A Proof of Concept Combined Using Mixed Reality for Personalized Neurorehabilitation of Cerebellar Ataxic Patients
Abstract
:1. Introduction
2. Related Work
3. Materials and Methods
3.1. The PoC Design
3.2. Hardware Design
3.3. Software Design
3.4. Data Acquired
- − Position coordinates (meters)
- − Euler rotations (degrees)
- − Velocity (m/s)
- − Current positions and rotations of all 3D game objects
- − Time instant of recognition of a “grab” gesture on the target and time instant of releasing the grab
- − Time instant of exit or enter the volume of limitation of the hands
3.5. Collected Data Analysis
4. Results
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moreira, R.; Alves, J.; Matias, A.; Santos, C. Smart and Assistive Walker—ASBGo: Rehabilitation Robotics: A Smart–Walker to Assist Ataxic Patients. In Advances in Experimental Medicine and Biology; Springer: Cham, Switzerland, 2019; Volume 1170, pp. 37–88. [Google Scholar]
- Son, S.; Lim, K.B.; Kim, J.; Lee, C.; Cho, S.I.I.; Yoo, J. Comparing the Effects of Exoskeletal-Type Robot-Assisted Gait Training on Patients with Ataxic or Hemiplegic Stroke. Brain Sci. 2022, 12, 1261. [Google Scholar] [CrossRef]
- Rinaldi, M.; Ranavolo, A.; Conforto, S.; Martino, G.; Draicchio, F.; Conte, C.; Varrecchia, T.; Bini, F.; Casali, C.; Pierelli, F.; et al. Increased Lower Limb Muscle Coactivation Reduces Gait Performance and Increases Metabolic Cost in Patients with Hereditary Spastic Paraparesis. Clin. Biomech. 2017, 48, 63–72. [Google Scholar] [CrossRef]
- Bertoli, M.; Cereatti, A.; Croce, U.D.; Pica, A.; Bini, F. Can MIMUs Positioned on the Ankles Provide a Reliable Detection and Characterization of U-Turns in Gait? In Proceedings of the MeMeA 2018-2018 IEEE International Symposium on Medical Measurements and Applications, Proceedings, Rome, Italy, 11–13 June 2018; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2018. [Google Scholar]
- Condino, S.; Turini, G.; Viglialoro, R.; Gesi, M.; Ferrari, V. Wearable Augmented Reality Application for Shoulder Rehabilitation. Electronics 2019, 8, 1178. [Google Scholar] [CrossRef]
- Alarcón-Aldana, A.C.; Callejas-Cuervo, M.; Bo, A.P.L. Upper Limb Physical Rehabilitation Using Serious Videogames and Motion Capture Systems: A Systematic Review. Sensors 2020, 20, 5989. [Google Scholar] [CrossRef]
- Matyash, I.; Kutzner, R.; Neumuth, T.; Rockstroh, M. Accuracy Measurement of HoloLens2 IMUs in Medical Environments. Curr. Dir. Biomed. Eng. 2021, 7, 633–636. [Google Scholar] [CrossRef]
- Koop, M.M.; Rosenfeldt, A.B.; Owen, K.; Penko, A.L.; Streicher, M.C.; Albright, A.; Alberts, J.L. The Microsoft HoloLens 2 Provides Accurate Measures of Gait, Turning, and Functional Mobility in Healthy Adults. Sensors 2022, 22, 2009. [Google Scholar] [CrossRef] [PubMed]
- Porciuncula, F.; Roto, A.V.; Kumar, D.; Davis, I.; Roy, S.; Walsh, C.J.; Awad, L.N. Wearable Movement Sensors for Rehabilitation: A Focused Review of Technological and Clinical Advances. PM R 2018, 10, S220–S232. [Google Scholar] [CrossRef] [PubMed]
- Debarba, H.G.; De Oliveira, M.E.; Ladermann, A.; Chague, S.; Charbonnier, C. Augmented Reality Visualization of Joint Movements for Rehabilitation and Sports Medicine. In Proceedings of the 2018 20th Symposium on Virtual and Augmented Reality (SVR), Foz do Iguaçu, Brazil, 28–30 October 2018; pp. 114–121. [Google Scholar] [CrossRef]
