Reservoir Lithology Identification Based on Multicore Ensemble Learning and Multiclassification Algorithm Based on Noise Detection Function
Abstract
:1. Introduction
2. MultiKernel Ensemble Learning Multiclassification Algorithm for Noise Detection Function
2.1. MKBoost Algorithm
2.2. SAMME Algorithm
2.3. Noise Detection Function
3. Reservoir Lithology Identification Simulation
3.1. Application Principle of Algorithm
3.2. Data Denoising
3.3. Normalization Processing
3.4. Kernel Function Selection
3.5. Experimental Results and Analysis of Reservoir Lithology Identification
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lisha, H.; Jianping, Y.; Mingjie, L.; Zhuang, Z.; Ye, S.; Fan, Z.; Guanghai, Z.; Min, W.; Jun, W.; Bin, G. Diagenetic facies logging identification and application of deep tight sandstone gas reservoir—Taking the third member of Xujiahe Formation in Dayi of Western Sichuan depression as an example. J. China Univ. Min. Technol. 2022, 51, 107–123. [Google Scholar]
- Guoli, L.; Wei, W.; Wenbo, D.; Ligang, Z.; Mingyang, M.; Haoyuan, W.; Yanhong, Z. Calculation of core pockmarking coefficient based on capillary pressure curve analysis—Taking Cretaceous system in ya’erxia oilfield as an example. J. Henan Univ. Technol. Nat. Sci. Ed. 2020, 39, 38–44. [Google Scholar]
- Nen, M.; Alpayd Ethem, N. Multiple Kernel Learning Algorithms. J. Mach. Learn. Res. 2011, 12, 2211–2268. [Google Scholar]
- Guo, L.; Zhang, X.; Liu, Z.; Xue, X.; Wang, Q.; Zheng, S. Robust subspace clustering based on automatic weighted multiple kernel learning. Inf. Sci. 2021, 573, 453–474. [Google Scholar] [CrossRef]
- Dereli, O.; Ouz, C.; Gnen, M. Path2Surv: Pathway/gene set-based survival analysis using multiple kernel learning. Bioinformatics 2019, 35, 5137–5145. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, H.; Zhang, C.; Gao, Y. Cross-Domain Metric and Multiple Kernel Learning Based on Information Theory. Neural Comput. 2018, 30, 820–855. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Zhang, L.; Hu, W. Bridging deep and multiple kernel learning: A review. Inf. Fusion 2021, 67, 3–13. [Google Scholar] [CrossRef]
- Fan, Q.; Wang, Z.; Gao, D. Locality Density-Based Fuzzy Multiple Empirical Kernel Learning. Neural Process. Lett. 2018, 49, 1485–1509. [Google Scholar] [CrossRef]
- Jie, F.; De’an, W.; Lei, W. Multi core integration algorithm based on noise probability. Microelectron. Comput. 2017, 34, 63–66. [Google Scholar]
- Fossaceca, J.M.; Mazzuchi, T.A.; Sarkani, S. MARK-ELM: Application of a novel Multiple Kernel Learning framework for improving the robustness of Network Intrusion Detection. Expert Syst. Appl. 2015, 42, 4062–4080. [Google Scholar] [CrossRef]
- Qi, C.; Wang, Y.; Tian, W.; Wang, Q. Multiple kernel boosting framework based on information measure for classification. Chaos Solitons Fractals 2015, 89, 175–186. [Google Scholar]
- Xia, H.; Hoi, S.C.H. MKBoost: A Framework of Multiple Kernel Boosting. IEEE Trans. Knowl. Data Eng. 2013, 25, 1574–1586. [Google Scholar] [CrossRef]
- Zhu, J.; Arbor, A.; Hastie, T. Multi-class AdaBoost. Stat. Interface 2006, 2, 349–360. [Google Scholar]
- Ziyang, H.; Lingke, Z. Fault classification based on K-means Bayes and AdaBoost SVM. Comput. Syst. Appl. 2022, 31, 239–246. [Google Scholar]
