Low-to-Mid-Frequency Monopole Source Levels of Underwater Noise from Small Recreational Vessels in the St. Lawrence Estuary Beluga Critical Habitat
Abstract
:1. Introduction
- Compute monopole source levels from low-to-mid frequencies of motorized recreational vessels in isolated transits observed during the summers of 2021 and 2022 in the Saguenay River (QC, Canada);
- Investigate the correlations between monopole source levels and small vessels’ static (e.g., subtype/category) and dynamic (e.g., speed) parameters;
- Discuss the potential effect of these recreational vessels on a portion of the summer habitat of the St. Lawrence Estuary beluga, an endangered species protected under the Canada’s Species at Risk Act [25].
2. Material
2.1. Shore-Based Observations
2.2. Acoustic Observations
3. Methods
3.1. Shore-Based Measurements
3.2. Bandwidth of Interest
3.3. RLs Spectra of Interest
3.4. Backpropagation
3.5. Generalized Linear Mixed Model
4. Results
5. Discussion
6. Conclusions
- The received noise levels associated with the passage of one small recreational vessel at a time raised the ambient levels in the given integrated frequency bands by 4 to 41 dB re 1 μPa. The average signal excess was about 22 dB re 1 μPa in both frequency domains explored.
- At least 31.1% of the recorded targets (14 out of 45 events) in Anse-Saint-Étienne have shown received noise levels in excess of the St. Lawrence Estuary beluga hearing audiogram, hence suggesting evidence for acoustic disturbance at CPA distances of a few hundreds meters. In those specific cases, both the beluga’s communication and echolocation bands have increased risks of auditory masking during short-to-intermediate range interactions (<600 m) (see Appendix D).
- Across restrained bandwidths between 0.1 and 30 kHz, monopole source levels were, on average, 3 dB re 1 μPa m higher at low frequencies when compared to their mid-frequency counterparts. This revealed the importance of the low-frequency domain in the investigation of such vessels.
- Across restrained bandwidths between 0.1 and 30 kHz, a positive correlation between computed source levels and the speed over ground at low and mid frequencies agreed with the commonly accepted proposition that increasing speeds is usually translated into increasing radiated noise levels.
- The geometric bias towards large CPAs (∼1 km) could be related to a high-frequency signal (>30 kHz) either emitted by a very nearby source or simply part of the ambient noise and erroneously treated as being emitted by the passing vessel. The backpropagation of such signal yielded unrealistically large source levels that kept increasing with the CPA distance.
- Moderate correlations between the low- and mid-frequency received noise levels were obtained. Low-frequency proxies seemed to be modest predictors of the acoustic power radiated by small vessels at mid-to-high frequencies.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AIS | Automatic Identification System |
BB | Broadband |
CPA | Closest point of approach |
EDT | Eastern Daylight Time |
GLMM | Generalized linear mixed model |
GREMM | Groupe de Recherche et d’Éducation sur les Mammifères Marins |
MSL | Monopole source level |
RL | Received level |
SOG | Speed over ground |
SPL | Sound pressure level |
TL | Transmission loss |
Appendix A. Data Processing Following Hydrophone Retrieval
Appendix B. Broadband RLs Computation
(Hz) | (Hz) | (Hz) |
11 | 12 | 13 |
14 | 16 | 17 |
18 | 20 | 21 |
22 | 25 | 27 |
28 | 32 | 35 |
36 | 40 | 44 |
45 | 50 | 55 |
56 | 63 | 70 |
71 | 80 | 88 |
89 | 100 | 111 |
112 | 125 | 140 |
141 | 160 | 177 |
178 | 200 | 223 |
224 | 250 | 281 |
282 | 315 | 354 |
355 | 400 | 446 |
447 | 500 | 561 |
562 | 630 | 707 |
708 | 800 | 890 |
891 | 1000 | 1122 |
1123 | 1260 | 1413 |
1414 | 1587 | 1781 |
1782 | 2000 | 2244 |
2245 | 2520 | 2827 |
2828 | 3175 | 3563 |
3564 | 4000 | 4489 |
4490 | 5040 | 5655 |
5656 | 6350 | 7126 |
7127 | 8000 | 8978 |
8979 | 10,080 | 11,312 |
11,313 | 12,700 | 14,253 |
14,254 | 16,000 | 17,958 |
17,959 | 20,160 | 22,626 |
22,627 | 25,400 | 28,507 |
28,508 | 32,000 | 35,917 |
35,918 | 40,320 | 45,253 |
45,254 | 50,800 | 57,016 |
57,017 | 64,000 | 71,836 |
71,837 | 80,640 | 90,508 |
90,509 | 101,600 | 114,035 |
Appendix C. Broadband MSLs Computation
Appendix D. Proof
Event | Castellote et al. [77] | Erbe et al. [5] | Finneran et al. [45] | Klishin et al. [78] | Mooney et al. [79] | Sysueva et al. [80] | Masking? | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Frequency | Excess | Frequency | Excess | Frequency | Excess | Frequency | Excess | Frequency | Excess | Frequency | Excess | ||
(kHz) | (dB) | (kHz) | (dB) | (kHz) | (dB) | (kHz) | (dB) | (kHz) | (dB) | (kHz) | (dB) | ||
