.; Alam, M.J. Development and quality evaluation of mushroom (Pleurotussajor-caju) enriched biscuits. Emir. J. Food Agric. 2015, 27, 542–547. [Google Scholar] [CrossRef]
- Cardoso, R.V.C.; Fernandes, Â.; Gonzaléz-Paramás, A.M.; Barros, L.; Ferreira, I.C.F.R. Flour fortification for nutritional and health improvement: A review. Food Res. Int. 2019, 125, 108576. [Google Scholar] [CrossRef] [Green Version]
- Santos, L.M.P.M.; Pereira, M.Z. Efeito da fortificação com ácido fólico na redução dos defeitos do tubo neural. Cad. Saúde Pública 2007, 23, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Del Pino-García, R.; Rico, D.; Martín-Diana, A.B. Evaluation of bioactive properties of Vicia narbonensis L. as potential flour ingredient for gluten-free food industry. J. Funct. Foods 2018, 47, 172–183. [Google Scholar] [CrossRef]
- Páramo-Calderón, D.E.; Aparicio-Saguilán, A.; Aguirre-Cruz, A.; Carrillo-Ahumada, J.; Hernández-Uribe, J.P.; Acevedo-Tello, S.; Torruco-Uco, J.G. Tortilla added with Moringa oleífera flour: Physicochemical, texture properties and antioxidant capacity. LWT 2019, 100, 409–415. [Google Scholar] [CrossRef]
- Asif, M.; Rooney, L.W.; Ali, R.; Riaz, M.N. Application and Opportunities of Pulses in Food System: A Review. Crit. Rev. Food Sci. Nutr. 2013, 53, 1168–1179. [Google Scholar] [CrossRef] [PubMed]
- Ryan, E.; Galvin, K.; O’Connor, T.P.; Maguire, A.R.; O’Brien, N.M. Phytosterol, squalene, tocopherol content and fatty acid profile of selected seeds, grains, and legumes. Plant Foods Hum. Nutr. 2007, 62, 85–91. [Google Scholar] [CrossRef]
- Kim, H.; Behall, K.; Conway, J. Short-term satiety and glycemic response after consumption of whole grains varying in the amount of β-glucan in over-weight adults. In Proceedings of the North American Association for the Study of Obesity 2005 Annual Meeting Obesity Research, Vancouver, BC, Canada, 15–19 October 2005; Volume 13, p. A219. [Google Scholar]
- Durazzo, A.; Turfani, V.; Azzini, E.; Maiani, G.; Carcea, M. Phenols, lignans and antioxidant properties of legume and sweet chestnut flours. Food Chem. 2013, 140, 666–671. [Google Scholar] [CrossRef]
- Paucean, A.; Moldovan, O.P.; Mureșan, V.; Socaci, S.A.; Dulf, F.V.; Alexa, E.; Man, S.M.; Mureșan, A.E.; Muste, S. Folic acid, minerals, amino-acids, fatty acids and volatile compounds of green and red lentils. Folic acid content optimization in wheat-lentils composite flours. Chem. Cent. J. 2018, 12, 88. [Google Scholar] [CrossRef] [Green Version]
- Moore, J.C.; Spink, J.; Lipp, M. Development and Application of a Database of Food Ingredient Fraud and Economically Motivated Adulteration from 1980 to 2010. J. Food Sci. 2012, 77, R118–R126. [Google Scholar] [CrossRef]
- Danezis, G.P.; Tsagkaris, A.S.; Brusic, V.; Georgiou, C.A. Food authentication: State of the art and prospects. Curr. Opin. Food Sci. 2016, 10, 22–31. [Google Scholar] [CrossRef]
- Borràs, E.; Ferré, J.; Boqué, R.; Mestres, M.; Aceña, L.; Busto, O. Data fusion methodologies for food and beverage authentication and quality assessment—A review. Anal. Chim. Acta 2015, 891, 1–14. [Google Scholar] [CrossRef]
