Demagnetization Fault Diagnosis of Permanent Magnet Synchronous Motors Based on Stator Current Signal Processing and Machine Learning Algorithms
Abstract
:1. Introduction
- (1)
- Evaluation of the applicability of STFT analysis of the stator phase current signal to extract PM damage symptoms in PMSM drives, based on experimental tests performed under different operating conditions of the drive system.
- (2)
- Determination of the fault features that are the most sensitive to PM damage, being at the same time the least dependent on motor operating conditions.
- (3)
- Development of the hybrid diagnostic method combining STFT analysis and ML-based models: KNN and MLP for PM fault detection in PMSM drives.
- (4)
- Detailed verification of the input vector elements, key parameters and structure of selected ML algorithms on the PM fault detectors effectiveness.
- (5)
- Comparison of the effectiveness of KNN- and MLP-based PM fault detector models, and proving that the use of a simple KNN algorithm is sufficient to achieve very high detection effectiveness while maintaining a significantly shorter model response time compared to MLP.
2. Impact of the PM Damage on the PMSM Drive Stator Phase Current Waveforms
2.1. Physical Modeling of PMSM Rotor PM Damage
2.2. Analysis of Stator Phase Current Waveforms and Its FFT Spectrum
3. Short-Time Fourier Transform Theoretical Basis
4. Experimental Setup
5. STFT Based Extraction of the PMSM Rotor Permanent Magnet Damage Symptoms
6. Machine Learning Based Detectors of the PMSM Demagnetization Fault
6.1. Theoretical Basics
6.1.1. KNN
6.1.2. MLP
6.2. Development of the PMSM Demagnetization Fault Detectors
6.2.1. KNN
6.2.2. MLP
6.3. On-Line Tests of the PM Fault Detectors
6.4. Summary
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Name of the Parameter | Symbol | Units | |
---|---|---|---|
Power | PN | 2500 | [W] |
Torque | TN | 16 | [Nm] |
Speed | nN | 1500 | [r/min] |
Stator phase voltage | UsN | 325 | V |
Stator current | IsN | 6.6 | [A] |
Frequency | fsN | 100 | [Hz] |
Pole pairs number | pp | 4 | [-] |
Number of stator turns | Nst | 2 × 125 | [-] |
References
- Orlowska-Kowalska, T.; Wolkiewicz, M.; Pietrzak, P.; Skowron, M.; Ewert, P.; Tarchała, G.; Krzysztofiak, M.; Kowalski, C.T. Fault Diagnosis and Fault-Tolerant Control of PMSM Drives–State of the Art and Future Challenges. IEEE Access 2022, 10, 59979–60024. [Google Scholar] [CrossRef]
- Yu, Y.; Gao, H.; Chen, Q.; Liu, P.; Niu, S. Demagnetization Fault Detection and Location in PMSM Based on Correlation Coefficient of Branch Current Signals. Energies 2022, 15, 2952. [Google Scholar] [CrossRef]
- Pietrzak, P.; Wolkiewicz, M. Comparison of Selected Methods for the Stator Winding Condition Monitoring of a PMSM Using the Stator Phase Currents. Energies 2021, 14, 1630. [Google Scholar] [CrossRef]
- Cao, L.; Wu, Z. On-Line Detection of Demagnetization for Permanent Magnet Synchronous Motor via Flux Observer. Machines 2022, 10, 354. [Google Scholar] [CrossRef]
- Chen, Y.; Liang, S.; Li, W.; Liang, H.; Wang, C. Faults and Diagnosis Methods of Permanent Magnet Synchronous Motors: A Review. Appl. Sci. 2019, 9, 2116. [Google Scholar] [CrossRef]
- Cira, F.; Arkan, M.; Gümüs, B. A New Approach to Detect Stator Fault in Permanent Magnet Synchronous Motor. In Proceedings of the IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives (SDEMPED), Guarda, Portugal, 1–4 September 2015; pp. 316–321. [Google Scholar]
