Indoor Location Technology with High Accuracy Using Simple Visual Tags
Abstract
:1. Introduction
2. Indoor Location System Design
2.1. Simple Visual Tag Design
2.2. Location Algorithm with High Accuracy
3. Matching of Tag
3.1. Determination of Candidate Tag
3.2. Tag Matching by Azimuth
4. Pose and Position Calculation with High Accuracy
4.1. Analysis of Error Transfer Characteristic
4.2. Position Estimation by Weighted Least Square Method
5. Validation and Analysis
5.1. Simulation Validation and Analysis
5.2. Comparative Test of Location Accuracy
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vladareanu, L.; Vlădareanu, V.; Pop, N.; Migdalovici, M.; Boșcoianu, M.; Pop, S.; Ciocîrlan, A. Robot extenics control developed by versatile, intelligent and portable robot Vipro platform applied on firefighting robots. Int. J. Online Biomed. Eng. 2020, 16, 99–107. [Google Scholar] [CrossRef]
- Gao, F.; Dang, D.F.; He, Y.D. Robust coordinated control of nonlinear heterogeneous platoon interacted by uncertain topology. IEEE Trans. Intell. Transp. Syst. 2022, 23, 4982–4992. [Google Scholar]
- Li, S.; Rashidzadeh, R. Hybrid indoor location positioning system. IET Wirel. Sens. Syst. 2019, 9, 257–264. [Google Scholar] [CrossRef]
- Ding, J.; Wang, Y.; Fu, S.; Si, H.; Zhang, J.; Gao, S. Multiview features fusion and Adaboost based indoor localization on Wifi platform. IEEE Sens. J. 2022, 22, 16607–16616. [Google Scholar] [CrossRef]
- Youm, S.; Shin, K.S. Improved method of Bluetooth low energy based location tracking using neural networks. Sens. Mater. 2021, 33, 2083–2093. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, J.; Wang, J.; Han, H.; Yang, D. An UWB/vision fusion scheme for determining pedestrians’ indoor location. Sensors 2020, 20, 1139. [Google Scholar] [CrossRef] [PubMed]
- Billa, A.; Shayea, I.; Alhammadi, A.; Abdullah, Q.; Roslee, M. An overview of indoor localization technologies: Toward IoT navigation services. In Proceedings of the International Symposium on Telecommunication Technologies, Shah Alam, Malaysia, 9–11 November 2020. [Google Scholar]
- Kordi, K.A.; Alhammadi, A.; Roslee, M.; Alias, M.Y.; Abdullah, Q. A review on wireless emerging IoT indoor localization. In Proceedings of the International Symposium on Telecommunication Technologies, Shah Alam, Malaysia, 9–11 November 2020. [Google Scholar]
- Alhammadi, A.; Hashim, F.; ARasid, M.F.; Alraih, S. A three-dimensional pattern recognition localization system based on a Bayesian graphical model. Int. J. Distrib. Sens. Netw. 2020, 16, 1–12. [Google Scholar] [CrossRef]
- Song, J.; Kook, J. Visual SLAM based spatial recognition and visualization method for mobile AR system. Appl. Syst. Innov. 2022, 5, 11. [Google Scholar] [CrossRef]
- Kayhani, N.; Zhao, W.; McCabe, B.; Schoellig, A.P. Tag-based visual-inertial localization of unmanned aerial vehicles in indoor construction environments using an on-manifold extended Kalman filter. Autom. Constr. 2022, 135, 104112. [Google Scholar] [CrossRef]
- Li, M.; Chen, R.; Liao, X.; Guo, B.; Zhang, W.; Guo, G. A precise indoor visual positioning approach using a built image feature database and signle user image from smartphone. Remote Sens. 2020, 12, 869. [Google Scholar] [CrossRef]
- Hong, W.; Xia, H.; An, X.; Liu, X. Natural landmarks based localization algorithm for indoor robot with binocular vision. In Proceedings of the Chinese Control and Decision Conference, Chongqing, China, 28–30 May 2017. [Google Scholar]