- Kaluđerski, G.; Filipović, N. Methods for the Investigation of Cereals, Flour and Final Product Quality; Faculty of Technology: Novi Sad, Serbia, 1998; p. 71. [Google Scholar]
- Hernández, M.; Esteve, T.; Pla, M. Real-Time Polymerase Chain Reaction Based Assays for Quantitative Detection of Barley, Rice, Sunflower, and Wheat. J. Agric. Food Chem. 2005, 53, 7003–7009. [Google Scholar] [CrossRef]
- Karoui, R.; Cartaud, G.; Dufour, E. Front-Face Fluorescence Spectroscopy as a Rapid and Nondestructive Tool for Differentiating Various Cereal Products: A Preliminary Investigation. J. Agric. Food Chem. 2006, 54, 2027–2034. [Google Scholar] [CrossRef]
- Verdú, S.; Vásquez, F.; Grau, R.; Ivorra, E.; Sánchez, A.J.; Barat, J.M. Detection of adulterations with different grains in wheat products based on the hyperspectral image technique: The specific cases of flour and bread. Food Control 2016, 62, 373–380. [Google Scholar] [CrossRef]
- Brescia, M.A.; Sgaramella, A.; Ghelli, S.; Sacco, A. 1H HR-MAS NMR and isotopic investigation of bread and flour samples produced in southern Italy. J. Sci. Food Agric. 2003, 83, 1463–1468. [Google Scholar] [CrossRef]
- Ačanski, M.M.; Vujić, D.N. omparing sugar components of cereal and pseudocereal flour by GC–MS analysis. Food Chem. 2014, 145, 743–748. [Google Scholar] [CrossRef]
- Black, C.K.; Panozzo, J.F. Accurate Technique for Measuring Color Values of Grain and Grain Products Using a Visible-NIR Instrument. Cereal Chem. 2004, 81, 469–474. [Google Scholar] [CrossRef]
- Caporaso, N.; Whitworth, M.B.; Fisk, I.D. Near-Infrared spectroscopy and hyperspectral imaging for non-destructive quality assessment of cereal grains. Appl. Spectrosc. Rev. 2018, 53, 667–687. [Google Scholar] [CrossRef] [Green Version]
- Kouvoutsakis, G.; Mitsi, C.; Tarantilis, P.A.; Polissiou, M.G.; Pappas, C.S. Geographical differentiation of dried lentil seed (Lens culinaris) samples using Diffuse Reflectance Fourier Transform Infrared Spectroscopy (DRIFTS) and discriminant analysis. Food Chem. 2014, 145, 1011–1014. [Google Scholar] [CrossRef]
- Lastras, C.; Revilla, I.; González-Martín, M.I.; Vivar-Quintana, A.M. Prediction of fatty acid and mineral composition of lentils using near infrared spectroscopy. J. Food Compos. Anal. 2021, 102, 104023. [Google Scholar] [CrossRef]
- Revilla, I.; Lastras, C.; González-Martín, M.I.; Vivar-Quintana, A.M.; Morales-Corts, R.; Gómez-Sánchez, M.A.; Pérez-Sánchez, R. Predicting the physicochemical properties and geographical ORIGIN of lentils using near infrared spectroscopy. J. Food Compos. Anal. 2019, 77, 84–90. [Google Scholar] [CrossRef]
- Salgó, A.; Gergely, S. Analysis of wheat grain development using NIR spectroscopy. J. Cereal Sci. 2012, 56, 31–38. [Google Scholar] [CrossRef]
- Zhao, H.; Guo, B.; Wei, Y.; Zhang, B. Near infrared reflectance spectroscopy for determination of the geographical origin of wheat. Food Chem. 2013, 138, 1902–1907. [Google Scholar] [CrossRef]