1 | − | − | 13.6 | 21 | 7.2 | 8 | − | − | − | − | 13.6 | 2 | ✗ |
2 | 4.5 | 3 | 8.5 | 27 | 8.5 | 12 | − | − | − | − | 40.6 | 6 | ? |
3 | 4.8 | 14 | 8.1 | 37 | 6.8 | 26 | 57.5 | 7 | 8.1 | 12 | 15.2 | 15 | ✓ |
4 | − | − | 20.3 | 19 | 7.2 | 4 | − | − | − | − | − | − | ✗ |
5 | − | − | 28.7 | 16 | − | − | − | − | − | − | − | − | ✗ |
6 | 4.0 | 3 | 4.0 | 22 | 6.8 | 7 | − | − | − | − | − | − | ✗ |
7 | 4.5 | 8 | 10.2 | 35 | 7.2 | 17 | 45.6 | 6 | 15.2 | 5 | 15.2 | 14 | ✓ |
8 | 3.0 | 2 | 10.8 | 28 | 51.2 | 11 | 51.2 | 1 | − | − | 11.4 | 8 | ? |
9 | − | − | 3.2 | 18 | 6.8 | 3 | − | − | − | − | − | − | ✗ |
10 | 36.2 | 8 | 36.2 | 38 | 51.2 | 20 | 54.2 | 10 | 36.2 | 8 | 36.2 | 18 | ✓ |
11 | 3.0 | 5 | 3.0 | 23 | 6.8 | 6 | − | − | − | − | − | − | ? |
12 | − | − | 10.8 | 25 | 8.5 | 7 | − | − | − | − | 12.1 | 4 | ✗ |
13 | 54.2 | 7 | 30.4 | 36 | 51.2 | 18 | 54.2 | 11 | 54.2 | 7 | 30.4 | 15 | ✓ |
14 | − | − | 8.0 | 21 | 8.0 | 8 | − | − | − | − | 21.5 | 1 | ✗ |
15 | − | − | 13.6 | 19 | 48.3 | 4 | − | − | − | − | − | − | ✗ |
16 | − | − | 30.4 | 28 | 51.2 | 11 | 51.2 | 1 | − | − | 11.4 | 7 | ? |
17 | − | − | 28.7 | 9 | − | − | − | − | − | − | − | − | ✗ |
18 | 4.0 | 10 | 9.1 | 31 | 7.2 | 17 | 45.6 | 3 | 7.6 | 3 | 12.8 | 11 | ✓ |
19 | − | − | 7.6 | 23 | 7.6 | 12 | − | − | − | − | 19.2 | 2 | ✗ |
20 | − | − | 13.6 | 18 | 9.1 | 3 | − | − | − | − | − | − | ✗ |
21 | − | − | 8.1 | 23 | 7.6 | 12 | − | − | − | − | − | − | ✗ |
22 | − | − | 10.2 | 16 | − | − | − | − | − | − | − | − | ✗ |
23 | 4.3 | 1 | 4.3 | 21 | 7.2 | 5 | − | − | − | − | 15.2 | 1 | ✗ |
24 | 4.0 | 18 | 4.0 | 38 | 4.0 | 21 | − | − | − | − | 12.1 | 9 | ✓ |
25 | 51.2 | 4 | 51.2 | 29 | 51.2 | 18 | 51.2 | 8 | 51.2 | 4 | 51.2 | 10 | ✓ |
26 | 4.3 | 1 | 4.2 | 21 | 7.2 | 9 | − | − | − | − | − | − | ✗ |
27 | 4.0 | 1 | 10.8 | 24 | 7.6 | 8 | − | − | − | − | 11.4 | 4 | ✗ |
28 | − | − | 27.1 | 22 | 7.2 | 6 | − | − | − | − | 27.1 | 1 | ✗ |
29 | − | − | 17.1 | 21 | 8.1 | 4 | − | − | − | − | 17.1 | 2 | ✗ |
30 | − | − | 38.4 | 27 | 48.3 | 9 | 48.3 | 1 | − | − | 38.4 | 8 | ? |
31 | − | − | 3.0 | 12 | − | − | − | − | − | − | − | − | ✗ |
32 | − | − | 4.3 | 18 | 6.8 | 2 | − | − | − | − | − | − | ✗ |
33 | 3.0 | 1 | 12.1 | 20 | 7.2 | 7 | − | − | − | − | 12.1 | 0 | ✗ |
34 | 3.8 | 6 | 38.4 | 27 | 7.2 | 14 | 48.3 | 1 | − | − | 38.4 | 8 | ✓ |
35 | − | − | 30.4 | 10 | − | − | − | − | − | − | − | − | ✗ |
36 | 38.4 | 19 | 10.2 | 50 | 9.1 | 33 | 43.1 | 20 | 9.1 | 20 | 13.6 | 29 | ✓ |
37 | 4.0 | 15 | 30.4 | 38 | 51.2 | 23 | 54.2 | 13 | 57.5 | 10 | 38.4 | 17 | ✓ |
38 | 3.0 | 18 | 3.4 | 37 | 7.6 | 20 | 51.2 | 6 | 8.1 | 8 | 13.5 | 14 | ✓ |
39 | − | − | 38.4 | 9 | − | − | − | − | − | − | − | − | ✗ |
40 | 3.2 | 8 | 18.1 | 31 | 9.1 | 15 | 51.2 | 5 | 18.1 | 4 | 18.1 | 13 | ✓ |
41 | 3.4 | 13 | 3.4 | 31 | 3.4 | 13 | − | − | 16.1 | 1 | 15.2 | 10 | ✓ |
42 | − | − | 10.2 | 15 | − | − | − | − | − | − | − | − | ✗ |
43 | 3.4 | 6 | 8.1 | 32 | 8.1 | 19 | 48.3 | 3 | 8.1 | 7 | 11.4 | 8 | ✓ |
44 | − | − | 30.4 | 18 | 7.2 | 3 | − | − | − | − | − | − | ✗ |
45 | 3.8 | 1 | 40.6 | 22 | 7.2 | 6 | − | − | − | − | 15.2 | 3 | ✗ |
References
- Merchant, N.D.; Pirotta, E.; Barton, T.R.; Thompson, P.M. Monitoring Ship Noise to Assess the Impact of Coastal Developments on Marine Mammals. Mar. Pollut. Bull. 2014, 78, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Brooker, A.; Humphrey, V. Measurement of Radiated Underwater Noise from a Small Research Vessel in Shallow Water. Ocean. Eng. 2016, 120, 182–189. [Google Scholar] [CrossRef]
- Gomez, C.; Lawson, J.W.; Wright, A.J.; Buren, A.D.; Tollit, D.; Lesage, V. A Systematic Review on the Behavioural Responses of Wild Marine Mammals to Noise: The Disparity between Science and Policy. Can. J. Zool. 2016, 94, 801–819. [Google Scholar] [CrossRef]
- Lesage, V.; Barrette, C.; Kingsley, M.C.S.; Sjare, B. The effect of vessel noise on the vocal behavior of belugas in the St. Lawrence River Estuary, Canada. Mar. Mammal Sci. 1999, 15, 65–84. [Google Scholar] [CrossRef]
- Erbe, C.; Reichmuth, C.; Cunningham, K.; Lucke, K.; Dooling, R. Communication Masking in Marine Mammals: A Review and Research Strategy. Mar. Pollut. Bull. 2016, 103, 15–38. [Google Scholar] [CrossRef]
- Vergara, V.; Wood, J.; Lesage, V.; Ames, A.; Mikus, M.A.; Michaud, R. Can you hear me? Impacts of underwater noise on communication space of adult, sub-adult and calf contact calls of endangered St. Lawrence belugas (Delphinapterus Leucas). Polar Res. 2021, 40. [Google Scholar] [CrossRef]
- Finneran, J.J.; Schlundt, C.E.; Dear, R.; Carder, D.A.; Ridgway, S.H. Temporary shift in masked hearing thresholds in odontocetes after exposure to single underwater impulses from a seismic watergun. J. Acoust. Soc. Am. 2002, 111, 2929–2940. [Google Scholar] [CrossRef]
