N,Zn-Doped Fluorescent Sensor Based on Carbon Dots for the Subnanomolar Detection of Soluble Cr(VI) Ions
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Methods
2.2. Synthesis of N,Zn-Doped CDs
2.3. Fluorescence Titration Experiment
2.4. Fluorescence Anti-Interference Experiments
2.5. pH and Solvent Stability
2.6. UV-Vis Absorption Experiment
2.7. Zeta Potential Titration Experiment
3. Results and Discussion
3.1. Characterization of the (N,Zn)-Doped Fluorescent CDs
3.2. Understanding Cr(VI)-Organic Matrix Mechanism Using XPS
3.3. Fluorescence Experiment of N,Zn-CDs on Cr(VI) Detection
3.4. Effect of pH
3.5. Mechanism of Cr(VI) Detection
3.6. Anti-Interference Study
3.7. Real Sample Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Evans, J.D.; Garai, B.; Reinsch, H.; Li, W.J.; Dissegna, S.; Bon, V.; Senkovska, I.; Fischer, R.A.; Kaskel, S.; Janiak, C.; et al. Metal-organic frameworks in Germany: From synthesis to function. Coord. Chem. Rev. 2019, 380, 378–418. [Google Scholar] [CrossRef]
- Vaseashta, A.; Vaclavikova, M.; Vaseashta, S.; Gallios, G.; Roy, P.; Pummakarnchana, O. Nanostructures in environmental pollution detection, monitoring, and remediation. Sci. Technol. Adv. Mater. 2007, 8, 47–59. [Google Scholar] [CrossRef]
- Ravichandiran, P.; Boguszewska-Czubara, A.; Maslyk, M.; Bella, A.P.; Subramaniyan, S.A.; Johnson, P.M.; Shim, K.S.; Kim, H.G.; Yoe, D.J. Naphthoquinone-Based Colorimetric and Fluorometric Dual-Channel Chemosensor for the Detection of Fe2+ Ion and its Application in Bio-Imaging of Live Cells and Zebrafish. ACS Sustain. Chem. Eng. 2019, 7, 17210–17219. [Google Scholar] [CrossRef]
- Ravichandiran, P.; Subramaniyan, S.A.; Bella, A.P.; Johnson, P.M.; Kim, A.R.; Shim, K.S.; Yoo, D.J. Simple Fluorescence Turn-On Chemosensor for Selective Detection of Ba2+ Ion and its Live Cell Imaging. Anal. Chem. 2019, 91, 10095–10101. [Google Scholar] [CrossRef] [PubMed]
- Ravichandiran, P.; Boguszewska-Czubara, A.; Maslyk, M.; Bella, A.P.; Johnson, P.M.; Subramaniyan, S.A.; Shim, K.S.; Yoo, D.J. A phenoxazine-based fluorescent chemosensor for dual channel detection of Cd2+ and CN− ions and its application to bio-imaging in live cells and zebrafish. Dyes Pigments 2020, 172, 107828. [Google Scholar] [CrossRef]
- Leonard, A.; Lauwerys, R.R. Carcinogenicity and mutagenicity of chromium. Mutat. Res. 1980, 76, 227–239. [Google Scholar] [CrossRef] [PubMed]
- Huvinen, M.; Uitti, J.; Oksa, P.; Palmroos, P.; Laippala, P. Respiratory health effects of long-term exposure to different chromium species in stainless steel production. Occup. Med. 2002, 52, 203–212. [Google Scholar] [CrossRef]
- Norseth, T. The carcinogenicity of chromium. Environ. Health Perspect. 1981, 40, 121–130. [Google Scholar] [CrossRef]
- Fournier-Salaün, M.-C.; Salaün, P. Quantitative determination of hexavalent chromium in aqueous solutions by UV-Vis spectrophotometer. Cent. Eur. J. Chem. 2007, 5, 1084–1093. [Google Scholar] [CrossRef]
- Wojasińska, E.; Trojanowicz, M. Ion chromatographic speciation of chromium with diphenylcarbazide-based spectrophotometric detection. J. Chromatogr. A 1996, 736, 141–150. [Google Scholar]
- Inoue, Y.; Sakai, T.; Kumagai, H. Simultaneous Determination of Chromium(III) and Chromium(VI) by Ion Chromatography with Inductively-Coupled Plasma-Mass Spectrometry. J. Chromatogr. A 1995, 706, 127–136. [Google Scholar] [CrossRef]
- Sacher, F.; Raue, B.; Klinger, J.; Brauch, H.J. Simultaneous determination of Cr(III) and Cr(VI) in ground and drinking waters by IC-ICP-MS. Int. J. Environ. Anal. Chem. 1999, 74, 191–201. [Google Scholar] [CrossRef]