- De Alencar Figueiredo, L.F.; Davrieux, F.; Fliedel, G.; Rami, J.F.; Chantereau, J.; Deu, M.; Courtois, B.; Mestres, C. Development of NIRS equations for food grain quality traits through exploitation of a core collection of cultivated sorghum. J. Agric. Food Chem. 2006, 54, 8501–8509. [Google Scholar] [CrossRef]
- Lancelot, E.; Fontaine, J.; Grua-Priol, J.; Le-Bail, A. Effect of long-term storage conditions on wheat flour and bread baking properties. Food Chem. 2021, 346, 128902. [Google Scholar] [CrossRef]
- Tian, W.; Chen, G.; Zhang, G.; Wang, D.; Tilley, M.; Li, Y. Rapid determination of total phenolic content of whole wheat flour using near-infrared spectroscopy and chemometrics. Food Chem. 2021, 344, 128633. [Google Scholar] [CrossRef]
- Ye, J.; Hu, X.; Luo, S.; McClements, D.J.; Liang, L.; Liu, C. Effect of endogenous proteins and lipids on starch digestibility in rice flour. Food Res. Int. 2018, 106, 404–409. [Google Scholar] [CrossRef]
- Armstrong, P.R.; Maghirang, E.B.; Xie, F.E.N.G.; Dowell, F.E. Comparison of dispersive and Fourier-transform NIR instruments for measuring grain and flour attributes. Appl. Eng. Agric. 2006, 22, 453–457. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Choung, M.G. Determination of protein content in pea by near infrared spectroscopy. Food Sci. Biotechnol. 2009, 18, 60–65. [Google Scholar]
- Singh, S.; Patel, S.; Litoria, N.; Gandhi, K.; Faldu, P.; Patel, K.G. Comparative efficiency of conventional and NIR based technique for proximate composition of pigeon pea, soybean and rice cultivars. Int. J. Curr. Microbiol. Appl. Sci 2018, 7, 773–782. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.B.; Walsh, K.; Naiker, M. Application of infrared spectroscopy for the prediction of nutritional content and quality assessment of faba bean (Vicia faba L.). Legume Sci. 2020, 2, e40. [Google Scholar] [CrossRef] [Green Version]
- Carbas, B.; Machado, N.; Oppolzer, D.; Queiroz, M.; Brites, C.; Rosa, E.A.; Barros, A.I. Prediction of phytochemical composition, in vitro antioxidant activity and individual phenolic compounds of common beans using MIR and NIR spectroscopy. Food Bioprocess Technol. 2020, 13, 962–977. [Google Scholar] [CrossRef]
- Carbas, B.; Machado, N.; Oppolzer, D.; Ferreira, L.; Brites, C.; Rosa, E.A.; Barros, A.I. Comparison of near-infrared (NIR) and mid-infrared (MIR) spectroscopy for the determination of nutritional and antinutritional parameters in common beans. Food Chem. 2020, 306, 125509. [Google Scholar] [CrossRef]
- Innamorato, V.; Longobardi, F.; Lippolis, V.; Cortese, M.; Logrieco, A.F.; Catucci, L.; Agostiano, A.; De Girolamo, A. Tracing the geographical origin of lentils (Lens culinaris Medik.) by infrared spectroscopy and chemometrics. Food Anal. Methods 2019, 12, 773–779. [Google Scholar] [CrossRef]
- Moldovan, O.; Păucean, A.; Vlaic, R.; Bors, M.D.; Muste, S. Preliminary assessment of the nutritional quality of two types of lentils (Lens culinaris) by near infrared reflectance spectroscopy technology (Nirs). Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Food Sci. Technol 2015, 72, 2–7. [Google Scholar] [CrossRef] [Green Version]
