A Review of Subsurface Electrical Conductivity Anomalies in Magnetotelluric Imaging
Abstract
:1. Introduction
2. Magnetotelluric Method
3. Conduction Mechanisms
3.1. Electronic and Ionic Conduction
3.2. Semi-Conduction
3.2.1. Small Polaron Conduction
3.2.2. Proton Conduction
4. Mixing Models for Electrical Conductivity
5. Causes of High Conductivity
5.1. Saline Fluids
5.2. Partial Melting
5.3. Grain-Boundary Graphite Films
5.4. Sulfides
5.5. Hydrogen in Nominally Anhydrous Minerals
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Simpson, F.; Bahr, K. Practical Magnetotellurics; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Chave, A.D.; Jones, A.G. The Magnetotelluric Method: Theory and Practice; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Tikhonov, A. On determining electrical characteristics of the deep layers of the Earth’s crust. Dokl. Acad. Nauk SSSR 1950, 73, 295–297. [Google Scholar]
- Cagniard, L. Basic theory of the magneto-telluric method of geophysical prospecting. Geophysics 1953, 18, 605–635. [Google Scholar] [CrossRef]
- Evans, R. Conductivity of Earth materials. In The Magnetotelluric Method, Theory and Practice; Cambridge University Press: Cambridge, UK, 2012; pp. 50–95. [Google Scholar]
- Egbert, G.D.; Booker, J.R. Robust estimation of geomagnetic transfer functions. Geophys. J. Int. 1986, 87, 173–194. [Google Scholar] [CrossRef]
- Jones, A.G.; Chave, A.D.; Egbert, G.; Auld, D.; Bahr, K. A comparison of techniques for magnetotelluric response function estimation. J. Geophys. Res. Solid Earth 1989, 94, 14201–14213. [Google Scholar] [CrossRef]
- Jones, A.G. Static shift of magnetotelluric data and its removal in a sedimentary basin environment. Geophysics 1988, 53, 967–978. [Google Scholar] [CrossRef]
- Jiracek, G.R. Near-surface and topographic distortions in electromagnetic induction. Surv. Geophys. 1990, 11, 163–203. [Google Scholar] [CrossRef]
- Meng, L.; Huang, Q.; Zhao, L. Removing Galvanic Distortion in 3D Magnetotelluric Data Based on Constrained Inversion. Pure Appl. Geophys. 2021, 178, 2149–2169. [Google Scholar] [CrossRef]
- Siripunvaraporn, W. Three-dimensional magnetotelluric inversion: An introductory guide for developers and users. Surv. Geophys. 2012, 33, 5–27. [Google Scholar] [CrossRef]
- Kelbert, A.; Meqbel, N.; Egbert, G.D.; Tandon, K. ModEM: A modular system for inversion of electromagnetic geophysical data. Comput. Geosci. 2014, 66, 40–53. [Google Scholar] [CrossRef]
- Key, K. MARE2DEM: A 2-D inversion code for controlled-source electromagnetic and magnetotelluric data. Geophys. J. Int. 2016, 207, 571–588. [Google Scholar] [CrossRef]
- Kong, W.; Tan, H.; Lin, C.; Unsworth, M.; Lee, B.; Peng, M.; Wang, M.; Tong, T. Three-Dimensional Inversion of Magnetotelluric Data for a Resistivity Model With Arbitrary Anisotropy. J. Geophys. Res. Solid Earth 2021, 126, e2020JB020562. [Google Scholar] [CrossRef]
- Pommier, A. Interpretation of magnetotelluric results using laboratory measurements. Surv. Geophys. 2014, 35, 41–84. [Google Scholar] [CrossRef]