- Ewert, P.; Orlowska-Kowalska, T.; Jankowska, K. Effectiveness Analysis of PMSM Motor Rolling Bearing Fault Detectors Based on Vibration Analysis and Shallow Neural Networks. Energies 2021, 14, 712. [Google Scholar] [CrossRef]
- Ullah, Z.; Hur, J. A comprehensive review of winding short circuit fault and irreversible demagnetization fault detection in PM type machines. Energies 2018, 11, 3309. [Google Scholar] [CrossRef]
- Ishikawa, T.; Seki, Y.; Kurita, N. Analysis for Fault Detection of Vector-Controlled Permanent Magnet Synchronous Motor with Permanent Magnet Defect. IEEE Trans. Magn. 2013, 49, 2331–2334. [Google Scholar] [CrossRef]
- Choi, S.; Haque, M.S.; Tarek, M.T.B.; Mulpuri, V.; Duan, Y.; Das, S.; Garg, V.; Ionel, D.; Masrur, A.; Mirafzal, B.; et al. Fault Diagnosis Techniques for Permanent Magnet AC Machine and Drives—A Review of Current State of the Art. IEEE Trans. Transp. Electrif. 2018, 4, 444–463. [Google Scholar] [CrossRef]
- Skowron, M.; Orlowska-Kowalska, T.; Kowalski, C.T. Detection of Permanent Magnet Damage of PMSM Drive Based on Direct Analysis of the Stator Phase Currents Using Convolutional Neural Network. IEEE Trans. Ind. Electron. 2022, 69, 13665–13675. [Google Scholar] [CrossRef]
- Hang, J.; Sun, W.; Hu, Q.; Ren, X.; Ding, S. Integration of Interturn Fault Diagnosis and Fault-Tolerant Control for PMSM Drive System. IEEE Trans. Transp. Electrif. 2022, 8, 2825–2835. [Google Scholar] [CrossRef]
- Bhuiyan, E.A.; Akhand, M.M.A.; Das, S.K.; Ali, M.F.; Tasneem, Z.; Islam, M.R.; Moyeen, S.I. A survey on fault diagnosis and fault tolerant methodologies for permanent magnet synchronous machines. Int. J. Autom. Comput. 2022, 17, 763787. [Google Scholar] [CrossRef]
- Le Roux, W.; Harley, R.G.; Habetler, T.G. Detecting rotor faults in low power permanent magnet synchronous machines. IEEE Trans.Power Electron. 2007, 22, 322328. [Google Scholar] [CrossRef]
- Urresty, J.C.; Riba, J.R.; Romeral, L. Influence of the stator windings configuration in the currents and zero-sequence voltage harmonics in permanent magnet synchronous motors with demagnetization faults. IEEE Trans. Magn. 2013, 49, 48854893. [Google Scholar] [CrossRef]
- Urresty, J.C.; Ruiz, J.R.R.; Delgado, M.; Romeral, L. Detection of demagnetization faults in surface-mounted permanent magnet synchronous motors by means of the zero-sequence voltage component. IEEE Trans. Energy Convers. 2012, 27, 4251. [Google Scholar] [CrossRef]
- Capolino, G.A.; Romary, R.; Henao, H.; Pusca, R. State of the art on stray flux analysis in faulted electrical machines. In Proceedings of the 2019 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD), Athens, Greece, 22–23 April 2019; p. 181187. [Google Scholar]
- Urresty, J.C.; Riba, J.R.; Romeral, L. A back-EMF based method to detect magnet failures in PMSMs. IEEE Trans. Magn. 2013, 49, 591598. [Google Scholar] [CrossRef]
- Ishikawa, T.; Igarashi, N. Failure Diagnosis of Demagnetization in Interior Permanent Magnet Synchronous Motors Using Vibration Characteristics. Appl. Sci. 2019, 9, 3111. [Google Scholar] [CrossRef]
- Pietrzak, P.; Wolkiewicz, M. Stator Winding Fault Detection of Permanent Magnet Synchronous Motors Based on the Short-Time Fourier Transform. Power Electron. Drives 2022, 7, 112–133. [Google Scholar] [CrossRef]
- Gritli, Y.; Rossi, C.; Casadei, D.; Zarri, L.; Filippetti, F. Demagnetizations diagnosis for permanent magnet synchronous motors based on advanced wavelet analysis. In Proceedings of the 20th International Conference on Electrical Machines, Marseille, France, 2–5 September 2012; p. 23972403. [Google Scholar]