- Hang, J.; Shi, D.; Neufeld, J.; Bett, K.E.; House, J.D. Prediction of protein and amino acid contents in whole and ground lentils using near-infrared reflectance spectroscopy. LWT 2022, 165, 113669. [Google Scholar] [CrossRef]
- Wadood, S.A.; Guo, B.; Zhang, X.; Wei, Y. Geographical origin discrimination of wheat kernel and white flour using near-infrared reflectance spectroscopy fingerprinting coupled with chemometrics. Int. J. Food Sci. Technol. 2019, 54, 2045–2054. [Google Scholar] [CrossRef]
- Fu, X.; Chen, J.; Zhang, J.; Fu, F.; Wu, C. Effect of penetration depth and particle size on detection of wheat flour adulterant using hyperspectral imaging. Biosyst. Eng. 2021, 204, 64–78. [Google Scholar] [CrossRef]
- Tyska, D.; Mallmann, A.; Gressler, L.T.; Mallmann, C.A. Near-infrared spectroscopy as a tool for rapid screening of deoxynivalenol in wheat flour and its applicability in the industry. Food Addit. Contam. A 2021, 38, 1958–1968. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, S.; Shen, L.; Chen, S.; He, L.; Liu, A. Application of near-infrared spectroscopy for the nondestructive analysis of wheat flour: A review. Curr. Res. Food Sci. 2022, 5, 1305–1312. [Google Scholar] [CrossRef]
- Badaró, A.T.; e Tavares, J.P.H.; Blasco, J.; Aleixos, N.; Barbin, D.F. Near infrared techniques applied to analysis of wheat-based products: Recent advances and future trends. Food Control 2022, 140, 109115. [Google Scholar] [CrossRef]
- de Almeida Duarte, E.S.; de Almeida, V.E.; da Costa, G.B.; de Araújo, M.C.U.; Véras, G.; Diniz, P.H.G.D.; de Sousa Fernandes, D.D. Feasibility study on quantification and authentication of the cassava starch content in wheat flour for bread-making using NIR spectroscopy and digital images. Food Chem. 2022, 368, 130843. [Google Scholar] [CrossRef]
- Tao, F.; Liu, L.; Kucha, C.; Ngadi, M. Rapid and non-destructive detection of cassava flour adulterants in wheat flour using a handheld MicroNIR spectrometer. Biosyst. Eng. 2021, 203, 34–43. [Google Scholar] [CrossRef]
- Su, W.H.; Sun, D.W. Evaluation of spectral imaging for inspection of adulterants in terms of common wheat flour, cassava flour and corn flour in organic Avatar wheat (Triticum spp.) flour. J. Food Eng. 2017, 200, 59–69. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, W.; Ni, X.; Chu, X.; Li, Y.F.; Sun, C. Evaluation of near-infrared hyperspectral imaging for setection of peanut and walnut powders in whole wheat flour. Appl. Sci. 2018, 8, 1076. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Zhang, R.; Wang, W.; Li, C.Y. Using near-infrared (NIR) spectroscopy for rapid, quantitative detection of kojic acid in wheat flour. Food Sci. 2018, 39, 1087–1091. [Google Scholar] [CrossRef]
- Rachmawati; Rohaeti, E.; Rafi, M. Combination of near infrared spectroscopy and chemometrics for authentication of taro flour from wheat and sago flour. J. Phys. Conf. Ser. 2017, 835, 012011. [Google Scholar] [CrossRef] [Green Version]
- Che, W.; Sun, L.; Zhang, Q.; Zhang, D.; Ye, D.; Tan, W.; Wang, L.; Dai, C. Application of visible/near-infrared spectroscopy in the prediction of Azodicarbonamide in wheat flour. J. Food Sci. 2017, 82, 2516–2525. [Google Scholar] [CrossRef]