- Dai, L.; Hu, H.; Jiang, J.; Sun, W.; Li, H.; Wang, M.; Vallianatos, F.; Saltas, V. An Overview of the Experimental Studies on the Electrical Conductivity of Major Minerals in the Upper Mantle and Transition Zone. Materials 2020, 13, 408. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Dai, L.; Sun, W.; Zhuang, Y.; Liu, K.; Yang, L.; Pu, C.; Hong, M.; Wang, M.; Hu, Z.; et al. Some remarks on the electrical conductivity of hydrous silicate minerals in the Earth crust, upper mantle and subduction zone at high temperatures and high pressures. Minerals 2022, 12, 161. [Google Scholar] [CrossRef]
- Samrock, F.; Grayver, A.V.; Eysteinsson, H.; Saar, M.O. Magnetotelluric image of transcrustal magmatic system beneath the Tulu Moye geothermal prospect in the Ethiopian Rift. Geophys. Res. Lett. 2018, 45, 12–847. [Google Scholar] [CrossRef]
- Wu, C.; Hu, X.; Wang, G.; Xi, Y.; Lin, W.; Liu, S.; Yang, B.; Cai, J. Magnetotelluric imaging of the Zhangzhou Basin geothermal zone, Southeastern China. Energies 2018, 11, 2170. [Google Scholar] [CrossRef]
- Han, Q.; Kelbert, A.; Hu, X. An electrical conductivity model of a coastal geothermal field in southeastern China based on 3D magnetotelluric imaging. Geophysics 2021, 86, B265–B276. [Google Scholar] [CrossRef]
- Heinson, G.; Didana, Y.; Soeffky, P.; Thiel, S.; Wise, T. The crustal geophysical signature of a world-class magmatic mineral system. Sci. Rep. 2018, 8, 1–6. [Google Scholar] [CrossRef]
- Yang, B.; Hu, X.; Lin, W.; Liu, S.; Fang, H. Exploration of permafrost with audiomagnetotelluric data for gas hydrates in the Juhugeng Mine of the Qilian Mountains, China. Geophysics 2019, 84, B247–B258. [Google Scholar] [CrossRef]
- Deng, J.; Yu, H.; Chen, H.; Du, Z.; Yang, H.; Li, H.; Xie, S.; Chen, X.; Guo, F. Ore-controlling structures of the Xiangshan Volcanic Basin, SE China: Revealed from Three-Dimensional Inversion of Magnetotelluric Data. Ore Geol. Rev. 2020, 127, 103807. [Google Scholar] [CrossRef]
- Bedrosian, P.A.; Peacock, J.R.; Bowles-Martinez, E.; Schultz, A.; Hill, G.J. Crustal inheritance and a top-down control on arc magmatism at Mount St Helens. Nat. Geosci. 2018, 11, 865–870. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, H.; Zhang, S.; Xin, H.; Li, Z.; Tian, W.; Bao, F.; Cheng, Z.; Jia, X.; Fu, L. Magma recharging beneath the Weishan volcano of the intraplate Wudalianchi volcanic field, northeast China, implied from 3-D magnetotelluric imaging. Geology 2020, 48, 913–918. [Google Scholar] [CrossRef]
- Yang, B.; Lin, W.; Hu, X.; Fang, H.; Qiu, G.; Wang, G. The magma system beneath Changbaishan-Tianchi Volcano, China/North Korea: Constraints from three-dimensional magnetotelluric imaging. J. Volcanol. Geotherm. Res. 2021, 419, 107385. [Google Scholar] [CrossRef]
- Zhao, G.; Unsworth, M.J.; Zhan, Y.; Wang, L.; Chen, X.; Jones, A.G.; Tang, J.; Xiao, Q.; Wang, J.; Cai, J.; et al. Crustal structure and rheology of the Longmenshan and Wenchuan Mw 7.9 earthquake epicentral area from magnetotelluric data. Geology 2012, 40, 1139–1142. [Google Scholar] [CrossRef]
- Ye, T.; Chen, X.; Huang, Q.; Zhao, L.; Zhang, Y.; Uyeshima, M. Bifurcated Crustal Channel Flow and Seismogenic Structures of Intraplate Earthquakes in Western Yunnan, China as Revealed by Three-Dimensional Magnetotelluric Imaging. J. Geophys. Res. Solid Earth 2020, 125, e2019JB018991. [Google Scholar] [CrossRef]
- Zhao, G.; Zhang, X.; Cai, J.; Zhan, Y.; Ma, Q.; Tang, J.; Du, X.; Han, B.; Wang, L.; Chen, X.; et al. A review of seismo-electromagnetic research in China. Sci. China Earth Sci. 2022, 65, 1229–1246. [Google Scholar] [CrossRef]
