The Image Definition Assessment of Optoelectronic Tracking Equipment Based on the BRISQUE Algorithm with Gaussian Weights
Abstract
:1. Introduction
2. Acquiring the CV via the Improved BRISQUE Algorithm
2.1. Training Image Sample Selection and Database Establishment
2.2. BRISQUE Algorithm
2.3. Improved BRISQUE Algorithm That Is Weighted by a Gaussian Function
3. Support Vector Machine Model and Training
4. Defocused Image Acquisition and Image Evaluation Test
4.1. Defocused Image Sequence Acquisition
4.2. Predictive Test of Definition Evaluation of Defocused Images
4.2.1. Single-Peak Defocused Image Test
4.2.2. The Test of Algorithm Comparison
4.2.3. Dual-Peak Defocused Image Test
4.2.4. Repeatability Testing of Dual-Peak Defocused Image
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, N.; Ma, D.; Ren, G.; Huang, Y. BM-IQE: An Image Quality Evaluator with Block-Matching for Both Real-Life Scenes and Remote Sensing Scenes. Sensors 2020, 20, 3472. [Google Scholar] [CrossRef]
- Takam Tchendjou, G.; Simeu, E. Visual Perceptual Quality Assessment Based on Blind Machine Learning Techniques. Sensors 2021, 22, 175. [Google Scholar] [CrossRef] [PubMed]
- Ponomarenko, N.; Lukin, V.; Zelensky, A.; Egiazarian, K.; Carli, M.; Battisti, F. TID2008—A Database for Evaluation of Full-Reference Visual Quality Assessment Metrics. Adv. Mod. Radioelectron. 2009, 10, 30–45. [Google Scholar]
- Wei, M.-S.; Xing, F.; You, Z. A Real-Time Detection and Positioning Method for Small and Weak Targets Using a 1D Morphology-Based Approach in 2D Images. Light Sci. Appl. 2018, 7, 18006. [Google Scholar] [CrossRef]
- Moorthy, A.K.; Bovik, A.C. Blind Image Quality Assessment: From Natural Scene Statistics to Perceptual Quality. IEEE Trans. Image Process. 2011, 20, 3350–3364. [Google Scholar] [CrossRef]
- Tran, V.L.; Lin, H.-Y. Extending and Matching a High Dynamic Range Image from a Single Image. Sensors 2020, 20, 3950. [Google Scholar] [CrossRef]
- Rahmani, B.; Loterie, D.; Konstantinou, G.; Psaltis, D.; Moser, C. Multimode Optical Fiber Transmission with a Deep Learning Network. Light Sci. Appl. 2018, 7, 69. [Google Scholar] [CrossRef]
- Stępień, I.; Obuchowicz, R.; Piórkowski, A.; Oszust, M. Fusion of Deep Convolutional Neural Networks for No-Reference Magnetic Resonance Image Quality Assessment. Sensors 2021, 21, 1043. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.; Bai, X.; Gao, P.; He, Y. Application of Convolutional Neural Network-Based Feature Extraction and Data Fusion for Geographical Origin Identification of Radix Astragali by Visible/Short-Wave Near-Infrared and Near Infrared Hyperspectral Imaging. Sensors 2020, 20, 4940. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Mou, X.; Zhang, D. FSIM: A Feature Similarity Index for Image Quality Assessment. IEEE Trans. Image Process. 2011, 20, 2378–2386. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-X.; Chen, B.; He, F.; Song, K.-F.; Zhang, P.; Wang, J.-S. Wide-Field Auroral Imager Onboard the Fengyun Satellite. Light Sci. Appl. 2019, 8, 47. [Google Scholar] [CrossRef]
- Capodiferro, L.; Jacovitti, G.; Di Claudio, E.D. Two-Dimensional Approach to Full-Reference Image Quality Assessment Based on Positional Structural Information. IEEE Trans. Image Process. 2012, 21, 505–516. [Google Scholar] [CrossRef] [PubMed]
- Golestaneh, S.A.; Chandler, D.M. No-Reference Quality Assessment of JPEG Images via a Quality Relevance Map. IEEE Signal Process. Lett. 2014, 21, 155–158. [Google Scholar] [CrossRef]
- Olson, J.T.; Espinola, R.L.; Jacobs, E.L. Comparison of Tilted Slit and Tilted Edge Superresolution Modulation Transfer Function Techniques. Opt. Eng. 2007, 46, 01640. [Google Scholar] [CrossRef]
- Bentzen, S.M. Evaluation of the Spatial Resolution of a CT Scanner by Direct Analysis of the Edge Response Function. Med. Phys. 1983, 10, 579–581. [Google Scholar] [CrossRef]