- Cocchi, M.; Durante, C.; Foca, G.; Marchetti, A.; Tassi, L.; Ulrici, A. Durum wheat adulteration detection by NIR spectroscopy multivariate calibration. Talanta 2006, 68, 1505–1511. [Google Scholar] [CrossRef]
- Berrendero, J.R.; Bueno-Larraz, B.; Cuevas, A. On Mahalanobis distance in functional settings. J. Mach. Learn. Res. 2020, 21, 288–320. [Google Scholar]
- Horcada, A.; Valera, M.; Juárez, M.; Fernández-Cabanás, V.M. Authentication of Iberian pork official quality categories using a portable near infrared spectroscopy (NIRS) instrument. Food Chem. 2020, 318, 126471. [Google Scholar] [CrossRef]
- Chen, J.Y.; Miao, Y.; Sato, S.; Zhang, H. Near infrared spectroscopy for determination of the protein composition of rice flour. Food Sci. Technol. Res. 2008, 14, 132–138. [Google Scholar] [CrossRef] [Green Version]
- Osborne, B.G.; Mertens, B.; Thompson, M.; Fearn, T. The authentication of Basmati rice using near infrared spectroscopy. J. Near Infrared Spectrosc. 1993, 1, 77–83. [Google Scholar] [CrossRef]
- John, R.; Bhardwaj, R.; Jeyaseelan, C.; Bollinedi, H.; Singh, N.; Harish, G.D.; Singh, R.; Nath, D.J.; Arya, M.; Sharma, D.; et al. Germplasm Variability Assisted NIRS Chemometrics to Develop Multi-Trait Robust Prediction Models in Rice. Front. Nutr. 2022, 946255. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Cabanás, V.M.; Garrido-Varo, A.; Pérez-Marín, D.; Dardenne, P. Evaluation of pretreatment strategies for near-infrared spectroscopy calibration development of unground and ground compound feedingstuffs. Appl. Spectrosc. 2006, 60, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Norris, K.; Williams, P. Optimization of mathematical treatments of raw near-infrared signal in the. Cereal Chem. 1984, 61, 158–165. [Google Scholar]
- Plaza, J.; Morales-Corts, M.R.; Pérez-Sánchez, R.; Revilla, I.; Vivar-Quintana, A.M. Morphometric and Nutritional Characterization of the Main Spanish Lentil Cultivars. Agriculture 2021, 11, 741. [Google Scholar] [CrossRef]
- Ding, X.; Ni, Y.; Kokot, S. NIR spectroscopy and chemometrics for the discrimination of pure, powdered, purple sweet potatoes and their samples adulterated with the white sweet potato flour. Chemom. Intell. Lab. Syst. 2015, 144, 17–23. [Google Scholar] [CrossRef]
- González-Martín, M.I.; Moncada, G.W.; González-Pérez, C.; San Martín, N.Z.; López-González, F.; Ortega, I.L.; Hernández-Hierro, J.M. Chilean flour and wheat grain: Tracing their origin using near infrared spectroscopy and chemometrics. Food Chem. 2014, 145, 802–806. [Google Scholar] [CrossRef]
- Kumagai, M.; Karube, K.; Sato, T.; Ohisa, N.; Amano, T.; Kikuchi, R.; Ogawa, N. A near infrared spectroscopic discrimination of noodle flours using a principal-component analysis coupled with chemical information. Anal. Sci. 2002, 18, 1145–1150. [Google Scholar] [CrossRef] [Green Version]