- Wei, W.; Unsworth, M.; Jones, A.; Booker, J.; Tan, H.; Nelson, D.; Chen, L.; Li, S.; Solon, K.; Bedrosian, P.; et al. Detection of widespread fluids in the Tibetan crust by magnetotelluric studies. Science 2001, 292, 716–719. [Google Scholar] [CrossRef]
- Unsworth, M.; Jones, A.G.; Wei, W.; Marquis, G.; Gokarn, S.; Spratt, J. Crustal rheology of the Himalaya and Southern Tibet inferred from magnetotelluric data. Nature 2005, 438, 78–81. [Google Scholar] [CrossRef]
- Jones, A.G. Proton conduction and hydrogen diffusion in olivine: An attempt to reconcile laboratory and field observations and implications for the role of grain boundary diffusion in enhancing conductivity. Phys. Chem. Miner. 2016, 43, 237–265. [Google Scholar] [CrossRef]
- Evans, R.; Elsenbeck, J.; Zhu, J.; Abdelsalam, M.; Sarafian, E.; Mutamina, D.; Chilongola, F.; Atekwana, E.; Jones, A. Structure of the Lithosphere Beneath the Barotse Basin, Western Zambia, From Magnetotelluric Data. Tectonics 2019, 38, 666–686. [Google Scholar] [CrossRef]
- Peacock, J.; Siler, D. Bottom-Up and Top-Down Control on Hydrothermal Resources in the Great Basin: An Example From Gabbs Valley, Nevada. Geophys. Res. Lett. 2021, 48, e2021GL095009. [Google Scholar] [CrossRef]
- Key, K.; Constable, S.; Liu, L.; Pommier, A. Electrical image of passive mantle upwelling beneath the northern East Pacific Rise. Nature 2013, 495, 499–502. [Google Scholar] [CrossRef]
- Johansen, S.E.; Panzner, M.; Mittet, R.; Amundsen, H.E.; Lim, A.; Vik, E.; Landrø, M.; Arntsen, B. Deep electrical imaging of the ultraslow-spreading Mohns Ridge. Nature 2019, 567, 379–383. [Google Scholar] [CrossRef] [PubMed]
- Chesley, C.; Naif, S.; Key, K.; Bassett, D. Fluid-rich subducting topography generates anomalous forearc porosity. Nature 2021, 595, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Grimm, R.; Nguyen, T.; Persyn, S.; Phillips, M.; Stillman, D.; Taylor, T.; Delory, G.; Turin, P.; Espley, J.; Gruesbeck, J.; et al. A magnetotelluric instrument for probing the interiors of Europa and other worlds. Adv. Space Res. 2021, 68, 2022–2037. [Google Scholar] [CrossRef]
- Yoshino, T.; Noritake, F. Unstable graphite films on grain boundaries in crustal rocks. Earth Planet. Sci. Lett. 2011, 306, 186–192. [Google Scholar] [CrossRef]
- Selway, K. On the causes of electrical conductivity anomalies in tectonically stable lithosphere. Surv. Geophys. 2014, 35, 219–257. [Google Scholar] [CrossRef]
- Jones, A.G. Electrical conductivity of the continental lower crust. In Continental Lower Crust; Elsevier: Amsterdam, The Netherlands, 1992; pp. 81–143. [Google Scholar]
- Arrhenius, S. On the reaction rate of the inversion of non-refined sugar upon souring. Z Phys. Chem. 1889, 4, 226–248. [Google Scholar] [CrossRef]
- Yoshino, T. Laboratory electrical conductivity measurement of mantle minerals. Surv. Geophys. 2010, 31, 163–206. [Google Scholar] [CrossRef]
- Constable, S. SEO3: A new model of olivine electrical conductivity. Geophys. J. Int. 2006, 166, 435–437. [Google Scholar] [CrossRef]
- Yoshino, T.; Matsuzaki, T.; Shatskiy, A.; Katsura, T. The effect of water on the electrical conductivity of olivine aggregates and its implications for the electrical structure of the upper mantle. Earth Planet. Sci. Lett. 2009, 288, 291–300. [Google Scholar] [CrossRef]