- Bodranghien, F.; Bastian, A.; Casali, C.; Hallett, M.; Louis, E.D.; Manto, M.; Mariën, P.; Nowak, D.A.; Schmahmann, J.D.; Serrao, M.; et al. Consensus Paper: Revisiting the Symptoms and Signs of Cerebellar Syndrome. Cerebellum 2016, 15, 369–391. [Google Scholar] [CrossRef]
- Serrao, M.; Chini, G.; Casali, C.; Conte, C.; Rinaldi, M.; Ranavolo, A.; Marcotulli, C.; Leonardi, L.; Fragiotta, G.; Bini, F.; et al. Progression of Gait Ataxia in Patients with Degenerative Cerebellar Disorders: A 4-Year Follow-Up Study. Cerebellum 2017, 16, 629–637. [Google Scholar] [CrossRef]
- Serrao, M.; Chini, G.; Bergantino, M.; Sarnari, D.; Casali, C.; Conte, C.; Ranavolo, A.; Marcotulli, C.; Rinaldi, M.; Coppola, G.; et al. Identification of Specific Gait Patterns in Patients with Cerebellar Ataxia, Spastic Paraplegia, and Parkinson’s Disease: A Non-Hierarchical Cluster Analysis. Hum. Mov. Sci. 2018, 57, 267–279. [Google Scholar] [CrossRef]
- Serrao, M.; Chini, G.; Iosa, M.; Casali, C.; Morone, G.; Conte, C.; Bini, F.; Marinozzi, F.; Coppola, G.; Pierelli, F.; et al. Harmony as a Convergence Attractor That Minimizes the Energy Expenditure and Variability in Physiological Gait and the Loss of Harmony in Cerebellar Ataxia. Clin. Biomech. 2017, 48, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Colomer, C.; Llorens, R.; Noé, E.; Alcañiz, M. Effect of a Mixed Reality-Based Intervention on Arm, Hand, and Finger Function on Chronic Stroke. J. Neuroeng. Rehabil. 2016, 13, 45. [Google Scholar] [CrossRef] [PubMed]
- Ayvat, E.; Onursal Kılınç, Ö.; Ayvat, F.; Savcun Demirci, C.; Aksu Yıldırım, S.; Kurşun, O.; Kılınç, M. The Effects of Exergame on Postural Control in Individuals with Ataxia: A Rater-Blinded, Randomized Controlled, Cross-over Study. Cerebellum 2022, 21, 64–72. [Google Scholar] [CrossRef]
- Takimoto, K.; Omon, K.; Murakawa, Y.; Ishikawa, H. Case of Cerebellar Ataxia Successfully Treated by Virtual Reality-Guided Rehabilitation. BMJ Case Rep. 2021, 14, e242287. [Google Scholar] [CrossRef]
- Synofzik, M.; Ilg, W. Motor Training in Degenerative Spinocerebellar Disease: Ataxia-Specific Improvements by Intensive Physiotherapy and Exergames. Biomed Res. Int. 2014, 2014, 583507. [Google Scholar] [CrossRef]
- Ilg, W.; Schatton, C.; Schicks, J.; Giese, M.A.; Schöls, L.; Synofzik, M. Video Game-Based Coordinative Training Improves Ataxia in Children with Degenerative Ataxia. Neurology 2012, 79, 2056–2060. [Google Scholar] [CrossRef] [PubMed]
- Pirovano, M.; Surer, E.; Mainetti, R.; Lanzi, P.L.; Alberto Borghese, N. Exergaming and Rehabilitation: A Methodology for the Design of Effective and Safe Therapeutic Exergames. Entertain. Comput. 2016, 14, 55–65. [Google Scholar] [CrossRef]
- Feng, H.; Li, C.; Liu, J.; Wang, L.; Ma, J.; Li, G.; Gan, L.; Shang, X.; Wu, Z. Virtual Reality Rehabilitation versus Conventional Physical Therapy for Improving Balance and Gait in Parkinson’s Disease Patients: A Randomized Controlled Trial. Med. Sci. Monit. 2019, 25, 4186–4192. [Google Scholar] [CrossRef]
- Trombini, M.; Ferraro, F.; Nardelli, A.; Vestito, L.; Schenone, G.; Mori, L.; Trompetto, C.; Dellepiane, S. On the Performance Assessment during the Practice of an Exergame for Cerebellar Ataxia Patients. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine & Biology Society EMBS, Mexico, 1–5 November 2021; pp. 5747–5751. [Google Scholar] [CrossRef]
- Viglialoro, R.M.; Condino, S.; Turini, G.; Carbone, M.; Ferrari, V.; Gesi, M. Augmented Reality, Mixed Reality, and Hybrid Approach in Healthcare Simulation: A Systematic Review. Appl. Sci. 2021, 11, 2338. [Google Scholar] [CrossRef]