- Schlundt, C.E.; Finneran, J.J.; Carder, D.A.; Ridgway, S.H. Temporary shift in masked hearing thresholds of bottlenose dolphins, Tursiops truncatus, and white whales, Delphinapterus leucas, after exposure to intense tones. J. Acoust. Soc. Am. 2000, 107, 3496–3508. [Google Scholar] [CrossRef]
- Martin, S.B.; MacGillivray, A.O.; Lumsden, C.E. MMP2 Spring 2021 Trial Plan — Develop Measurement Standard for Shallow Water Vessel Source Level for TC-IC Project MMP2; Technical report; JASCO Applied Sciences: Halifax, NS, Canada, 2020. [Google Scholar]
- Ainslie, M.A.; Martin, S.B.; Trounce, K.B.; Hannay, D.E.; Eickmeier, J.M.; Deveau, T.J.; Lucke, K.; MacGillivray, A.O.; Nolet, V.; Borys, P. International harmonization of procedures for measuring and analyzing of vessel underwater radiated noise. Mar. Pollut. Bull. 2022, 174, 113124. [Google Scholar] [CrossRef]
- Breeding, J.E.; Pflug, L.A.; Bradley, M.; Walrod, M.H. Research Ambient Noise DIrectionality (RANDI) 3.1 Physics Description; Technical report; Naval Research Lab: John C. Stennis Space Center, MS, USA, 1996. [Google Scholar]
- Wittekind, D.K. A Simple Model for the Underwater Noise Source Level of Ships. J. Ship Prod. Des. 2014, 30, 7–14. [Google Scholar] [CrossRef]
- Simard, Y.; Roy, N.; Gervaise, C.; Giard, S. Analysis and Modeling of 255 Source Levels of Merchant Ships from an Acoustic Observatory along St. Lawrence Seaway. J. Acoust. Soc. Am. 2016, 140, 2002–2018. [Google Scholar] [CrossRef] [PubMed]
- MacGillivray, A.O.; Ainsworth, L.M.; Zhao, J.; Dolman, J.N.; Hannay, D.E.; Frouin-Mouy, H.; Trounce, K.B.; White, D.A. A functional regression analysis of vessel source level measurements from the Enhancing Cetacean Habitat and Observation (ECHO) database. J. Acoust. Soc. Am. 2022, 152, 1547–1563. [Google Scholar] [CrossRef]
- Aulanier, F.; Simard, Y.; Roy, N.; Bandet, M.; Gervaise, C. Groundtruthed Probabilistic Shipping Noise Modeling and Mapping: Application to Blue Whale Habitat in the Gulf of St. Lawrence. Proc. Meet. Acoust. 2016, 27, 070006. [Google Scholar]
- Chion, C.; Bonnell, T.R.; Lagrois, D.; Michaud, R.; Lesage, V.; Dupuch, A.; McQuinn, I.H.; Turgeon, S. Agent-based modelling reveals a disproportionate exposure of females and calves to a local increase in shipping and associated noise in an endangered beluga population. Mar. Pollut. Bull. 2021, 173, 112977. [Google Scholar] [CrossRef]
- Urick, R.J. Principles of Underwater Sound; Peninsula: Los Altos, CA, USA, 1983. [Google Scholar]
- Ross, D. Mechanics of Underwater Noise; Elsevier: New York, NY, USA, 2013. [Google Scholar]
- Arveson, P.T.; Vendittis, D.J. Radiated Noise Characteristics of a Modern Cargo Ship. J. Acoust. Soc. Am. 2000, 107, 118–129. [Google Scholar] [CrossRef] [PubMed]
- Wales, S.C.; Heitmeyer, R.M. An Ensemble Source Spectra Model for Merchant Ship-Radiated Noise. J. Acoust. Soc. Am. 2002, 111, 1211–1231. [Google Scholar] [CrossRef] [PubMed]
- Jalkanen, J.P.; Johansson, L.; Liefvendahl, M.; Bensow, R.; Sigray, P.; Östberg, M.; Karasalo, I.; Andersson, M.; Peltonen, H.; Pajala, J. Modelling of ships as a source of underwater noise. Ocean. Sci. 2018, 14, 1373–1383. [Google Scholar] [CrossRef]
- Erbe, C. Underwater noise of whale-watching boats and potential effects on killer whales (Orcinus orca), based on an acoustic impact model. Mar. Mammal Sci. 2002, 18, 394–418. [Google Scholar] [CrossRef]
- Parsons, M.J.G.; Meekan, M. Acoustic Characteristics of Small Research Vessels. J. Mar. Sci. Eng. 2020, 8, 970. [Google Scholar] [CrossRef]
- Réseau D’observation de Mammifères Marins. Caractérisation de la Fréquentation des Mammifères Marins sur la rive sud de L’estuaire du Saint-Laurent à Partir de Sites Terrestres D’observation et de la Traverse Rivière-du-Loup—Saint-Siméon; Technical report; Gouvernement du Canada: Ottawa, ON, Canada, 2018. [Google Scholar]
- Canada’s Species at Risk Act. Canada’s Species at Risk Act; Technical report; Committee on the Status of Endangered Wildlife in Canada: Ottawa, ON, Canada, 2002. [Google Scholar]
- Lerczak, J.A.; Hobbs, R.C. Calculating sighting distances from angular readings during shipboard, aerial, and shore-based marine mammal surveys. Mar. Mammal Sci. 1998, 14, 590–598. [Google Scholar] [CrossRef]
- Martin, C.C.A.; Perrault-Hébert, M.; Turgeon, S. GetTheoLatLong—Conversion function of vertical and horizontal angles collected with a theodolite to latitude and longitude. 2022; in preparation. [Google Scholar]
- SoundTrap ST300 HF—Compact Recorder. Available online: https://www.oceaninstruments.co.nz/product/soundtrap-300-hf-high-frequency (accessed on 1 January 2020).