- Ziegler, J.U.; Leitenberger, M.; Longin, C.F.H.; Würschum, T.; Carle, R.; Schweiggert, R.M. Near-infrared reflectance spectroscopy for the rapid discrimination of kernels and flours of different wheat species. J. Food Compos. Anal. 2016, 51, 30–36. [Google Scholar] [CrossRef]
- De Angelis, D.; Pasqualone, A.; Allegretta, I.; Porfido, C.; Terzano, R.; Squeo, G.; Summo, C. Antinutritional factors, mineral composition and functional properties of dry fractionated flours as influenced by the type of pulse. Heliyon 2021, 7, e06177. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Mousavi, S.M.; Jafari, S.M.; Faraji, K. Proximate composition, mineral content, and fatty acids profile of two varieties of lentil seeds cultivated in Iran. Chem. Nat. Compd. 2012, 47, 976–978. [Google Scholar] [CrossRef]
- Thavarajah, D.; Thavarajah, P.; Wejesuriya, A.; Rutzke, M.; Glahn, R.P.; Combs, G.F.; Vandenberg, A. The potential of lentil (Lens culinaris L.) as a whole food for increased selenium, iron, and zinc intake: Preliminary results from a 3 years’ study. Euphytica 2011, 180, 123–128. [Google Scholar] [CrossRef]
- Thavarajah, P.; Sarker, A.; Materne, M.; Vandemark, G.; Shrestha, R.; Idrissi, O.; Hacikamiloglu, O.; Bucak, B.; Vandenberg, A. A global survey of effects of genotype and environment on selenium concentration in lentils (Lens culinaris L.): Implications for nutritional fortification strategies. Food Chem. 2011, 125, 72–76. [Google Scholar] [CrossRef]
- Wang, N.; Daun, J.K. Effects of variety and crude protein content on nutrients and anti-nutrients in lentils (Lens culinaris). Food Chem. 2006, 95, 493–502. [Google Scholar] [CrossRef]
- Vandemark, G.J.; Grusak, M.A.; McGee, R.J. Mineral concentrations of chickpea and lentil cultivars and breeding lines grown in the US Pacific Northwest. Crop J. 2018, 6, 253–262. [Google Scholar] [CrossRef]
- Akhtar, S. Malnutrition in South Asia—A critical reappraisal. Crit. Rev. Food Sci. Nutr. 2016, 56, 2320–2330. [Google Scholar] [CrossRef]
- Bouhlal, O.; Taghouti, M.; Benbrahim, N.; Benali, A.; Visioni, A.; Benba, J. Wheat-lentil fortified flours: Health benefits, physicochemical, nutritional and technological properties. J. Mater. Environ. Sci. 2019, 10, 1098–1106. [Google Scholar]
- Tremblay, G.F.; Nie, Z.; Belanger, G.; Pelletier, S.; Allard, G. Predicting timothy mineral concentrations, dietary cation-anion difference, and grass tetany index by near-infrared reflectance spectroscopy. J. Dairy Sci. 2009, 92, 4499–4506. [Google Scholar] [CrossRef] [Green Version]
- Garnsworthy, P.C.; Wiseman, J.; Fegeros, K. Prediction of chemical, nutritive and agronomic characteristics of wheat by near infrared spectroscopy. J. Agric. Sci. 2000, 135, 409–417. [Google Scholar] [CrossRef]
- Ruano-Ramos, A.; García-Ciudad, A.; García-Criado, B. Near infrared spectroscopy prediction of mineral content in botanical fractions from semi-arid grasslands. Anim. Feed. Sci. Technol. 1999, 77, 331–343. [Google Scholar] [CrossRef]
- Cozzolino, D.; Moron, A. Exploring the use of near infrared reflectance spectroscopy (NIRS) to predict trace minerals in legumes. Anim. Feed. Sci. Technol. 2004, 111, 161–173. [Google Scholar] [CrossRef]