- Chang, W.C.; Ko, L.W.; Yu, K.H.; Ho, Y.C.; Chen, C.H.; Jong, Y.J.; Huang, Y.P. EEG Analysis of Mixed-Reality Music Rehabilitation System for Post-Stroke Lower Limb Therapy. J. Soc. Inf. Disp. 2019, 27, 372–380. [Google Scholar] [CrossRef]
- Soares, I.; Sousa, R.B.; Petry, M.; Moreira, A.P. Accuracy and Repeatability Tests on Hololens 2 and Htc Vive. Multimodal Technol. Interact. 2021, 5, 47. [Google Scholar] [CrossRef]
- Aziz, S.; Komogortsev, O. An Assessment of the Eye Tracking Signal Quality Captured in the HoloLens 2. Eye Track. Res. Appl. Symp. 2022, 1–6. [Google Scholar] [CrossRef]
- Kapp, S.; Barz, M.; Mukhametov, S.; Sonntag, D.; Kuhn, J. Arett: Augmented Reality Eye Tracking Toolkit for Head Mounted Displays. Sensors 2021, 21, 2234. [Google Scholar] [CrossRef] [PubMed]
- Franzo, M.; Pascucci, S.; Serrao, M.; Marinozzi, F.; Bini, F. Kinect-Based Wearable Prototype System for Ataxic Patients Neurorehabilitation: Control Group Preliminary Results. In Proceedings of the 2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Bari, Italy, 1 June–1 July 2020. [Google Scholar] [CrossRef]
- Franzo’, M.; Pascucci, S.; Serrao, M.; Marinozzi, F.; Bini, F. Kinect-Based Wearable Prototype System for Ataxic Patients Neurorehabilitation: Software Update for Exergaming and Rehabilitation. In Proceedings of the 2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Lausanne, Switzerland, 23–25 June 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Franzo’, M.; Pascucci, S.; Serrao, M.; Marinozzi, F.; Bini, F. Exergaming in Mixed Reality for the Rehabilitation of Ataxic Patients. In Proceedings of the 2022 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Messina, Italy, 22–24 June 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Saute, J.A.M.; Donis, K.C.; Serrano-Munuera, C.; Genis, D.; Ramirez, L.T.; Mazzetti, P.; Pérez, L.V.; Latorre, P.; Sequeiros, J.; Matilla-Duenas, A.; et al. Ataxia Rating Scales-Psychometric Profiles, Natural History and Their Application in Clinical Trials. Cerebellum 2012, 11, 488–504. [Google Scholar] [CrossRef]
- Perez-Lloret, S.; van de Warrenburg, B.; Rossi, M.; Rodríguez-Blázquez, C.; Zesiewicz, T.; Saute, J.A.M.; Durr, A.; Nishizawa, M.; Martinez-Martin, P.; Stebbins, G.T.; et al. Assessment of Ataxia Rating Scales and Cerebellar Functional Tests: Critique and Recommendations. Mov. Disord. 2021, 36, 283–297. [Google Scholar] [CrossRef] [PubMed]
- Mariotti, C.; Fancellu, R.; Di Donato, S. An Overview of the Patient with Ataxia. J. Neurol. 2005, 252, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Schatton, C.; Synofzik, M.; Fleszar, Z.; Giese, M.A.; Schöls, L.; Ilg, W. Individualized Exergame Training Improves Postural Control in Advanced Degenerative Spinocerebellar Ataxia: A Rater-Blinded, Intra-Individually Controlled Trial. Park. Relat. Disord. 2017, 39, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Romano, A.; Favetta, M.; Summa, S.; Schirinzi, T.; Bertini, E.S.; Castelli, E.; Vasco, G.; Petrarca, M. Upper Body Physical Rehabilitation for Children with Ataxia through IMU-Based Exergame. J. Clin. Med. 2022, 11, 1065. [Google Scholar] [CrossRef]
- Blumrosen, G.; Miron, Y.; Intrator, N.; Plotnik, M. A Real-Time Kinect Signature-Based Patient Home Monitoring System. Sensors 2016, 16, 1965. [Google Scholar] [CrossRef]
- Maskeliūnas, R.; Damaševičius, R.; Blažauskas, T.; Canbulut, C.; Adomavičienė, A.; Griškevičius, J. BiomacVR: A Virtual Reality-Based System for Precise Human Posture and Motion Analysis in Rehabilitation Exercises Using Depth Sensors. Electronics 2023, 12, 339. [Google Scholar] [CrossRef]