- Moghadam, M.R.; Dadfarnia, S.; Shabani, A.M.H. Speciation and determination of ultra trace amounts of chromium by solidified floating organic drop micro-extraction (SFODME) and graphite furnace atomic absorption spectrometry. J. Hazard. Mater. 2011, 186, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Sari, T.K.; Takahashi, F.; Jin, J.; Zein, R.; Munaf, E. Electrochemical determination of chromium(VI) in river water with gold nanoparticles-graphene nanocomposites modified electrodes. Anal. Sci. 2018, 34, 155–160. [Google Scholar] [CrossRef]
- Jin, H.G.; Zong, W.B.; Yuan, L.; Zhang, X.B. Nanoscale zeolitic imidazole framework-90: Selective, sensitive and dual-excitation ratiometric fluorescent detection of hazardous Cr(VI) anions in aqueous media. New J. Chem. 2018, 42, 12549–12556. [Google Scholar] [CrossRef]
- Liu, C.; Yan, B. Luminescent zinc metal-organic framework (ZIF-90) for sensing metal ions, anions and small molecules. Photochem. Photobiol. Sci. 2015, 14, 1644–1650. [Google Scholar] [CrossRef]
- Li, D.; Jing, P.; Sun, L.; An, Y.; Shan, X.; Lu, X.; Zhou, D.; Han, D.; Shen, D.; Zhai, Y.; et al. Near-infrared excitation/emission and multiphoton-induced fluorescence of carbon dots. Adv. Mater. 2018, 30, e1705913. [Google Scholar] [CrossRef] [PubMed]
- Batool, M.; Junaid, H.M.; Tabassum, S.; Kanwal, F.; Abid, K.; Fatima, Z.; Shah, A.T. Metal ion detection by carbon dots—A review. Crit. Rev. Anal. Chem. 2022, 52, 756–767. [Google Scholar] [CrossRef]
- Ming, F.; Hou, J.; Hou, C.; Yang, M.; Wang, X.; Li, J.; Huo, D.; He, Q. One-step synthesized fluorescent nitrogen doped carbon dots from thymidine for Cr (VI) detection in water. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 222, 117165. [Google Scholar] [CrossRef]
- Wang, H.T.; Liu, S.; Xie, Y.S.; Bi, J.R.; Li, Y.; Song, Y.K.; Cheng, S.S.; Li, D.M.; Tan, M.Q. Facile one-step synthesis of highly luminescent N-doped carbon dots as an efficient fluorescent probe for chromium(vi) detection based on the inner filter effect. New J. Chem. 2018, 42, 3729–3735. [Google Scholar] [CrossRef]
- Zhang, Y.; Fang, X.; Zhao, H.; Li, Z. A highly sensitive and selective detection of Cr(VI) and ascorbic acid based on nitrogen-doped carbon dots. Talanta 2018, 181, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.G.; Stavila, V.; Conroy, M.A.; Feng, P.; Slaughter, B.V.; Ashley, C.E.; Allendorf, M.D. Versatile synthesis and fluorescent labeling of ZIF-90 nanoparticles for biomedical applications. ACS Appl. Mater. Interfaces 2016, 8, 7623–7630. [Google Scholar] [CrossRef] [PubMed]
- Saber-Samandari, S.; Saber-Samandari, S. Biocompatible nanocomposite scaffolds based on copolymer-grafted chitosan for bone tissue engineering with drug delivery capability. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 75, 721–732. [Google Scholar] [CrossRef] [PubMed]
- Khan, W.U.; Wang, D.; Zhang, W.; Tang, Z.; Ma, X.; Ding, X.; Du, S.; Wang, Y. High quantum yield green-emitting carbon dots for Fe(III) detection, biocompatible fluorescent ink and cellular imaging. Sci. Rep. 2017, 7, 14866. [Google Scholar] [CrossRef]
- Amjadi, M.; Abolghasemi-Fakhri, Z.; Hallaj, T. Carbon dots-silver nanoparticles fluorescence resonance energy transfer system as a novel turn-on fluorescent probe for selective determination of cysteine. J. Photochem. Photobiol. A 2015, 309, 8–14. [Google Scholar] [CrossRef]
- Wang, C.I.; Wu, W.C.; Periasamy, A.P.; Chang, H.T. Electrochemical synthesis of photoluminescent carbon nanodots from glycine for highly sensitive detection of hemoglobin. Green Chem. 2014, 16, 2509–2514. [Google Scholar] [CrossRef]