- Rosero, J.; Romeral, L.; Ortega, J.A.; Urresty, J.C. Demagnetization fault detection by means of Hilbert Huang transform of the stator current decomposition in PMSM. In Proceedings of the 2008 IEEE International Symposium on Industrial Electronics, Cambridge, UK, 30 June–2 July 2008; pp. 172–177. [Google Scholar] [CrossRef]
- Rajagopalan, S.; Restrepo, J.A.; Aller, J.M.; Habetler, T.G.; Harley, R.G. Wigner-ville distributions for detection of rotor faults in brushless DC (BLDC) motors operating under non-stationary conditions. In Proceedings of the 5th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, Vienna, Austria, 7–9 September 2005; p. 17. [Google Scholar]
- Chen, H.; Gao, C.; Si, J.; Nie, Y.; Hu, Y. A Novel Method for Diagnosing Demagnetization Fault in PMSM Using Toroidal-Yoke-Type Search Coil. IEEE Trans. Instrum. Meas. 2022, 71, 7501012. [Google Scholar] [CrossRef]
- Zhu, M.; Yang, B.; Hu, W.; Feng, G.; Kar, N.C. Vold–Kalman Filtering Order Tracking Based Rotor Demagnetization Detection in PMSM. IEEE Trans. Ind. Appl. 2019, 55, 5768–5778. [Google Scholar] [CrossRef]
- Attestog, S.; Senanayaka, J.S.L.; Van Khang, H.; Robbersmyr, K.G. Mixed Fault Classification of Sensorless PMSM Drive in Dynamic Operations Based on External Stray Flux Sensors. Sensors 2022, 22, 1216. [Google Scholar] [CrossRef] [PubMed]
- Skowron, M.; Krzysztofiak, M.; Orlowska-Kowalska, T. Effectiveness of Neural Fault Detectors of Permanent Magnet Synchronous Motor Trained With Symptoms From Field-Circuit Modeling. IEEE Access 2022, 10, 104598–104611. [Google Scholar] [CrossRef]
- Lee, H.; Jeong, H.; Kim, S.; Kim, S.W. Severity Estimation for Interturn Short-Circuit and Demagnetization Faults through Self-Attention Network. Sensors 2022, 22, 4639. [Google Scholar] [CrossRef] [PubMed]
- Kao, I.; Wang, W.; Lai, Y.; Perng, J. Analysis of permanent magnet synchronous motor fault diagnosis based on learning. IEEE Trans. Instrum. Meas. 2019, 68, 310–324. [Google Scholar] [CrossRef]
- Pietrzak, P.; Wolkiewicz, M. On-line Detection and Classification of PMSM Stator Winding Faults Based on Stator Current Symmetrical Components Analysis and the KNN Algorithm. Electronics 2021, 10, 1786. [Google Scholar] [CrossRef]
- Pietrzak, P.; Wolkiewicz, M. Machine Learning-Based Stator Current Data-Driven PMSM Stator Winding Fault Diagnosis. Sensors 2022, 22, 9668. [Google Scholar] [CrossRef]
- Goyal, D.; Choudhary, A.; Pabla, B.; Dhami, S.S. Support vector machines based non-contact fault diagnosis system for bearings. J. Intell. Manuf. 2020, 31, 1275–1289. [Google Scholar] [CrossRef]
- Faiz, J.; Mazaheri-Tehrani, E. Demagnetization modeling and fault diagnosing techniques in permanent magnet machines under stationary and nonstationary conditions: An overview. IEEE Trans. Ind. Appl. 2017, 53, 2772–2785. [Google Scholar] [CrossRef]
- Zhang, Z.; Ma, H.; Yang, C.; Yuan, D. Study on permanent magnet synchronous demagnetization fault performance. Sens. Transducers 2014, 173, 82–89. [Google Scholar]
- Moosavi, S.S.; Djerdir, A.; Amirat, Y.A.; Khaburi, D.A. Demagnetization fault investigation in permanent magnet synchronous motor. In Proceedings of the 5th Annual International Power Electronics, Drive Systems and Technologies Conference (PEDSTC 2014), Tehran, Iran, 5–6 February 2014; p. 617623. [Google Scholar]