- Huang, C.; Han, L.; Yang, Z.; Liu, X. Exploring the use of near infrared reflectance spectroscopy to predict minerals in straw. Fuel 2009, 88, 163–168. [Google Scholar] [CrossRef]
Sample | Composition | Lentil Variety | Nº of Samples | Total Samples |
---|---|---|---|---|
Commercial wheat flour | 100% wheat | - | 3 | 3 |
Lentil flour | 100% lentil | Castellana | 20 | 60 |
Pardina | 20 | |||
Guareña | 20 | |||
Fortified flour | 75% wheat/25% lentil | Castellana | 10 | 90 |
Pardina | 10 | |||
Guareña | 10 | |||
50% wheat/50% lentil | Castellana | 10 | ||
Pardina | 10 | |||
Guareña | 10 | |||
25% wheat/75% lentil | Castellana | 10 | ||
Pardina | 10 | |||
Guareña | 10 |
Global Composition Results | Validation Results by Category | Global Lentil Variety Results | Validation Results by Category | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Correctly Classified (%) | Sensitivity | Correctly Classified (%) | Sensitivity | |||||||||
Spectral Pre-Treatment | Calibration (n = 120) | Validation (n = 33) | 100 | 75 | 50 | 25 | Calibration (n = 120) | Validation (n = 33) | Castellana | Guareña | Pardina | |
None | 0-0-1-1 | 98.06 | 95.56 | 0.88 | 1.00 | 1.00 | 1.00 | 77.50 | 70.00 | 0.80 | 0.80 | 0.50 |
1-4-4-1 | 100.00 | 100.00 | 1.00 | 1.00 | 1.00 | 1.00 | 82.50 | 76.67 | 0.70 | 0.60 | 1.00 | |
2-4-4-1 | 100.00 | 100.00 | 1.00 | 1.00 | 1.00 | 1.00 | 94.17 | 93.33 | 1.00 | 0.80 | 1.00 | |
2-10-10-1 | 100.00 | 100.00 | 1.00 | 1.00 | 1.00 | 1.00 | 83.33 | 76.67 | 0.70 | 0.60 | 1.00 | |
2-8-6-1 | 100.00 | 100.00 | 1.00 | 1.00 | 1.00 | 1.00 | 84.17 | 80.00 | 0.70 | 0.70 | 1.00 | |
Detrend | 0-0-1-1 | 98.88 | 95.55 | 0.88 | 1.00 | 1.00 | 1.00 | 77.50 | 73.33 | 0.80 | 0.50 | 0.90 |
1-4-4-1 | 100.00 | 100.00 | 1.00 | 1.00 | 1.00 | 1.00 | 84.17 | 76.67 | 0.70 | 0.60 | 1.00 | |
2-4-4-1 | 100.00 | 100.00 | 1.00 | 1.00 | 1.00 | 1.00 | 94.17 | 93.33 | 1.00 | 0.80 | 1.00 | |
2-10-10-1 | 100.00 | 100.00 | 1.00 | 1.00 | 1.00 | 1.00 | 83.33 | 76.67 | 0.70 | 0.60 | 1.00 | |
2-8-6-1 | 100.00 | 100.00 | 1.00 | 1.00 | 1.00 | 1.00 | 84.17 | 80.00 | 0.70 | 0.70 | 1.00 | |
SNV | 0-0-1-1 | 96.94 | 93.33 | 0.83 | 1.00 | 1.00 | 1.00 | 66.67 | 63.33 | 0.60 | 0.40 | 0.90 |
1-4-4-1 | 100.00 | 100.00 | 1.00 | 1.00 | 1.00 | 1.00 | 88.33 | 86.67 | 0.70 | 0.90 | 1.00 | |
2-4-4-1 | 100.00 | 100.00 | 1.00 | 1.00 | 1.00 | 1.00 | 100.00 | 96.67 | 1.00 | 0.90 | 1.00 | |
2-10-10-1 | 100.00 | 98.88 | 1.00 | 0.94 | 1.00 | 1.00 | 88.33 | 73.33 | 0.80 | 0.40 | 1.00 | |
2-8-6-1 | 100.00 | 100.00 | 1.00 | 1.00 | 1.00 | 1.00 | 90.00 | 83.33 | 0.80 | 0.90 | 0.80 | |
SNV-Detrend | 0-0-1-1 | 100.00 | 100.00 | 1.00 | 1.00 | 1.00 | 1.00 | 87.5 | 80.00 | 0.80 | 0.60 | 1.00 |
1-4-4-1 | 100.00 | 100.00 | 1.00 | 1.00 | 1.00 | 1.00 | 93.33 | 80.00 | 0.70 | 0.70 | 1.00 | |
2-4-4-1 | 100.00 | 100.00 | 1.00 | 1.00 | 1.00 | 1.00 | 100.00 | 96.67 | 1.00 | 0.90 | 1.00 | |
2-10-10-1 | 100.00 | 98.88 | 1.00 | 0.94 | 1.00 | 1.00 | 88.33 | 73.33 | 0.80 | 0.40 | 1.00 | |
2-8-6-1 | 100.00 | 100.00 | 1.00 | 1.00 | 1.00 | 1.00 | 90.00 | 83.33 | 0.80 | 0.90 | 0.80 |