- Li, X.; Wang, H.; Shimizu, Y.; Pyatenko, A.; Kawaguchi, K.; Koshizaki, N. Preparation of carbon quantum dots with tunable photoluminescence by rapid laser passivation in ordinary organic solvents. Chem. Commun. 2011, 47, 932–934. [Google Scholar] [CrossRef]
- Tang, L.; Ji, R.; Cao, X.; Lin, J.; Jiang, H.; Li, X.; Teng, K.S.; Luk, C.M.; Zeng, S.; Hao, J.; et al. Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano 2012, 6, 5102–5110. [Google Scholar] [CrossRef]
- Manioudakis, J.; Victoria, F.; Thompson, C.A.; Brown, L.; Movsum, M.; Lucifero, R.; Naccache, R. Effects of nitrogen-doping on the photophysical properties of carbon dots. J. Mater. Chem. C 2019, 7, 853–862. [Google Scholar] [CrossRef]
- Atchudan, R.; Edison, T.; Mani, S.; Perumal, S.; Vinodh, R.; Thirunavukkarasu, S.; Lee, Y.R. Facile synthesis of a novel nitrogen-doped carbon dot adorned zinc oxide composite for photodegradation of methylene blue. Dalton Trans. 2020, 49, 17725–17736. [Google Scholar] [CrossRef] [PubMed]
- Tammina, S.K.; Wan, Y.; Li, Y.; Yang, Y. Synthesis of N, Zn-doped carbon dots for the detection of Fe3+ ions and bactericidal activity against Escherichia coli and Staphylococcus aureus. J. Photochem. Photobiol. B 2020, 202, 111734. [Google Scholar] [CrossRef] [PubMed]
- Das, P.; Ganguly, S.; Bose, M.; Mondal, S.; Choudhary, S.; Gangopadhyay, S.; Das, A.K.; Banerjee, S.; Das, N.C. Zinc and nitrogen ornamented bluish white luminescent carbon dots for engrossing bacteriostatic activity and Fenton based bio-sensor. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 88, 115–129. [Google Scholar] [CrossRef] [PubMed]
- Adotey, E.K.; Torkmahalleh, M.A.; Balanay, M.P. Zinc metal-organic framework with 3-pyridinecarboxaldehyde and trimesic acid as co-ligands for selective detection of Cr (VI) ions in aqueous solution. Methods Appl. Fluoresc. 2020, 8, 045007. [Google Scholar] [CrossRef]
- Chen, B.; Wang, L.; Xiao, Y.; Fronczek, F.R.; Xue, M.; Cui, Y.; Qian, G. A luminescent metal-organic framework with Lewis basic pyridyl sites for the sensing of metal ions. Angew. Chem. Int. Ed. 2009, 48, 500–503. [Google Scholar] [CrossRef]
- Hasanzadeh, A.; Radmanesh, F.; Hosseini, E.S.; Hashemzadeh, I.; Kiani, J.; Nourizadeh, H.; Naseri, M.; Fatahi, Y.; Chegini, F.; Madjd, Z.; et al. Highly Photoluminescent nitrogen- and zinc-doped carbon dots for efficient delivery of CRISPR/Cas9 and mRNA. Bioconjug. Chem. 2021, 32, 1875–1887. [Google Scholar] [CrossRef]
- Tammina, S.K.; Yang, D.; Li, X.; Koppala, S.; Yang, Y. High photoluminescent nitrogen and zinc doped carbon dots for sensing Fe3+ ions and temperature. Spectrochim. Acta A 2019, 222, 117141. [Google Scholar] [CrossRef]
- Zhu, Y.; Lu, Y.; Shi, L.; Yang, Y. β-Cyclodextrin functionalized N,Zn codoped carbon dots for specific fluorescence detection of fluoroquinolones in milk samples. Microchem. J. 2020, 153, 104517. [Google Scholar] [CrossRef]
- Porrès, L.; Holland, A.; Pålsson, L.-O.; Monkman, A.P.; Kemp, C.; Beeby, A. Absolute measurements of photoluminescence quantum yields of solutions using an integrating sphere. J. Fluoresc. 2006, 16, 267–273. [Google Scholar] [CrossRef]
- Li, C.; Liu, W.J.; Sun, X.B.; Pan, W.; Wang, J.P. Multi sensing functions integrated into one carbon-dot based platform via different types of mechanisms. Sens. Actuators B 2017, 252, 544–553. [Google Scholar] [CrossRef]