- Araneo, R.; Bini, F.; Rinaldi, A.; Notargiacomo, A.; Pea, M.; Celozzi, S. Thermal-Electric Model for Piezoelectric ZnO Nanowires. Nanotechnology 2015, 26, 265402. [Google Scholar] [CrossRef] [PubMed]
Exergaming (2 Repetitions) | Hand | Acquisition Time (s) | N° Samples | N° Exit Feedback |
---|---|---|---|---|
Exergaming 1 | Right | 25.67 | 729 | 9 |
Left | 21.96 | 600 | 16 | |
Exergaming 2 | Right | 44.37 | 1328 | 31 |
Left | 44.70 | 1340 | 52 |
Traditional | Xbox and Nintendo Wii Exergaming [16,18,19,34] | VR Headset and Controller [17] | 2D VR IMU Sensors [35] | 2D VR Marker-less Tracking for Ataxic Patients [28,29] | 2D AR System without Headset [15] | System Proposed: 3D MR Tailored for Ataxic Patients | |
---|---|---|---|---|---|---|---|
PRO | Real world; Real interaction; Human interaction; No devices; Patient-based; Free; No controller; | Entertaining; Economic; Home-Care; Dedicated or external tracking; patient-friendly; audio-visive feedback; No controller; | Patient-based; Economic; Home-Care; Data acquisition; Controller tracking; patient-friendly; audio-visive feedback; 3D virtual world; | Entertaining; IMU tracking; Data acquisition; audio-visive feedback; No controller; | Economic; Home-Care; Patient-based; Marker-less tracking; Data acquisition; patient-friendly; audio-visive feedback; No controller; | Entertaining; Home-Care; Marker-less tracking; Data acquisition; audio-visive feedback; gesture recognition; No controller; Object interaction; | Entertaining; Patient-based; Virtual object in real world; Data acquisition; gesture recognition; No controller; Marker-less tracking; object interaction; audio-visive feedback; control-volume |
CONS | No Entertaining; No quantities data; No feedback; No control-volume; | No patient-based; 2D world; No integrated data acquisition; No gesture recognition; No control-volume; | No entertaining; Motion sickness; No gesture recognition; Controller; No control-volume; | No Home-Care; Pricey; No patient-friendly; No patient-based; 2D world; No gesture recognition; No control-volume; | No entertaining; 2D world; No gesture recognition; No control-volume; | No patient-based; Pricey; Bulky; 2D world; No control-volume; No object interaction; | Pricey; No Home-Care; |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franzò, M.; Pica, A.; Pascucci, S.; Serrao, M.; Marinozzi, F.; Bini, F. A Proof of Concept Combined Using Mixed Reality for Personalized Neurorehabilitation of Cerebellar Ataxic Patients. Sensors 2023, 23, 1680. https://doi.org/10.3390/s23031680
Franzò M, Pica A, Pascucci S, Serrao M, Marinozzi F, Bini F. A Proof of Concept Combined Using Mixed Reality for Personalized Neurorehabilitation of Cerebellar Ataxic Patients. Sensors. 2023; 23(3):1680. https://doi.org/10.3390/s23031680
Chicago/Turabian StyleFranzò, Michela, Andrada Pica, Simona Pascucci, Mariano Serrao, Franco Marinozzi, and Fabiano Bini. 2023. "A Proof of Concept Combined Using Mixed Reality for Personalized Neurorehabilitation of Cerebellar Ataxic Patients" Sensors 23, no. 3: 1680. https://doi.org/10.3390/s23031680
APA StyleFranzò, M., Pica, A., Pascucci, S., Serrao, M., Marinozzi, F., & Bini, F. (2023). A Proof of Concept Combined Using Mixed Reality for Personalized Neurorehabilitation of Cerebellar Ataxic Patients. Sensors, 23(3), 1680. https://doi.org/10.3390/s23031680