K (g/100 g) | P (g/100 g) | Mg (g/100 g) | Ca (g/100 g) | Fe (mg/kg) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Min-Max | Min-Max | Min-Max | Min-Max | Min-Max | ||||||
Lentil flour | ||||||||||
var. Castellana, | 0.78–0.94 | 0.87 ± 0.05 ef | 0.27–0.40 | 0.34 ± 0.04 e | 0.09–0.11 | 0.09 ± 0.01 e | 0.08–0.12 | 0.10 ± 0.01 f | 45.60–75.00 | 61.62 ± 10.57 de |
var. Guareña | 0.90–1.02 | 0.94 ± 0.04 f | 0.37–0.45 | 0.41 ± 0.02 f | 0.09–0.11 | 0.09 ± 0.01 e | 0.07–0.10 | 0.08 ± 0.01 e | 42.30–106.00 | 67.65 ± 15.65 de |
var. Pardina | 0.79–0.99 | 0.81 ± 0.26 de | 0.33–0.44 | 0.39 ± 0.04 f | 0.09–0.11 | 0.10 ± 0.06 e | 0.07–0.10 | 0.08 ± 0.01 de | 44.70–115.00 | 73.24 ± 24.21 e |
Wheat flour | ||||||||||
Non fortified | 0.14–0.17 | 0.16 ± 0.01 a | 0.01–0.92 | 0.09 ± 0.26 a | 0.02–0.30 | 0.02 ± 0.11 a | 0.02–0.29 | 0.02 ± 0.12 a | 10.56–14.60 | 11.97 ± 1.27 a |
25% Fortified | 0.14–0.37 | 0.34 ± 0.04 b | 0.14–0.18 | 0.16 ± 0.01 b | 0.04–0.05 | 0.04 ± 0.01 b | 0.03–0.05 | 0.04 ± 0.00 b | 20.12–38.30 | 26.42 ± 4.50 b |
50% Fortified | 0.20–0.60 | 0.51 ± 0.08 c | 0.18–0.28 | 0.24 ± 0.02 c | 0.06–0.07 | 0.06 ± 0.00 c | 0.05–0.07 | 0.05 ± 0.01 c | 27.52–63.87 | 40.12 ± 9.00 c |
75% Fortified | 0.40–0.80 | 0.69 ± 0.12 d | 0.23–0.38 | 0.31 ± 0.03 d | 0.07–0.09 | 0.08 ± 0.01 d | 0.06–0.10 | 0.07 ± 0.01 d | 34.91–89.43 | 53.81 ± 13.51 d |
Mineral | Math Treatment | N | Mean | SD | Min Est. | Max Est. | SEC | SECV | RSQ |
---|---|---|---|---|---|---|---|---|---|
Mg | SNV 2,4,4,1 | 114 | 0.0767 | 0.0205 | 0.0153 | 0.1381 | 0.0038 | 0.0048 | 0.96 |
P | Detrend 2,10,10,1 | 110 | 0.292 | 0.0911 | 0.0187 | 0.5653 | 0.0206 | 0.0208 | 0.94 |
K | Detrend 0,0,1,1 | 115 | 0.6794 | 0.2211 | 0.0162 | 1.3426 | 0.0293 | 0.039 | 0.98 |
Ca | Detrend 0,0,1,1 | 115 | 0.0685 | 0.0211 | 0.0052 | 0.1316 | 0.0051 | 0.0056 | 0.94 |
Fe | SNV 2,4,4,1 | 108 | 49.1007 | 18.2117 | 0.0000 | 103.7358 | 6.5112 | 8.984 | 0.87 |
Mineral | p (Level of Significance) | RMSE * |
---|---|---|
Mg | 0.83 | 0.006 |
P | 0.13 | 0.014 |
K | 0.38 | 0.034 |
Ca | 0.85 | 0.008 |
Fe | 0.67 | 8.590 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Martín, I.; Hernández-Jiménez, M.; Revilla, I.; Vivar-Quintana, A.M. Prediction of Mineral Composition in Wheat Flours Fortified with Lentil Flour Using NIR Technology. Sensors 2023, 23, 1491. https://doi.org/10.3390/s23031491
Martínez-Martín I, Hernández-Jiménez M, Revilla I, Vivar-Quintana AM. Prediction of Mineral Composition in Wheat Flours Fortified with Lentil Flour Using NIR Technology. Sensors. 2023; 23(3):1491. https://doi.org/10.3390/s23031491
Chicago/Turabian StyleMartínez-Martín, Iván, Miriam Hernández-Jiménez, Isabel Revilla, and Ana M. Vivar-Quintana. 2023. "Prediction of Mineral Composition in Wheat Flours Fortified with Lentil Flour Using NIR Technology" Sensors 23, no. 3: 1491. https://doi.org/10.3390/s23031491
APA StyleMartínez-Martín, I., Hernández-Jiménez, M., Revilla, I., & Vivar-Quintana, A. M. (2023). Prediction of Mineral Composition in Wheat Flours Fortified with Lentil Flour Using NIR Technology. Sensors, 23(3), 1491. https://doi.org/10.3390/s23031491