- Yoshino, T.; Shimojuku, A.; Shan, S.; Guo, X.; Yamazaki, D.; Ito, E.; Higo, Y.; Funakoshi, K.i. Effect of temperature, pressure and iron content on the electrical conductivity of olivine and its high-pressure polymorphs. J. Geophys. Res. Solid Earth 2012, 117, B08205. [Google Scholar] [CrossRef]
- Griffin, W.; O’reilly, S.Y.; Afonso, J.C.; Begg, G. The composition and evolution of lithospheric mantle: A re-evaluation and its tectonic implications. J. Petrol. 2009, 50, 1185–1204. [Google Scholar] [CrossRef]
- Özaydın, S.; Selway, K. MATE: An Analysis Tool for the Interpretation of Magnetotelluric Models of the Mantle. Geochem. Geophys. Geosystems 2020, 21, e2020GC009126. [Google Scholar] [CrossRef]
- Karato, S.i.; Wang, D. Electrical conductivity of minerals and rocks. Phys. Chem. Deep. Earth 2013, 5, 145–182. [Google Scholar]
- Murphy, B.S.; Egbert, G.D. Synthesizing seemingly contradictory seismic and magnetotelluric observations in the southeastern United States to image physical properties of the lithosphere. Geochem. Geophys. Geosystems 2019, 20, 2606–2625. [Google Scholar] [CrossRef]
- Ledo, J.; Jones, A.G. Upper mantle temperature determined from combining mineral composition, electrical conductivity laboratory studies and magnetotelluric field observations: Application to the intermontane belt, Northern Canadian Cordillera. Earth Planet. Sci. Lett. 2005, 236, 258–268. [Google Scholar] [CrossRef]
- Karato, S.i. The role of hydrogen in the electrical conductivity of the upper mantle. Nature 1990, 347, 272–273. [Google Scholar] [CrossRef]
- Huang, X.; Xu, Y.; Karato, S.i. Water content in the transition zone from electrical conductivity of wadsleyite and ringwoodite. Nature 2005, 434, 746–749. [Google Scholar] [CrossRef]
- Wang, D.; Mookherjee, M.; Xu, Y.; Karato, S.i. The effect of water on the electrical conductivity of olivine. Nature 2006, 443, 977–980. [Google Scholar] [CrossRef]
- Yoshino, T.; Manthilake, G.; Matsuzaki, T.; Katsura, T. Dry mantle transition zone inferred from the conductivity of wadsleyite and ringwoodite. Nature 2008, 451, 326–329. [Google Scholar] [CrossRef] [PubMed]
- Poe, B.T.; Romano, C.; Nestola, F.; Smyth, J.R. Electrical conductivity anisotropy of dry and hydrous olivine at 8 GPa. Phys. Earth Planet. Inter. 2010, 181, 103–111. [Google Scholar] [CrossRef] [Green Version]
- Karato, S.i. Some remarks on hydrogen-assisted electrical conductivity in olivine and other minerals. Prog. Earth Planet. Sci. 2019, 6, 55. [Google Scholar] [CrossRef]
- Gardès, E.; Gaillard, F.; Tarits, P. Toward a unified hydrous olivine electrical conductivity law. Geochem. Geophys. Geosystems 2014, 15, 4984–5000. [Google Scholar] [CrossRef]
- Jones, A.G.; Fullea, J.; Evans, R.L.; Muller, M.R. Water in cratonic lithosphere: Calibrating laboratory-determined models of electrical conductivity of mantle minerals using geophysical and petrological observations. Geochem. Geophys. Geosystems 2012, 13, Q06010. [Google Scholar] [CrossRef]
- Dai, L.; Karato, S. Electrical conductivity of wadsleyite under high pressures and temperatures. Earth Planet. Sci. Lett. 2009, 287, 277–283. [Google Scholar] [CrossRef]