- Song, S.; Liang, F.; Li, M.; Du, F.; Dong, W.; Gong, X.; Shuang, S.; Dong, C. A label-free nano-probe for sequential and quantitative determination of Cr(VI) and ascorbic acid in real samples based on S and N dual-doped carbon dots. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 215, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.L.; Ma, Y.S.; Yuan, G.J.; Chen, X.; Mei, J.; Zhang, L.; Ren, L.L. Solvent-controlled and solvent-dependent strategies for the synthesis of multicolor carbon dots for pH sensing and cell imaging. J. Mater. Chem. C 2019, 7, 9709–9718. [Google Scholar] [CrossRef]
- Jose, S.P.; Mohan, S. FT-IR and FT-Raman investigations of nicotinaldehyde. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2006, 64, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Mahalakshmi, G.; Balachandran, V. FT-IR and FT-Raman spectra, normal coordinate analysis and ab initio computations of trimesic acid. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 124, 535–547. [Google Scholar] [CrossRef] [PubMed]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Song, J.G.; Wang, X.Z.; Chang, C.T. Preparation and Characterization of Graphene Oxide. J. Nanomater. 2014, 2014, 276143. [Google Scholar] [CrossRef]
- Siburian, R.; Sihotang, H.; Raja, S.L.; Supeno, M.; Simanjuntak, C. New route to synthesize of graphene nano sheets. Orient. J. Chem. 2018, 34, 182–187. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, Z.; Yang, X.; Yang, G.; Chang, J.; Jiang, K. Highly fluorescent carbon dots as an efficient nanoprobe for detection of clomifene citrate. RSC Adv. 2019, 9, 6084–6093. [Google Scholar] [CrossRef]
- Torkmahalleh, M.A.; Lin, L.; Holsen, T.M.; Rasmussen, D.H.; Hopke, P.K. The impact of deliquescence and pH on Cr speciation in ambient PM samples. Aerosol Sci. Technol. 2012, 46, 690–696. [Google Scholar] [CrossRef]
- Ganya, E.S.; Soin, N.; Moloi, S.J.; McLaughlin, J.A.; Pong, W.F.; Ray, S.C. Polyacrylate grafted graphene oxide nanocomposites for biomedical applications. J. Appl. Phys. 2020, 127, 054302. [Google Scholar] [CrossRef]
- Astafiev, A.A.; Shakhov, A.M.; Tskhovrebov, A.G.; Shatov, A.; Gulin, A.; Shepel, D.; Nadtochenko, V.A. Nitrogen-doped carbon nanodots produced by femtosecond laser synthesis for effective fluorophores. ACS Omega 2022, 7, 6810–6823. [Google Scholar] [CrossRef] [PubMed]
- Biesinger, M.C.; Brown, C.; Mycroft, J.R.; Davidson, R.D.; McIntyre, N.S. X-ray photoelectron spectroscopy studies of chromium compounds. Surf. Interface Anal. 2004, 36, 1550–1563. [Google Scholar] [CrossRef]
- Wang, Q.Q.; Zhang, S.D.; Yu, Y.Z.; Dai, B. High-performance of plasma-enhanced Zn/MCM-41 catalyst for acetylene hydration. Catal. Commun. 2020, 147, 106122. [Google Scholar] [CrossRef]
- Huang, X.F.; Xie, Z.W.; Li, K.S.; Chen, Q.; Chen, Y.J.; Gong, F. Thermal stability of CrWN glass molding coatings after vacuum annealing. Coatings 2020, 10, 198. [Google Scholar] [CrossRef]
- López, J.C.; Alkorta, I.; Macario, A.; Blanco, S. Characterizing the n→π* interaction of pyridine with small ketones: A rotational study of pyridine⋯acetone and pyridine⋯2-butanone. Phys. Chem. Chem. Phys. 2022, 24, 15484–15493. [Google Scholar] [CrossRef]
- López, J.C.; Macario, A.; Maris, A.; Alkorta, I.; Blanco, S. How aromatic fluorination exchanges the interaction role of pyridine with carbonyl compounds: The formaldehyde adduct. Chem. Eur. J. 2021, 27, 13870–13878. [Google Scholar] [CrossRef]
- Wang, J.L.; Wu, Z.L.; Chen, S.H.; Yuan, R.; Dong, L. A novel multifunctional fluorescent sensor based on N/S co-doped carbon dots for detecting Cr (VI) and toluene. Microchem. J. 2019, 151, 104246. [Google Scholar] [CrossRef]