- Bao, Y.; Yu, Y.; Xu, H.; Guo, C.; Li, J.; Sun, S.; Zhou, Z.-K.; Qiu, C.-W.; Wang, X.-H. Full-Colour Nanoprint-Hologram Synchronous Metasurface with Arbitrary Hue-Saturation-Brightness Control. Light Sci. Appl. 2019, 8, 95. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Shuang, Y.; Ma, Q.; Li, H.; Zhao, H.; Wei, M.; Liu, C.; Hao, C.; Qiu, C.-W.; Cui, T.J. Intelligent Metasurface Imager and Recognizer. Light Sci. Appl. 2019, 8, 97. [Google Scholar] [CrossRef] [PubMed]
- Nijhawan, O.P.; Gupta, S.K.; Hradaynath, R. Polychromatic MTF of Electrostatic Point Symmetric Electron Lenses. Appl. Opt. 1983, 22, 2453–2455. [Google Scholar] [CrossRef]
- Seghir, Z.A.; Hachouf, F.; Morain-Nicolier, F. Blind Image Quality Metric for Blurry and Noisy Image. In Proceedings of the 2013 IEEE Second International Conference on Image Information Processing (ICIIP-2013), Shimla, India, 9–11 December 2013; pp. 193–197. [Google Scholar]
- Gu, K.; Zhai, G.; Liu, M.; Yang, X.; Zhang, W.; Sun, X.; Chen, W.; Zuo, Y. FISBLIM: A FIve-Step BLInd Metric for Quality Assessment of Multiply Distorted Images. In Proceedings of the SiPS 2013 Proceedings, Taipei, Taiwan, 16–18 October 2013; pp. 241–246. [Google Scholar]
- Ponomarenko, N.; Lukin, V.; Egiazarian, K. HVS-Metric-Based Performance Analysis of Image Denoising Algorithms. In Proceedings of the 3rd European Workshop on Visual Information Processing, Paris, France, 4–6 July 2011; pp. 156–161. [Google Scholar]
- Ye, P.; Doermann, D. No-Reference Image Quality Assessment Based on Visual Codebook. In Proceedings of the 2011 18th IEEE International Conference on Image Processing, Brussels, Belgium, 11–14 September 2011; pp. 3089–3092. [Google Scholar]
- Wang, Z.; Sheikh, H.R.; Bovik, A.C. No-Reference Perceptual Quality Assessment of JPEG Compressed Images. In Proceedings of the International Conference on Image Processing, Rochester, NY, USA, 22–25 September 2002; Volume 1, pp. 477–480. [Google Scholar]
- Campisi, P.; Carli, M.; Giunta, G.; Neri, A. Blind Quality Assessment System for Multimedia Communications Using Tracing Watermarking. IEEE Trans. Signal Process. 2003, 51, 996–1002. [Google Scholar] [CrossRef]
- Moorthy, A.K.; Bovik, A.C. A Two-Step Framework for Constructing Blind Image Quality Indices. IEEE Signal Process. Lett. 2010, 17, 513–516. [Google Scholar] [CrossRef]
- Saad, M.A.; Bovik, A.C.; Charrier, C. A DCT Statistics-Based Blind Image Quality Index. IEEE Signal Process. Lett. 2010, 17, 583–586. [Google Scholar] [CrossRef]
- Saad, M.A.; Bovik, A.C.; Charrier, C. DCT Statistics Model-Based Blind Image Quality Assessment. In Proceedings of the 2011 18th IEEE International Conference on Image Processing, Brussels, Belgium, 11–14 September 2011; pp. 3093–3096. [Google Scholar]
- Mittal, A.; Moorthy, A.K.; Bovik, A.C. No-Reference Image Quality Assessment in the Spatial Domain. IEEE Trans. Image Process. 2012, 21, 4695–4708. [Google Scholar] [CrossRef]
- Mittal, A.; Soundararajan, R.; Bovik, A.C. Making a “Completely Blind” Image Quality Analyzer. IEEE Signal Process. Lett. 2013, 20, 209–212. [Google Scholar] [CrossRef]
- Li, C.; Bovik, A.C.; Wu, X. Blind Image Quality Assessment Using a General Regression Neural Network. IEEE Trans. Neural Netw. 2011, 22, 793–799. [Google Scholar] [PubMed]
- Han, L.; Lv, H.; Zhao, Y.; Liu, H.; Bi, G.; Yin, Z.; Fang, Y. Conv-Former: A Novel Network Combining Convolution and Self-Attetion for Image Quality Assessment. Sensors 2023, 23, 427. [Google Scholar] [CrossRef] [PubMed]
- Ruderman, D.L. The Statistics of Natural Images. Netw. Comput. Neural Syst. 1994, 5, 517–548. [Google Scholar] [CrossRef]
- Simoncelli, E.P.; Freeman, W.T.; Adelson, E.H.; Heeger, D.J. Shiftable Multiscale Transforms. IEEE Trans. Inf. Theory 1992, 38, 587–607. [Google Scholar] [CrossRef]
- Varga, D. No-Reference Video Quality Assessment Using the Temporal Statistics of Global and Local Image Features. Sensors 2022, 22, 9696. [Google Scholar]