- Li, N.; Tu, W.; Ai, H.; Deng, H.; Tao, J.; Hu, T.; Sun, X. VISEL: A visual and magnetic fusion-based large scale indoor localization system with improved high-precision sematic maps. Int. J. Intell. Syst. 2022, 37, 7992–8020. [Google Scholar] [CrossRef]
- Park, D.; Lee, S.J.; Kwon, J.; Choi, S. Localization of mobile robot based on artificial landmark. J. Korean Inst. Commun. Inf. Sci. 2020, 45, 2150–2153. [Google Scholar] [CrossRef]
- Li, M.; Zhao, L.; Tan, D.; Tong, X. BLE fingerprint indoor localization algorithm based on eight-neighborhood template matching. Sensors 2020, 19, 4859. [Google Scholar] [CrossRef]
- Shao, F.; Lin, W.; Gu, S.; Jiang, G.; Srikanthan, T. Perceptual full-reference quality assessment of stereoscopic images by considering binocular visual characteristics. IEEE Trans. Image Process. 2013, 22, 1940–1953. [Google Scholar] [CrossRef]
- Xie, H.L.; Zhu, Q.D.; Liu, P. Self localization method of panoramic stereo vision robot based on maximum likelihood estimation. Appl. Technol. 2017, 44, 40–45. [Google Scholar]
- Jiang, L.Z.; Lei, W.; Wang, J. Radar angle measurement accuracy evaluation system based on machine vision. Comput. Meas. Control. 2014, 22, 2842–2843, 2866. [Google Scholar]
- Lee, J.K.; Wang, Y.M.; Lu, C.S.; Wang, H.C.; Chou, T.R. The enhancement of graphic QR code recognition using convolutional neural networks. In Proceedings of the International Conference on Innovation, Communication and Engineering, Zhenzhou, China, 25–30 October 2019. [Google Scholar]
- Gao, F.; Wang, C. Hybrid strategy for traffic light detection by combining classical and self-learning detectors. IET Intell. Transp. Syst. 2020, 14, 735–741. [Google Scholar] [CrossRef]
- Nazemzadeh, P.; Fontanelli, D.; Macii, D. Optimal placement of landmarks for indoor localization using sensors with a limited range. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation, Alcala de Henares, Spain, 4–7 October 2016. [Google Scholar]
- Chen, Y.; Hu, J.; Wang, J.H. Data driven weighted least square localization algorithm for UAV. Command. Inf. Syst. Technol. 2020, 11, 76–80. [Google Scholar]
- Gao, F.; Han, Z.; Yang, Y. Performance Limit Evaluation by Evolution Test with Application to Automatic Parking System. IEEE Trans. Intell. Veh. 2022. Available online: https://ieeexplore.ieee.org/document/9645203 (accessed on 19 January 2023).
Equipment | Parameter | Value |
---|---|---|
Camera | Resolution | 1920 × 1080 |
Frame rate | 30 fps | |
Field of view | 78 degree | |
Focal length | 747.1 pix | |
Raspberry 4b | CPU | BCM2837B0SOC |
Number of cores | 4 | |
Basic frequency | 1.4 GHz | |
RAM | 1 G | |
UWB | Location precision | 10 cm |
Communication range | ≤130 m | |
Update frequency | ≤50 Hz |
Average Error | Long. Location (cm) | Lat. Location (cm) | Azimuth (°) |
---|---|---|---|
UWB | 36.1 | 32.4 | / |
Proposed location system | 12.3 | 9.8 | 0.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, F.; Ma, J. Indoor Location Technology with High Accuracy Using Simple Visual Tags. Sensors 2023, 23, 1597. https://doi.org/10.3390/s23031597
Gao F, Ma J. Indoor Location Technology with High Accuracy Using Simple Visual Tags. Sensors. 2023; 23(3):1597. https://doi.org/10.3390/s23031597
Chicago/Turabian StyleGao, Feng, and Jie Ma. 2023. "Indoor Location Technology with High Accuracy Using Simple Visual Tags" Sensors 23, no. 3: 1597. https://doi.org/10.3390/s23031597
APA StyleGao, F., & Ma, J. (2023). Indoor Location Technology with High Accuracy Using Simple Visual Tags. Sensors, 23(3), 1597. https://doi.org/10.3390/s23031597