- Park, Y.; Fernandez, D.; Lee, S.B.; Hyun, D.; Jeong, M.; Kommuri, S.K.; Cho, C.; Diaz Reigosa, D.; Briz, F. Online Detection of Rotor Eccentricity and Demagnetization Faults in PMSMs Based on Hall-Effect Field Sensor Measurements. IEEE Trans. Ind. Appl. 2019, 55, 2499–2509. [Google Scholar] [CrossRef]
- Riba Ruiz, J.R.; Rosero, J.A.; Garcia Espinosa, A.; Romeral, L. Detection of demagnetization faults in permanent-Magnet synchronous motors under nonstationary conditions. IEEE Trans. Magn. 2009, 45, 2961–2969. [Google Scholar] [CrossRef]
- Kim, K.C.; Lim, S.B.; Koo, D.-H.; Lee, J. The shape design of permanent magnet for permanent magnet synchronous motor considering partial demagnetization. IEEE Trans. Magnet. 2006, 42, 3485–3487. [Google Scholar] [CrossRef]
- Wang, C.; Prieto, M.D.; Romeral, L.; Chen, Z.; Blaabjerg, F.; Liu, X. Detection of partial demagnetization fault in PMSMs operating under nonstationary conditions. IEEE Trans. Magn. 2016, 52, 8105804. [Google Scholar] [CrossRef]
- Zanardelli, W.G.; Strangas, E.G.; Aviyente, S. Identification of Intermittent Electrical and Mechanical Faults in Permanent-Magnet AC Drives Based on Time–Frequency Analysis. IEEE Trans. Ind. Appl. 2007, 43, 971–980. [Google Scholar] [CrossRef]
- Zamudio-Ramirez, I.; Osornio-Ríos, R.A.; Diaz-Saldaña, G.; Trejo-Hernández, M.; Antonino-Daviu, J.A. STFT-based induction motor stray flux analysis for the monitoring of cutting tool wearing in CNC machines. In Proceedings of IECON 2020 the 46th Annual Conference of the IEEE Industrial Electronics Society, Singapore, 18–21 October 2020. [Google Scholar]
- Satpathi, K.; Yeap, Y.M.; Ukil, A.; Geddada, N. Short-Time Fourier Transform Based Transient Analysis of VSC Interfaced Point-to-Point DC System. IEEE Trans. Ind. Electron. 2018, 65, 4080–4091. [Google Scholar] [CrossRef]
- Okfalisa; Gazalba, I.; Mustakim; Reza, N.G.I. Comparative analysis of k-nearest neighbor and modified k-nearest neighbor algorithm for data classification. In Proceedings of the 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE), Yogyakarta, Indonesia, 1–3 November 2017; pp. 294–298. [Google Scholar]
- Wang, X.; Jiang, Z.; Yu, D. An Improved KNN Algorithm Based on Kernel Methods and Attribute Reduction. In Proceedings of the 5th International Conference on Instrumentation and Measurement, Computer, Communication and Control (IMCCC), Qinhuangdao, China, 18–20 September 2015; pp. 567–570. [Google Scholar]
- Hu, L.; Huang, M.W.; Ken, S.W.; Tsai, C.F. The distance function effect on k-nearest neighbor classification for medical datasets. SpringerPlus 2016, 5, 1304. [Google Scholar] [CrossRef] [PubMed]
- Shifat, T.A.; Hur, J. An Improved Stator Winding Short-circuit Fault Diagnosis using AdaBoost Algorithm. In Proceedings of the International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Fukuoka, Japan, 19–21 February 2020; pp. 382–387. [Google Scholar]
- Ma, C.; Du, X.; Cao, L. Improved KNN Algorithm for Fine-Grained Classification of Encrypted Network Flow. Electronics 2020, 9, 324. [Google Scholar] [CrossRef]
- Skowron, M.; Wolkiewicz, M.; Orlowska-Kowalska, T.; Kowalski, C.T. Effectiveness of Selected Neural Network Structures Based on Axial Flux Analysis in Stator and Rotor Winding Incipient Fault Detection of Inverter-fed Induction Motors. Energies 2019, 12, 2392. [Google Scholar] [CrossRef] [Green Version]
Failure Frequency fPMDamage | TL [p.u] | ADIFFAvg [dB] | σ [dB] | |||||
---|---|---|---|---|---|---|---|---|