- Williams, E. Aviation Formulary V1.47. 2013. Available online: http://www.edwilliams.org/avform147.htm (accessed on 14 November 2022).
- Merchant, N.D.; Fristrup, K.M.; Johnson, M.P.; Tyack, P.L.; Witt, M.J.; Blondel, P.; Parks, S.E. Measuring acoustic habitats. Methods Ecol. Evol. 2015, 6, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Loring, D.H.; Nota, D.J.G. Morphology and Sediments of the Gulf of St. Lawrence; Fisheries and Marine Service: Ottawa, ON, Canada, 1973. [Google Scholar]
- Shannon, C.E. Communication in the presence of noise. Proc. IRE 1949, 37, 10–21. [Google Scholar] [CrossRef]
- Arranz, P.; de Soto, N.A.; Madsen, P.T.; Sprogis, K.R. Whale-watch vessel noise levels with applications to whale-watching guidelines and conservation. Mar. Policy 2021, 134, 104776. [Google Scholar] [CrossRef]
- Collins, M.D. A Split-Step Padé Solution for the Parabolic Equation Method. J. Acoust. Soc. Am. 1993, 93, 1736–1742. [Google Scholar] [CrossRef]
- Porter, M.B.; Liu, Y.C. Finite-Element Ray Tracing. Theor. Comput. Acoust. 1994, 2, 947–956. [Google Scholar]
- Farcas, A.; Thompson, P.M.; Merchant, N.D. Underwater Noise Modelling for Environmental Impact Assessment. Environ. Impact Assess. Rev. 2016, 57, 114–122. [Google Scholar] [CrossRef]
- Jensen, F.B.; Kuperman, W.A.; Porter, M.B.; Schmidt, H. Computational Ocean Acoustics; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Leroy, C.C.; Robinson, S.P.; Goldsmith, M.J. A new equation for the accurate calculation of sound speed in all oceans. J. Acoust. Soc. Am. 2008, 124, 2774–2782. [Google Scholar] [CrossRef]
- Collins, M.D. User’s Guide for RAM Versions 1.0 and 1.0p; Naval Research Lab: Washington, DC, USA, 1995; Volume 20375, p. 14. [Google Scholar]
- François, R.E.; Garrison, G.R. Sound absorption based on ocean measurements: Part I: Pure water and magnesium sulfate contributions. J. Acoust. Soc. Am. 1982, 72, 896–907. [Google Scholar] [CrossRef]
- François, R.E.; Garrison, G.R. Sound absorption based on ocean measurements. Part II: Boric acid contribution and equation for total absorption. J. Acoust. Soc. Am. 1982, 72, 1879–1890. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Hermand, J.P.; Nascetti, P.; Cinelli, F. Inverse acoustical determination of photosynthetic oxygen productivity of Posidonia seagrass. In Experimental Acoustic Inversion Methods for Exploration of the Shallow Water Environment; Springer: Berlin/Heidelberg, Germany, 2000; pp. 125–144. [Google Scholar]
- Lüdecke, D. sjPlot: Data Visualization for Statistics in Social Science, R package version 2.6.1. 2018. Available online: https://doi.org/10.5281/zenodo.1308157(accessed on 19 January 2023).
- Finneran, J.J.; Carder, D.A.; Dear, R.; Belting, T.; McBain, J.; Dalton, L.; Ridgway, S.H. Pure tone audiograms and possible aminoglycoside-induced hearing loss in belugas (Delphinapterus leucas). J. Acoust. Soc. Am. 2005, 117, 3936–3943. [Google Scholar] [CrossRef] [PubMed]
- SMRU Canada. Ship Sound Signature Analysis Study; Technical report; Port Metro Vancouver: Vancouver, BC, Canada, 2014. [Google Scholar]
- Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models, R package version 0.4.5. 2022. Available online: http://florianhartig.github.io/DHARMa/(accessed on 19 January 2023).
- European Commission. Directive 2008/56/EC of the European Parliament and of the Council; Technical report; Marine Strategy Framework Directive: Brussels, Belgium, 2008. [Google Scholar]
- Li, S.; Wu, H.; Xu, Y.; Peng, C.; Fang, L.; Lin, M.; Xing, L.; Zhang, P. Mid-to high-frequency noise from high-speed boats and its potential impacts on humpback dolphins. J. Acoust. Soc. Am. 2015, 138, 942–952. [Google Scholar] [CrossRef]
- Hermannsen, L.; Beedholm, K.; Tougaard, J.; Madsen, P.T. High Frequency Components of Ship Noise in Shallow Water with a Discussion of Implications for Harbor Porpoises (Phocoena Phocoena). J. Acoust. Soc. Am. 2014, 136, 1640–1653. [Google Scholar] [CrossRef] [PubMed]
- Ministère de la Justice. Règlement sur les Activités en mer Dans le Parc Marin du Saguenay-Saint-Laurent; Technical report; Gouvernement du Canada: Ottawa, ON, Canada, 2017.