- Cao, J.; Kwong, S.; Wang, R. A noise-detection based AdaBoost algorithm for mislabeled data. Pattern Recognit. 2012, 45, 4451–4465. [Google Scholar] [CrossRef]
- Jie, W.; Yu, J.; Zhigang, C.; Shaocheng, L.; Wei, C.; Jiang, M.; Miaoyu, Z. Influence of mud invasion on response of electromagnetic wave resistivity logging while drilling. J. Xi’an Univ. Pet. Nat. Sci. Ed. 2020, 35, 49–54. [Google Scholar]
- Li, Z.; Xiao, H.; Huawei, Y.; Wenbao, J.; Xuesen, G. Study on mud influence and correction of d-D neutron porosity logging. Nucl. Technol. 2022, 45, 41–48. [Google Scholar] [CrossRef]
- Zhaoyang, C.; Min, L.; Jianglin, G.; Yixing, Z.; Gangyi, Z.; Yufeng, S. Study on the influence of groundwater level and formation permeability coefficient on anti floating of foundation pit. J. East China Jiaotong Univ. 2022, 39, 59–66. [Google Scholar]
- Shunchuan, W.; Yanchao, W.; Huajin, Z. Research on prediction method of rock uniaxial compressive strength based on stacking integrated algorithm. Min. Res. Dev. 2022, 42, 105–111. [Google Scholar]
Type | Medium Conglomerate | Fine Conglomerate | Coarse Sandstone | Medium Sandstone | Pebbly Fine Sandstone | Sandstone Sandstone | Mudstone | Silty Mudstone |
---|---|---|---|---|---|---|---|---|
Medium conglomerate | 191 | - | - | - | 17 | 3 | - | 4 |
Fine conglomerate | - | 245 | 5 | - | - | - | 6 | - |
Coarse sandstone | 11 | - | 179 | - | - | 2 | - | - |
Medium sandstone | - | 16 | - | 123 | - | - | - | 10 |
Pebbly fine sandstone | - | - | - | - | 130 | - | 17 | - |
Pebbly sandstone | - | - | 13 | 9 | - | 75 | - | 3 |
mudstone | 5 | - | - | - | - | - | 274 | - |
Silty mudstone | - | - | - | - | 6 | - | - | 297 |
Type | Medium Conglomerate | Fine Conglomerate | Coarse Sandstone | Medium Sandstone | Pebbly Fine Sandstone | Sandstone Sandstone | Mudstone | Silty Mudstone |
---|---|---|---|---|---|---|---|---|
Medium conglomerate | 191 | - | - | - | 17 | 3 | - | 4 |
Fine conglomerate | - | 245 | 5 | - | - | - | 6 | - |
Coarse sandstone | 11 | - | 179 | - | - | 2 | - | - |
Medium sandstone | - | 16 | - | 123 | - | - | - | 10 |
Pebbly fine sandstone | - | - | - | - | 130 | - | 17 | - |
Pebbly sandstone | - | - | 13 | 9 | - | 75 | - | 3 |
mudstone | 5 | - | - | - | - | - | 274 | - |
Silty mudstone | - | - | - | - | 6 | - | - | 297 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Zhang, C. Reservoir Lithology Identification Based on Multicore Ensemble Learning and Multiclassification Algorithm Based on Noise Detection Function. Sensors 2023, 23, 1781. https://doi.org/10.3390/s23041781
Li M, Zhang C. Reservoir Lithology Identification Based on Multicore Ensemble Learning and Multiclassification Algorithm Based on Noise Detection Function. Sensors. 2023; 23(4):1781. https://doi.org/10.3390/s23041781
Chicago/Turabian StyleLi, Menglei, and Chaomo Zhang. 2023. "Reservoir Lithology Identification Based on Multicore Ensemble Learning and Multiclassification Algorithm Based on Noise Detection Function" Sensors 23, no. 4: 1781. https://doi.org/10.3390/s23041781
APA StyleLi, M., & Zhang, C. (2023). Reservoir Lithology Identification Based on Multicore Ensemble Learning and Multiclassification Algorithm Based on Noise Detection Function. Sensors, 23(4), 1781. https://doi.org/10.3390/s23041781