- Dai, L.; Karato, S.i. High and highly anisotropic electrical conductivity of the asthenosphere due to hydrogen diffusion in olivine. Earth Planet. Sci. Lett. 2014, 408, 79–86. [Google Scholar] [CrossRef]
- Yang, X.; Keppler, H.; McCammon, C.; Ni, H.; Xia, Q.; Fan, Q. Effect of water on the electrical conductivity of lower crustal clinopyroxene. J. Geophys. Res. Solid Earth 2011, 116, B04208. [Google Scholar] [CrossRef]
- Yang, X. Orientation-related electrical conductivity of hydrous olivine, clinopyroxene and plagioclase and implications for the structure of the lower continental crust and uppermost mantle. Earth Planet. Sci. Lett. 2012, 317, 241–250. [Google Scholar] [CrossRef]
- Yoshino, T.; Matsuzaki, T.; Yamashita, S.; Katsura, T. Hydrous olivine unable to account for conductivity anomaly at the top of the asthenosphere. Nature 2006, 443, 973–976. [Google Scholar] [CrossRef]
- Yoshino, T.; Katsura, T. Re-evaluation of electrical conductivity of anhydrous and hydrous wadsleyite. Earth Planet. Sci. Lett. 2012, 337–338, 56–67. [Google Scholar] [CrossRef]
- Karato, S.I. Influence of hydrogen-related defects on the electrical conductivity and plastic deformation of mantle minerals: A critical review. Earth’s Deep Water Cycle 2006, 168, 113. [Google Scholar]
- Karato, S.i. Water distribution across the mantle transition zone and its implications for global material circulation. Earth Planet. Sci. Lett. 2011, 301, 413–423. [Google Scholar] [CrossRef]
- Demouchy, S.; Jacobsen, S.; Gaillard, F.; Stern, C. Rapid magma ascent recorded by water diffusion profiles in mantle olivine. Geology 2006, 34, 429–432. [Google Scholar] [CrossRef]
- Bedrosian, P.A. Making it and breaking it in the Midwest: Continental assembly and rifting from modeling of EarthScope magnetotelluric data. Precambrian Res. 2016, 278, 337–361. [Google Scholar] [CrossRef]
- Comeau, M.J.; Käufl, J.S.; Becken, M.; Kuvshinov, A.; Grayver, A.V.; Kamm, J.; Demberel, S.; Sukhbaatar, U.; Batmagnai, E. Evidence for fluid and melt generation in response to an asthenospheric upwelling beneath the Hangai Dome, Mongolia. Earth Planet. Sci. Lett. 2018, 487, 201–209. [Google Scholar] [CrossRef]
- Förster, M.; Selway, K. Melting of subducted sediments reconciles geophysical images of subduction zones. Nat. Commun. 2021, 12, 1320. [Google Scholar] [CrossRef]
- Demouchy, S. Diffusion of hydrogen in olivine grain boundaries and implications for the survival of water-rich zones in the Earth’s mantle. Earth Planet. Sci. Lett. 2010, 295, 305–313. [Google Scholar] [CrossRef]
- Yang, B.; Egbert, G.D.; Zhang, H.; Meqbel, N.; Hu, X. Electrical resistivity imaging of continental United States from three-dimensional inversion of EarthScope USArray magnetotelluric data. Earth Planet. Sci. Lett. 2021, 576, 117244. [Google Scholar] [CrossRef]
- Archie, G.E. The electrical resistivity log as an aid in determining some reservoir characteristics. Trans. AIME 1942, 146, 54–62. [Google Scholar] [CrossRef]
- Glover, P.W.; Hole, M.J.; Pous, J. A modified Archie’s law for two conducting phases. Earth Planet. Sci. Lett. 2000, 180, 369–383. [Google Scholar] [CrossRef]
- Glover, P.W. A generalized Archie’s law for n phases. Geophysics 2010, 75, E247–E265. [Google Scholar] [CrossRef]