- Bandara, P.C.; Pena-Bahamonde, J.; Rodrigues, D.F. Redox mechanisms of conversion of Cr(VI) to Cr(III) by graphene oxide-polymer composite. Sci. Rep. 2020, 10, 9237. [Google Scholar] [CrossRef]
- Bakhtiari, N.; Azizian, S. Adsorption of copper ion from aqueous solution by nanoporous MOF-5: A kinetic and equilibrium study. J. Mol. Liq. 2015, 206, 114–118. [Google Scholar] [CrossRef]
- Noraee, Z.; Jafari, A.; Ghaderpoori, M.; Kamarehie, B.; Ghaderpoury, A. Use of metal-organic framework to remove chromium (VI) from aqueous solutions. J. Environ. Health Sci. Eng. 2019, 17, 701–709. [Google Scholar] [CrossRef]
- Maleki, A.; Hayati, B.; Naghizadeh, M.; Joo, S.W. Adsorption of hexavalent chromium by metal organic frameworks from aqueous solution. J. Ind. Eng. Chem. 2015, 28, 211–216. [Google Scholar] [CrossRef]
- Kaur, H.; Sinha, S.; Krishnan, V.; Koner, R.R. Photocatalytic reduction and recognition of Cr(VI): New Zn(II)-based metal-organic framework as catalytic surface. Ind. Eng. Chem. Res. 2020, 59, 8538–8550. [Google Scholar] [CrossRef]
- Lin, L.; Rong, M.; Lu, S.; Song, X.; Zhong, Y.; Yan, J.; Wang, Y.; Chen, X. A facile synthesis of highly luminescent nitrogen-doped graphene quantum dots for the detection of 2,4,6-trinitrophenol in aqueous solution. Nanoscale 2015, 7, 1872–1878. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.S.; Qu, B.H.; Li, Z.J.; Yan, R.; Li, P.; Zhang, Z.S.; Yin, Y.D.; Jing, L.Q. Improved fluorescence test of chromium (VI) in aqueous solution with g-C3N4 nanosheet and mechanisms. Mater. Res. Bull. 2019, 112, 9–15. [Google Scholar] [CrossRef]
Detection Probe | Synthesis Route | Linear Range (μM) | LOD (nM) | Reference |
---|---|---|---|---|
N-doped CDs | One-step hydrothermal method | 0.1–430 | 1.26 | [19] |
N-doped CDs | One-step pyrolysis process | 0.01–250 | 5 | [21] |
N, S co-doped CDs | Hydrothermal reaction | 0.01–6.61 | 0.33 | [57] |
S, N-CDs | Acid-base neutralization and exothermic carbonization method | 0.065–198 | 0.56 | [41] |
N,Zn-doped CDs | Microwave-assisted synthesis | 0.005–0.135 | 0.47 | This work |
Samples | Spiked (µg/L) | Found (µg/L) | Recovery (%) | RSD (%) (n = 3) | IC-UV Cr(VI) (µg/L) |
---|---|---|---|---|---|
Tap water | 0.05 | 0.05 | 101.03 | 3.30 | 0.08 |
0.10 | 0.10 | 98.37 | 7.39 | 0.15 | |
0.30 | 0.31 | 101.75 | 1.04 | 0.46 | |
0.50 | 0.52 | 104.11 | 1.04 | 0.76 | |
Seawater | 0.05 | 0.05 | 94.19 | 4.29 | 0.15 |
0.10 | 0.10 | 101.99 | 1.32 | 0.22 | |
0.30 | 0.38 | 127.94 | 1.07 | 0.49 | |
0.50 | 0.68 | 136.24 | 0.11 | 0.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adotey, E.K.; Amouei Torkmahalleh, M.; Hopke, P.K.; Balanay, M.P. N,Zn-Doped Fluorescent Sensor Based on Carbon Dots for the Subnanomolar Detection of Soluble Cr(VI) Ions. Sensors 2023, 23, 1632. https://doi.org/10.3390/s23031632
Adotey EK, Amouei Torkmahalleh M, Hopke PK, Balanay MP. N,Zn-Doped Fluorescent Sensor Based on Carbon Dots for the Subnanomolar Detection of Soluble Cr(VI) Ions. Sensors. 2023; 23(3):1632. https://doi.org/10.3390/s23031632
Chicago/Turabian StyleAdotey, Enoch Kwasi, Mehdi Amouei Torkmahalleh, Philip K. Hopke, and Mannix P. Balanay. 2023. "N,Zn-Doped Fluorescent Sensor Based on Carbon Dots for the Subnanomolar Detection of Soluble Cr(VI) Ions" Sensors 23, no. 3: 1632. https://doi.org/10.3390/s23031632
APA StyleAdotey, E. K., Amouei Torkmahalleh, M., Hopke, P. K., & Balanay, M. P. (2023). N,Zn-Doped Fluorescent Sensor Based on Carbon Dots for the Subnanomolar Detection of Soluble Cr(VI) Ions. Sensors, 23(3), 1632. https://doi.org/10.3390/s23031632