0 | 0.2TN | 0.4TN | 0.6TN | 0.8TN | TN | |||
ADIFF [dB] | ADIFF [dB] | ADIFF [dB] | ADIFF [dB] | ADIFF [dB] | ADIFF [dB] | |||
fs – 2fr | 11.30 | 10.45 | 10.72 | 10.05 | 9.69 | 9.66 | 10.31 | 0.64 |
fs + 2fr | 1.90 | 2.60 | 1.50 | 1.30 | 2.30 | 2.70 | 2.05 | 0.58 |
fs + 4fr | 15.10 | 18.30 | 17.80 | 16.08 | 16.50 | 16.40 | 16.70 | 1.17 |
fs + 6fr | 23.20 | 23.55 | 21.50 | 19.77 | 14.10 | 18.90 | 20.17 | 3.49 |
fs + 10fr | 19.23 | 19.80 | 18.80 | 18.30 | 18.70 | 18.00 | 18.81 | 0.65 |
fs + 12fr | 14.87 | 17.63 | 15.77 | 15.30 | 9.96 | 9.70 | 13.87 | 3.27 |
fs + 18fr | 17.35 | 14.40 | 12.40 | 4.05 | 2.83 | 2.58 | 8.94 | 6.55 |
fs + 22fr | 10.20 | 9.52 | 11.36 | 14.20 | 15.96 | 14.00 | 12.54 | 2.55 |
Failure frequency fPMDamage | fs [Hz] | ADIFFAvg [dB] | σ [dB] | ||||
---|---|---|---|---|---|---|---|
60 | 70 | 80 | 90 | 100 | |||
ADIFF [dB] | ADIFF [dB] | ADIFF [dB] | ADIFF [dB] | ADIFF [dB] | |||
fs − 2fr | 4.57 | 7.53 | 8.34 | 8.88 | 9.66 | 7.80 | 1.96 |
fs + 2fr | 1.69 | 3.51 | 2.06 | 5.70 | 2.70 | 3.13 | 1.59 |
fs + 4fr | 18.00 | 15.13 | 18.69 | 14.57 | 16.40 | 16.56 | 1.78 |
fs + 6fr | 14.40 | 6.47 | 19.28 | 17.00 | 18.90 | 15.21 | 5.25 |
fs + 10fr | 17.90 | 18.60 | 18.71 | 19.20 | 18.00 | 18.48 | 0.54 |
fs + 12fr | 14.08 | 17.81 | 16.04 | 12.64 | 9.70 | 14.05 | 3.12 |
fs + 18fr | 3.18 | 0.38 | 0.80 | 1.90 | 2.58 | 1.77 | 1.18 |
fs + 22fr | 12.05 | 11.92 | 8.11 | 12.07 | 14.00 | 11.63 | 2.15 |
K [-] | Distance Metric | |||
---|---|---|---|---|
Euclidean | Minkowski | Mahalanobis | Correlation | |
3 | 100.0% | 100.0% | 100.0% | 83.3% |
4 | 100.0% | 100.0% | 100.0% | 83.6% |
5 | 100.0% | 100.0% | 100.0% | 83.7% |
10 | 100.0% | 100.0% | 100.0% | 83.7% |
15 | 100.0% | 100.0% | 100.0% | 82.4% |
20 | 100.0% | 100.0% | 99.9% | 81.3% |
25 | 100.0% | 100.0% | 99.9% | 79.4% |
30 | 100.0% | 100.0% | 99.9% | 79.2% |
35 | 100.0% | 100.0% | 99.9% | 79.4% |
40 | 100.0% | 100.0% | 99.6% | 79.8% |
45 | 100.0% | 100.0% | 99.6% | 79.8% |
50 | 100.0% | 100.0% | 99.6% | 80.4% |
75 | 100.0% | 100.0% | 99.6% | 78.3% |
100 | 100.0% | 100.0% | 99.5% | 76.6% |
MLP Structure | Accuracy | |
---|---|---|
(4-5-1) | 100.0% | |
(4-7-1) | 100.0% | |
(4-9-1) | 100.0% | |
(4-12-1) | 100.0% | |
(4-15-1) | 100.0% |
ML-Based PM Fault Detector | ||
---|---|---|
KNN | MLP | |
Accuracy [%] | 100.0 | 100.0 |
Offline test DEFF [%] | 100.0 | 100.0 |
Online tests DEFF [%] | 100.0 | 100.0 |
Response time [s] | 0.0020 | 0.0071 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pietrzak, P.; Wolkiewicz, M. Demagnetization Fault Diagnosis of Permanent Magnet Synchronous Motors Based on Stator Current Signal Processing and Machine Learning Algorithms. Sensors 2023, 23, 1757. https://doi.org/10.3390/s23041757
Pietrzak P, Wolkiewicz M. Demagnetization Fault Diagnosis of Permanent Magnet Synchronous Motors Based on Stator Current Signal Processing and Machine Learning Algorithms. Sensors. 2023; 23(4):1757. https://doi.org/10.3390/s23041757
Chicago/Turabian StylePietrzak, Przemyslaw, and Marcin Wolkiewicz. 2023. "Demagnetization Fault Diagnosis of Permanent Magnet Synchronous Motors Based on Stator Current Signal Processing and Machine Learning Algorithms" Sensors 23, no. 4: 1757. https://doi.org/10.3390/s23041757
APA StylePietrzak, P., & Wolkiewicz, M. (2023). Demagnetization Fault Diagnosis of Permanent Magnet Synchronous Motors Based on Stator Current Signal Processing and Machine Learning Algorithms. Sensors, 23(4), 1757. https://doi.org/10.3390/s23041757