- Ten Grotenhuis, S.M.; Drury, M.R.; Spiers, C.J.; Peach, C.J. Melt distribution in olivine rocks based on electrical conductivity measurements. J. Geophys. Res. Solid Earth 2005, 110, B12201. [Google Scholar] [CrossRef] [Green Version]
- Hashin, Z.; Shtrikman, S. A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids 1963, 11, 127–140. [Google Scholar] [CrossRef]
- Berryman, J.G. Mixture theories for rock properties. In Rock Physics and Phase Relations: A Handbook of Physical Constants; American Geophysical Union: Washington, DC, USA, 1995; Volume 3, pp. 205–228. [Google Scholar]
- Zhang, L. A review of recent developments in the study of regional lithospheric electrical structure of the Asian continent. Surv. Geophys. 2017, 38, 1043–1096. [Google Scholar] [CrossRef]
- Hu, X.; Lin, W.; Yang, W.; Yang, B. A review on developments in the electrical structure of craton lithosphere. Sci. Sin. Terrae 2020, 50, 1533–1552. [Google Scholar] [CrossRef]
- Naif, S.; Selway, K.; Murphy, B.S.; Egbert, G.D.; Pommier, A. Electrical conductivity of the lithosphere-asthenosphere system. Phys. Earth Planet. Inter. 2021, 313, 1–59. [Google Scholar] [CrossRef]
- Liu, J.x.; Zhao, R.; Guo, Z.w. Research progress of electromagnetic methods in the exploration of metal deposits. Prog. Geophys. 2019, 34, 151–160. [Google Scholar]
- Guo, Z.; Xue, G.; Liu, J.; Wu, X. Electromagnetic methods for mineral exploration in China: A review. Ore Geol. Rev. 2020, 118, 103357. [Google Scholar] [CrossRef]
- Comeau, M.J. Electrical Resistivity Structure of the Altiplano-Puna Magma Body and Volcan Uturuncu from Magnetotelluric Data. Ph.D. Thesis, University of Alberta, Edmonton, AB, Canada, 2015. [Google Scholar]
- Pellerin, L.; Johnston, J.M.; Hohmann, G.W. A numerical evaluation of electromagnetic methods in geothermal exploration. Geophysics 1996, 61, 121–130. [Google Scholar] [CrossRef]
- Heise, W.; Caldwell, T.; Bertrand, E.; Hill, G.; Bennie, S.; Palmer, N. Imaging the deep source of the Rotorua and Waimangu geothermal fields, Taupo Volcanic Zone, New Zealand. J. Volcanol. Geotherm. Res. 2016, 314, 39–48. [Google Scholar] [CrossRef]
- Yardley, B.W.; Valley, J.W. The petrologic case for a dry lower crust. J. Geophys. Res. Solid Earth 1997, 102, 12173–12185. [Google Scholar] [CrossRef]
- Bailey, R. Trapping of aqueous fluids in the deep crust. Geophys. Res. Lett. 1990, 17, 1129–1132. [Google Scholar] [CrossRef]
- Wannamaker, P.E. Comment on “The petrologic case for a dry lower crust” by Bruce WD Yardley and John W. Valley. J. Geophys. Res. Solid Earth 2000, 105, 6057–6064. [Google Scholar] [CrossRef]
- Bedrosian, P.A. MT+, integrating magnetotellurics to determine earth structure, physical state, and processes. Surv. Geophys. 2007, 28, 121–167. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, B.; Zhang, S.; Liu, Y.; Zhu, L.; Huang, R.; Chen, C.; Li, Y.; Luo, Y. Magnetotelluric imaging of a fossil paleozoic intraoceanic subduction zone in western Junggar, NW China. J. Geophys. Res. Solid Earth 2016, 121, 4103–4117. [Google Scholar] [CrossRef]
- Jones, A.G.; Lezaeta, P.; Ferguson, I.J.; Chave, A.D.; Evans, R.L.; Garcia, X.; Spratt, J. The electrical structure of the Slave craton. Lithos 2003, 71, 505–527. [Google Scholar] [CrossRef]