- Cominelli, S.; Halliday, W.D.; Pine, M.K.; Hilliard, R.C.; Lawson, J.W.; Duman, N.I.; Devillers, R. Vessel noise in spatially constricted areas: Modeling acoustic footprints of large vessels in the Cabot Strait, Eastern Canada. Ocean. Coast. Manag. 2020, 194, 105255. [Google Scholar] [CrossRef]
- Gervaise, C.; Simard, Y.; Roy, N.; Kinda, B.; Ménard, N. Shipping Noise in Whale Habitat: Characteristics, Sources, Budget, and Impact on Belugas in Saguenay–St. Lawrence Marine Park Hub. J. Acoust. Soc. Am. 2012, 132, 76–89. [Google Scholar] [CrossRef] [PubMed]
- Kipple, B.; Gabriele, C. Underwater noise from skiffs to ships. In Proceedings of the Glacier Bay Science Symposium, Juneau, AK, USA, 26–28 October 2004; pp. 172–175. [Google Scholar]
- Wladichuk, J.L.; Hannay, D.E.; MacGillivray, A.O.; Li, Z.; Thornton, S.J. Systematic Source Level Measurements of Whale Watching Vessels and Other Small Boats. J. Ocean. Technol. 2019, 14, 110–126. [Google Scholar]
- Parsons, M.J.G.; Erbe, C.; Meekan, M.G.; Parsons, S.K. A Review and Meta-Analysis of Underwater Noise Radiated by Small (< 25 m Length) Vessels. J. Mar. Sci. Eng. 2021, 9, 827. [Google Scholar]
- Simard, Y.; Claing, C.; Gervaise, C.; Roy, N.; Bourdages, L.; Aulanier, F.; Conversano, M. Estimation des Niveaux de Bruit de Bateaux D’écotourisme Opérant Dans le Parc Marin du Saguenay–Saint-Laurent au Moyen d’un Observatoire Acoustique; Rapport technique canadien des sciences halieutiques et aquatiques 3480; Pêches et Océans Canada: Vancouver, BC, Canada, 2022; viii + 49p. [Google Scholar]
- Allen, J.K.; Peterson, M.L.; Sharrard, G.V.; Wright, D.L.; Todd, S.K. Radiated Noise from Commercial Ships in the Gulf of Maine: Implications for Whale/Vessel Collisions. J. Acoust. Soc. Am. 2012, 132, EL229–EL235. [Google Scholar] [CrossRef]
- Au, W.W.L.; Green, M. Acoustic interaction of humpback whales and whale-watching boats. Mar. Environ. Res. 2000, 49, 469–481. [Google Scholar] [CrossRef]
- Buck, B.M.; Chalfant, D.A. Deep Water Narrowband Radiated Noise Measurement of Merchant Ships; Technical report; University of California: Los Angeles, CA, USA, 1972. [Google Scholar]
- Greene, C.R. Characteristics of waterborne industrial noise. In Behavior, Disturbance Responses and Distribution of Bowhead Whales Balaena Mysticetus in the Beaufort Sea; LGL Ecological Research Associates Inc.: Bryan, TX, USA, 1985; pp. 197–253. [Google Scholar]
- Malme, C.I.; Miles, P.R.; Miller, G.S.; Richardson, W.J.; Roseneau, D.G. Analysis and Ranking of the Acoustic Disturbance Potential of Petroleum-Industry Activities and Other Sources of Noise in the Environment of Marine Mammals in Alaska. Final Report; Technical report; Bolt, Beranek and Newman, Inc.: Cambridge, MA, USA, 1989. [Google Scholar]
- McCauley, R.D.; Cato, D.H.; Jeffrey, A.F. A Study of Impacts of the Impacts of Vessel Noise on Humpback Whales in Hervey Bay; Technical report; Queensland Department of Environment and Heritage: Maryborough, Australia, 1996.
- Miles, P.R.; Malme, C.I.; Richardson, W.J. Prediction of Drilling Sit Specific Interaction of Industrial Acoustic Stimuli and Endangered Whales in the Alaskan Beaufort Sea; Technical report; Bolt, Beranek and Newman, Inc.: Cambridge, MA, USA, 1987. [Google Scholar]
- Veirs, S.; Veirs, V. Vessel noise measurements underwater in the Haro Strait, WA. J. Acoust. Soc. Am. 2006, 120, 3382. [Google Scholar] [CrossRef]
- Kipple, B.; Gabriele, C. Glacier Bay Watercraft Noise; Technical report; Naval Surface Warfare Center: Bremerton, WA, USA, 2003. [Google Scholar]
- Parsons, M.J.G.; Duncan, A.J.; Parsons, S.K.; Erbe, C. Reducing vessel noise: An example of a solar-electric passenger ferry. J. Acoust. Soc. Am. 2020, 147, 3575–3583. [Google Scholar] [CrossRef] [PubMed]
- Ross, D.; Alvarez, F.F. Radiated Underwater Noise of Surface Ships. Navy J. Underw. Acoust. 1964, 14, 331. [Google Scholar]
- McKenna, M.F.; Wiggins, S.M.; Hildebrand, J.A. Relationship between Container Ship Underwater Noise Levels and Ship Design, Operational and Oceanographic Conditions. Sci. Rep. 2013, 3, 1760. [Google Scholar] [CrossRef]