- Lasmar, N.-E.; Stitou, Y.; Berthoumieu, Y. Multiscale Skewed Heavy Tailed Model for Texture Analysis. In Proceedings of the 2009 16th IEEE International Conference on Image Processing (ICIP), Cairo, Egypt, 7–10 November 2009; pp. 2281–2284. [Google Scholar]
- Adankon, M.M.; Cheriet, M.; Biem, A. Semisupervised Learning Using Bayesian Interpretation: Application to LS-SVM. IEEE Trans. Neural Netw. 2011, 22, 513–524. [Google Scholar] [CrossRef] [PubMed]
- Memon, S.A.; Javed, Q.; Kim, W.-G.; Mahmood, Z.; Khan, U.; Shahzad, M. A Machine-Learning-Based Robust Classification Method for PV Panel Faults. Sensors 2022, 22, 8515. [Google Scholar] [CrossRef]
- Botros, J.; Mourad-Chehade, F.; Laplanche, D. CNN and SVM-Based Models for the Detection of Heart Failure Using Electrocardiogram Signals. Sensors 2022, 22, 9190. [Google Scholar] [CrossRef]
- Chu, W.-L.; Lin, C.-J.; Kao, K.-C. Fault Diagnosis of a Rotor and Ball-Bearing System Using DWT Integrated with SVM, GRNN, and Visual Dot Patterns. Sensors 2019, 19, 4806. [Google Scholar] [CrossRef]
- Antony, M.J.; Sankaralingam, B.P.; Mahendran, R.K.; Gardezi, A.A.; Shafiq, M.; Choi, J.-G.; Hamam, H. Classification of EEG Using Adaptive SVM Classifier with CSP and Online Recursive Independent Component Analysis. Sensors 2022, 22, 7596. [Google Scholar] [CrossRef] [PubMed]
- Sharifi, K.; Leon-Garcia, A. Estimation of Shape Parameter for Generalized Gaussian Distributions in Subband Decompositions of Video. IEEE Trans. Circuits Syst. Video Technol. 1995, 5, 52–56. [Google Scholar] [CrossRef]
- Wu, J.; Yang, H. Linear Regression-Based Efficient SVM Learning for Large-Scale Classification. IEEE Trans. Neural Netw. Learn. Syst. 2015, 26, 2357–2369. [Google Scholar] [CrossRef] [PubMed]
- Baldeck, C.A.; Asner, G.P. Single-Species Detection with Airborne Imaging Spectroscopy Data: A Comparison of Support Vector Techniques. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2501–2512. [Google Scholar] [CrossRef]
- Sun, J.; Li, Q.; Lu, W.; Wang, Q. Image Recognition of Laser Radar Using Linear SVM Correlation Filter. Chin. Opt. Lett. 2007, 5, 549–551. [Google Scholar]
- Chang, C.-C.; Lin, C.-J. LIBSVM: A Library for Support Vector Machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 1–27. [Google Scholar] [CrossRef]
Name | Num. of Distorted Images | Num. of Reference Images | Image Type |
---|---|---|---|
IVE | 235 | 10 | Grey and color images |
TID2013 | 1700 | 25 | Color images |
CISQ | 866 | 30 | Color images |
Weightiness | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
1 | 0.000157 | 0.00099 | 0.003 | 0.0043 | 0.003 | 0.00099 | 0.000157 |
2 | 0.00099 | 0.0062 | 0.0187 | 0.027 | 0.0187 | 0.0062 | 0.00099 |
3 | 0.0043 | 0.027 | 0.0813 | 0.1174 | 0.0813 | 0.027 | 0.003 |
4 | 0.003 | 0.0187 | 0.0563 | 0.0813 | 0.0563 | 0.0187 | 0.003 |
5 | 0.00099 | 0.0062 | 0.0187 | 0.027 | 0.0187 | 0.0062 | 0.00099 |
6 | 0.000157 | 0.00099 | 0.003 | 0.0043 | 0.003 | 0.00099 | 0.000157 |
7 | 0.000157 | 0.00099 | 0.003 | 0.0043 | 0.003 | 0.00099 | 0.000157 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, N.; Lin, C. The Image Definition Assessment of Optoelectronic Tracking Equipment Based on the BRISQUE Algorithm with Gaussian Weights. Sensors 2023, 23, 1621. https://doi.org/10.3390/s23031621
Zhang N, Lin C. The Image Definition Assessment of Optoelectronic Tracking Equipment Based on the BRISQUE Algorithm with Gaussian Weights. Sensors. 2023; 23(3):1621. https://doi.org/10.3390/s23031621
Chicago/Turabian StyleZhang, Ning, and Cui Lin. 2023. "The Image Definition Assessment of Optoelectronic Tracking Equipment Based on the BRISQUE Algorithm with Gaussian Weights" Sensors 23, no. 3: 1621. https://doi.org/10.3390/s23031621
APA StyleZhang, N., & Lin, C. (2023). The Image Definition Assessment of Optoelectronic Tracking Equipment Based on the BRISQUE Algorithm with Gaussian Weights. Sensors, 23(3), 1621. https://doi.org/10.3390/s23031621