- Audoly, C.; Rizzuto, E. Ship Underwater Radiated Noise Patterns; Technical report; AQUO European Collaborative Project, Deliverable D2.1; European Commission’s 7th framework program: Brussels, Belgium, 2015. [Google Scholar]
- Welch, P. The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 1967, 15, 70–73. [Google Scholar] [CrossRef]
- Cerna, M.; Harvey, A.F. The Fundamentals of FFT-Based Signal Analysis and Measurement; Technical Report, Application Note 041; National Instruments: Austin, TX, USA, 2000. [Google Scholar]
- Erbe, C.; Farmer, D.M. A software model to estimate zones of impact on marine mammals around anthropogenic noise. J. Acoust. Soc. Am. 2000, 108, 1327–1331. [Google Scholar]
- Erbe, C.; Farmer, D.M. Zones of impact around icebreakers affecting beluga whales in the Beaufort Sea. J. Acoust. Soc. Am. 2000, 108, 1332–1340. [Google Scholar]
- Johnson, C.S.; McManus, M.W.; Skaar, D. Masked tonal hearing thresholds in the beluga whale. J. Acoust. Soc. Am. 1989, 85, 2651–2654. [Google Scholar]
- Sponagle, N. Variability of Ship Noise Measurements. In Defense Research Establishment Atlantic; Technical Report; Defence Research Establishment Atlantic: Dartmouth, NS, Canada, 1988. [Google Scholar]
- Castellote, M.; Mooney, T.A.; Quakenbush, L.; Hobbs, R.; Goertz, C.; Gaglione, E. Baseline hearing abilities and variability in wild beluga whales (Delphinapterus leucas). J. Exp. Biol. 2014, 217, 1682–1691. [Google Scholar]
- Klishin, V.O.; Popov, V.V.; Supin, A.Y. Hearing capabilities of a beluga whale, Delphinapterus leucas. Aquat. Mamm. 2000, 26, 212–228. [Google Scholar]
- Mooney, T.A.; Castellote, M.; Quakenbush, L.; Hobbs, R.; Gaglione, E.; Goertz, C. Variation in hearing within a wild population of beluga whales (Delphinapterus leucas). J. Exp. Biol. 2018, 221, jeb171959. [Google Scholar]
- Sysueva, E.V.; Nechaev, D.I.; Popov, V.V.; Supin, A.Y. Electrophysiological audiograms in seven beluga whales (Delphinapterus leucas) from the Okhotsk Sea population. In Proceedings of the Meetings on Acoustics 175ASA, Acoustical Society of America, Minneapolis, MN, USA, 7–11 May 2018; Volume 33, p. 010001. [Google Scholar]
Label | Date | Time (EDT) | Beaufort Sea State | Type | Number of Engines | Engines Manufacturer | Engines Power (HP) | SOG (knots) | (°) | (°) | CPA (m) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 31 July 2021 | 13:55 | 2 | Speedboat | - | - | - | 1.88 | 48.213861 | −69.887152 | 667 |
2 | 3 August 2021 | 16:01 | 1 | Speedboat | 1 | Mercury | - | 23.08 | 48.210289 | −69.896352 | 367 |
3 | 4 August 2021 | 15:50 | 0 | Cruiser | - | - | - | 30.17 | 48.208510 | −69.892474 | 49 |
4 | 5 August 2021 | 10:32 | 0 | Cruiser | - | - | - | 8.87 | 48.210237 | −69.886181 | 457 |
5 * | 5 August 2021 | 12:08 | 0 | ZodiacTM | 1 | Yamaha | 150 | 10.02 | 48.211068 | −69.899422 | 609 |
6 * | 5 August 2021 | 12:33 | 0 | ZodiacTM | 1 | Suzuki | - | 20.10 | 48.210073 | −69.888555 | 290 |
7 | 7 August 2021 | 09:06 | 1 | Speedboat | - | - | - | 28.39 | 48.208786 | −69.892162 | 16 |
8 | 7 August 2021 | 11:30 | 1 | Speedboat | 1 | Mercury | 115 | 21.04 | 48.208475 | −69.893851 | 145 |
9 | 7 August 2021 | 12:50 | 1 | Cruiser | - | - | - | 17.47 | 48.209724 | −69.881958 | 748 |
10 | 10 August 2021 | 13:28 | 1 | Cruiser | - | - | - | 17.56 | 48.209916 | −69.888201 | 305 |
11 | 12 August 2021 | 16:20 | 1 | Speedboat | - | - | - | 17.59 | 48.209490 | −69.897792 | 440 |
12 | 13 August 2021 | 14:29 | 0 | Speedboat | 2 | Mercury | 115 | 6.79 | 48.207001 | −69.898766 | 542 |
13 | 16 August 2021 | 10:35 | 1 | Cruiser | - | - | - | 20.35 | 48.209907 | −69.887981 | 320 |
14 | 18 August 2021 | 12:56 | 1 | Speedboat | 1 | Mercury | - | 20.97 | 48.209603 | −69.888929 | 242 |
15 | 25 August 2021 | 15:54 | 1 | Speedboat | - | - | - | 21.05 | 48.207462 | −69.889247 | 248 |
16 | 1 September 2021 | 11:54 | 2 | Speedboat | 1 | Mercury | 115 | 18.95 | 48.208877 | −69.893944 | 148 |
17 | 15 July 2022 | 14:16 | 2 | Cruiser | - | - | - | 9.03 | 48.212062 | −69.887515 | 782 |
18 | 16 July 2022 | 11:08 | 2 | Speedboat | 1 | - | - | 24.49 | 48.209266 | −69.893283 | 11 |
19 | 16 July 2022 | 13:03 | 2 | Speedboat | - | - | - | 21.51 | 48.207783 | −69.889580 | 332 |
20 | 16 July 2022 | 13:45 | 2 | ZodiacTM | 1 | - | - | 16.28 | 48.211091 | −69.888693 | 402 |
21 | 16 July 2022 | 15:05 | 2 | Speedboat | - | - | - | 11.12 | 48.207778 | −69.899595 | 489 |
22 | 18 July 2022 | 09:35 | 1 | Sailboat | - | - | - | 7.74 | 48.209975 | −69.889102 | 328 |
23 | 18 July 2022 | 10:29 | 1 | ZodiacTM | 1 | - | 115 | 17.97 | 48.210392 | −69.892154 | 152 |
24 * | 18 July 2022 | 11:17 | 1 | Speedboat | 1 | - | - | 22.22 | 48.210675 | −69.889347 | 337 |
25 | 18 July 2022 | 11:43 | 1 | ZodiacTM | 1 | Yamaha | 150 | 7.13 | 48.208487 | −69.896273 | 231 |
26 | 25 July 2022 | 15:54 | 2 | Speedboat | 1 | - | - | 22.31 | 48.210086 | −69.880296 | 976 |
27 | 126 July 2022 | 10:31 | 2 | ZodiacTM | 2 | - | - | 16.25 | 48.210202 | −69.890991 | 205 |
28 | 26 July 2022 | 13:44 | 2 | ZodiacTM | 2 | - | - | 17.10 | 48.210971 | −69.887420 | 481 |
29 | 28 July 2022 | 09:58 | 2 | Sailboat | - | - | - | 6.62 | 48.210829 | −69.889774 | 318 |
30 | 28 July 2022 | 12:24 | 2 | Cruiser | - | - | - | 21.32 | 48.211299 | −69.886062 | 588 |
31 | 28 July 2022 | 13:04 | 3 | Speedboat | 1 | - | - | 22.58 | 48.211086 | −69.880111 | 1005 |
32 | 30 July 2022 | 09:08 | 1 | Speedboat | 1 | - | - | 29.52 | 48.209972 | −69.880295 | 975 |
33 | 30 July 2022 | 10:03 | 1 | Cruiser | 1 | - | - | 17.16 | 48.210751 | −69.880569 | 965 |
34 | 30 July 2022 | 13:54 | 2 | Speedboat | - | - | - | 18.99 | 48.208905 | −69.896018 | 198 |
35 | 31 July 2022 | 08:55 | 2 | Sailboat | - | - | - | 8.50 | 48.210479 | −69.889857 | 294 |
36 | 31 July 2022 | 11:35 | 2 | Cruiser | - | - | - | 23.50 | 48.210530 | −69.888811 | 367 |
37 | 31 July 2022 | 12:28 | 2 | Speedboat | 1 | - | - | 25.56 | 48.209704 | −69.892451 | 83 |
38 | 31 July 2022 | 15:09 | 2 | Speedboat | - | - | - | 20.52 | 48.209070 | −69.893708 | 35 |
39 | 1 August 2022 | 16:42 | 2 | Sailboat | - | - | - | 6.51 | 48.209702 | −69.891473 | 150 |
40 | 2 August 2022 | 14:20 | 2 | Cruiser | - | - | - | 22.58 | 48.210806 | −69.888402 | 407 |
41 | 3 August 2022 | 09:34 | 2 | Cruiser | - | - | - | 20.75 | 48.212184 | −69.886782 | 586 |
42 | 13 August 2022 | 11:07 | 2 | Cruiser | - | - | - | 5.67 | 48.211005 | −69.888579 | 405 |
43 | 15 August 2022 | 15:37 | 2 | Cruiser | - | - | - | 25.03 | 48.208605 | −69.898050 | 352 |
44 | 17 August 2022 | 09:49 | 2 | Speedboat | - | - | - | 24.34 | 48.211014 | −69.883850 | 734 |
45 | 17 August 2022 | 10:11 | 2 | Speedboat | 2 | - | 115 | 10.08 | 48.207896 | −69.898055 | 378 |
Label | Low Frequencies | Mid Frequencies | ||||||
---|---|---|---|---|---|---|---|---|
BBamb. [–] (dB re 1 μPa) | BBRL [–] (dB re 1 μPa) | BBMSL [– ] (dB re 1 μPa m) | BBMSL [0.1 kHz–] (dB re 1 μPa m) | BBamb. [–] (dB re 1 μPa) (dB re 1 μPa) | BBRL [–] (dB re 1 μPa · m) | BBMSL [–] | BBMSL [–30 kHz] (dB re 1 μPa · m) | |
1 | 96.16 | 110.01 | 186.72 | 169.37 | 95.38 | 109.05 | 174.72 | 168.60 |
2 | 87.51 | 109.91 | 161.17 | 160.61 | 93.22 | 117.10 | 168.99 | 168.43 |
3 | 93.76 | 128.02 | 170.25 | 169.94 | 94.27 | 126.03 | 166.72 | 166.62 |
4 | 97.89 | 114.13 | 176.77 | 174.88 | 95.62 | 109.99 | 166.55 | 163.25 |
5 | 97.12 | 122.30 | 186.49 | 186.23 | 95.58 | 104.94 | 169.83 | 155.58 |
6 | 97.51 | 105.85 | 161.35 | 155.76 | 95.45 | 114.63 | 169.02 | 167.20 |
7 | 94.45 | 123.93 | 164.61 | 164.55 | 95.64 | 123.59 | 168.00 | 167.88 |
8 | 98.22 | 123.89 | 170.08 | 169.45 | 95.78 | 117.02 | 167.04 | 164.88 |
9 | 94.28 | 107.26 | 176.10 | 175.77 | 93.78 | 110.90 | 184.03 | 183.12 |
10 | 96.80 | 120.88 | 175.24 | 168.52 | 95.16 | 120.87 | 171.72 | 170.08 |
11 | 99.68 | 112.90 | 168.57 | 164.67 | 94.44 | 113.62 | 165.20 | 161.61 |
12 | 96.37 | 110.05 | 173.44 | 155.43 | 93.65 | 109.76 | 188.99 | 158.45 |
13 | 100.00 | 117.08 | 170.06 | 169.25 | 97.77 | 118.68 | 171.50 | 168.87 |
14 | 88.64 | 115.21 | 174.63 | 174.35 | 92.94 | 112.63 | 164.15 | 163.70 |
15 | 94.99 | 108.07 | 160.52 | 156.01 | 93.00 | 105.25 | 163.13 | 162.49 |
16 | 97.85 | 126.59 | 172.53 | 172.07 | 93.98 | 116.10 | 161.94 | 160.20 |
17 | 93.66 | 118.60 | 185.57 | 185.44 | 93.89 | 99.97 | 169.86 | 152.63 |
18 | 85.93 | 121.53 | 159.78 | 159.08 | 92.29 | 125.12 | 171.17 | 171.13 |
19 | 93.48 | 106.33 | 160.48 | 153.46 | 92.61 | 112.92 | 161.61 | 157.30 |
20 | 86.81 | 110.58 | 165.63 | 162.91 | 92.21 | 107.88 | 163.89 | 160.58 |
21 | 84.43 | 113.50 | 179.95 | 164.10 | 92.61 | 113.97 | 166.00 | 163.03 |
22 | 90.88 | 109.42 | 161.06 | 160.45 | 93.03 | 105.86 | 159.24 | 156.61 |
23 | 82.36 | 118.20 | 168.02 | 167.37 | 92.18 | 114.60 | 164.27 | 164.24 |
24 | 97.56 | 124.67 | 176.85 | 176.77 | 94.13 | 126.26 | 179.88 | 179.82 |
25 | 102.03 | 116.77 | 170.10 | 169.96 | 94.71 | 109.96 | 158.70 | 157.33 |
26 | 89.28 | 121.13 | 179.60 | 179.56 | 92.54 | 113.84 | 191.64 | 173.30 |
27 | 94.39 | 108.99 | 157.50 | 155.47 | 94.31 | 114.58 | 162.05 | 161.41 |
28 | 95.00 | 113.70 | 174.57 | 172.59 | 93.61 | 112.33 | 170.45 | 167.71 |
29 | 100.77 | 111.16 | 164.60 | 157.52 | 94.08 | 110.04 | 168.42 | 167.84 |
30 | 97.70 | 121.95 | 193.55 | 193.54 | 94.05 | 114.21 | 176.70 | 171.04 |
31 | 90.18 | 115.68 | 174.41 | 173.49 | 93.14 | 107.30 | 192.91 | 166.69 |
32 | 84.64 | 110.15 | 180.00 | 179.89 | 92.35 | 113.75 | 192.86 | 173.77 |
33 | 92.99 | 105.14 | 175.75 | 175.00 | 92.76 | 111.85 | 188.64 | 170.32 |
34 | 93.92 | 116.89 | 165.85 | 165.29 | 93.98 | 118.61 | 159.37 | 158.58 |
35 | 84.41 | 108.25 | 165.32 | 159.06 | 92.22 | 98.71 | 152.98 | 150.40 |
36 | 96.12 | 125.73 | 194.10 | 194.07 | 93.40 | 134.10 | 187.94 | 187.65 |
37 | 83.54 | 124.93 | 174.15 | 174.09 | 92.27 | 126.59 | 180.15 | 179.85 |
38 | 89.60 | 129.47 | 169.49 | 169.10 | 92.35 | 130.49 | 175.57 | 175.55 |
39 | 82.76 | 101.39 | 152.26 | 143.53 | 92.29 | 96.00 | 147.64 | 139.08 |
40 | 101.05 | 115.64 | 171.79 | 168.30 | 98.38 | 120.92 | 174.88 | 167.85 |
41 | 99.55 | 113.78 | 174.46 | 174.12 | 98.93 | 121.69 | 180.51 | 171.37 |
42 | 91.04 | 106.30 | 172.03 | 171.96 | 92.97 | 102.91 | 169.27 | 168.98 |
43 | 86.74 | 119.29 | 177.73 | 164.25 | 92.44 | 122.69 | 169.30 | 168.58 |
44 | 88.80 | 108.22 | 176.29 | 176.19 | 92.62 | 108.98 | 175.42 | 163.17 |
45 | 91.40 | 112.68 | 171.60 | 163.92 | 92.51 | 113.05 | 166.80 | 159.67 |
Predictor | Estimate | Confidence Interval | p-Value |
---|---|---|---|
(a) BBMSL [–] (dB re 1 μPa ·m) | |||
Intercept | 161.60 | 153.26–169.95 | <0.001 |
SOG | 0.11 | −0.22–0.44 | 0.515 |
CPA | 0.02 | 0.01–0.03 | <0.001 |
Type | 0.04 | −2.75–2.82 | 0.980 |
(b) BBMSL [–] (dB re 1 μPa · m) | |||
Intercept | 149.70 | 142.10–157.31 | <0.001 |
SOG | 0.60 | 0.31–0.90 | <0.001 |
CPA | 0.03 | 0.02–0.03 | <0.001 |
Type | −0.05 | −2.49–2.38 | 0.966 |
(c) BBMSL [0.1 kHz–] (dB re 1 μPa · m) | |||
Intercept | 153.77 | 143.87–163.66 | <0.001 |
SOG | 0.40 | 0.02–0.78 | 0.040 |
CPA | 0.02 | 0.01–0.03 | <0.001 |
Type | 0.05 | −3.14–3.25 | 0.974 |
(d) BBMSL [–30 kHz] (dB re 1 μPa · m) | |||
Intercept | 150.34 | 142.16–158.52 | <0.001 |
SOG | 0.68 | 0.36–0.99 | <0.001 |
CPA | 0.01 | −0.00–0.02 | 0.064 |
Type | 0.47 | −2.20–3.15 | 0.729 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lagrois, D.; Kowalski, C.; Sénécal, J.-F.; Martins, C.C.A.; Chion, C. Low-to-Mid-Frequency Monopole Source Levels of Underwater Noise from Small Recreational Vessels in the St. Lawrence Estuary Beluga Critical Habitat. Sensors 2023, 23, 1674. https://doi.org/10.3390/s23031674
Lagrois D, Kowalski C, Sénécal J-F, Martins CCA, Chion C. Low-to-Mid-Frequency Monopole Source Levels of Underwater Noise from Small Recreational Vessels in the St. Lawrence Estuary Beluga Critical Habitat. Sensors. 2023; 23(3):1674. https://doi.org/10.3390/s23031674
Chicago/Turabian StyleLagrois, Dominic, Camille Kowalski, Jean-François Sénécal, Cristiane C. A. Martins, and Clément Chion. 2023. "Low-to-Mid-Frequency Monopole Source Levels of Underwater Noise from Small Recreational Vessels in the St. Lawrence Estuary Beluga Critical Habitat" Sensors 23, no. 3: 1674. https://doi.org/10.3390/s23031674
APA StyleLagrois, D., Kowalski, C., Sénécal, J. -F., Martins, C. C. A., & Chion, C. (2023). Low-to-Mid-Frequency Monopole Source Levels of Underwater Noise from Small Recreational Vessels in the St. Lawrence Estuary Beluga Critical Habitat. Sensors, 23(3), 1674. https://doi.org/10.3390/s23031674