- Yang, B.; Egbert, G.D.; Kelbert, A.; Meqbel, N.M. Three-dimensional electrical resistivity of the north-central USA from EarthScope long period magnetotelluric data. Earth Planet. Sci. Lett. 2015, 422, 87–93. [Google Scholar] [CrossRef]
- DeLucia, M.S.; Murphy, B.S.; Marshak, S.; Egbert, G.D. The Missouri High-Conductivity Belt, revealed by magnetotelluric imaging: Evidence of a trans-lithospheric shear zone beneath the Ozark Plateau, Midcontinent USA? Tectonophysics 2019, 753, 111–123. [Google Scholar] [CrossRef]
- Wannamaker, P.E.; Caldwell, T.G.; Jiracek, G.R.; Maris, V.; Hill, G.J.; Ogawa, Y.; Bibby, H.M.; Bennie, S.L.; Heise, W. Fluid and deformation regime of an advancing subduction system at Marlborough, New Zealand. Nature 2009, 460, 733–736. [Google Scholar] [CrossRef]
- Sibson, R.H. Conditions for fault-valve behaviour. Geol. Soc. London Spec. Publ. 1990, 54, 15–28. [Google Scholar] [CrossRef]
- Comeau, M.; Becken, M.; Connolly, J.; Grayver, A.; Kuvshinov, A. Compaction-Driven Fluid Localization as an Explanation for Lower Crustal Electrical Conductors in an Intracontinental Setting. Geophys. Res. Lett. 2020, 47, e2020GL088455. [Google Scholar] [CrossRef]
- Wannamaker, P.E.; Jiracek, G.R.; Stodt, J.A.; Caldwell, T.G.; Gonzalez, V.M.; McKnight, J.D.; Porter, A.D. Fluid generation and pathways beneath an active compressional orogen, the New Zealand Southern Alps, inferred from magnetotelluric data. J. Geophys. Res. Solid Earth 2002, 107, ETG-6. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, R.; Xu, Z.; Zhang, S. The transport of water in subduction zones. Sci. China Earth Sci. 2016, 59, 651–682. [Google Scholar] [CrossRef]
- Zhang, L.; Unsworth, M.; Jin, S.; Wei, W.; Ye, G.; Jones, A.G.; Jing, J.; Dong, H.; Xie, C.; Le Pape, F.; et al. Structure of the Central Altyn Tagh Fault revealed by magnetotelluric data: New insights into the structure of the northern margin of the India–Asia collision. Earth Planet. Sci. Lett. 2015, 415, 67–79. [Google Scholar] [CrossRef]
- Wannamaker, P.E.; Hasterok, D.P.; Johnston, J.M.; Stodt, J.A.; Hall, D.B.; Sodergren, T.L.; Pellerin, L.; Maris, V.; Doerner, W.M.; Groenewold, K.A.; et al. Lithospheric dismemberment and magmatic processes of the Great Basin–Colorado Plateau transition, Utah, implied from magnetotellurics. Geochem. Geophys. Geosystems 2008, 9, 1–38. [Google Scholar] [CrossRef]
- Nesbitt, B.E. Electrical resistivities of crustal fluids. J. Geophys. Res. Solid Earth 1993, 98, 4301–4310. [Google Scholar] [CrossRef]
- Unsworth, M.; Rondenay, S. Mapping the distribution of fluids in the crust and lithospheric mantle utilizing geophysical methods. In Metasomatism and the Chemical Transformation of Rock; Springer: Berlin/Heidelberg, Germany, 2013; pp. 535–598. [Google Scholar]
- Watson, E.; Brenan, J. Fluids in the lithosphere, 1. Experimentally-determined wetting characteristics of CO2H2O fluids and their implications for fluid transport, host-rock physical properties, and fluid inclusion formation. Earth Planet. Sci. Lett. 1987, 85, 497–515. [Google Scholar] [CrossRef]
- Sinmyo, R.; Keppler, H. Electrical conductivity of NaCl-bearing aqueous fluids to 600 C and 1 GPa. Contrib. Mineral. Petrol. 2017, 172, 1–12. [Google Scholar] [CrossRef]
- Guo, H.; Keppler, H. Electrical conductivity of NaCl-bearing aqueous fluids to 900 C and 5 GPa. J. Geophys. Res. Solid Earth 2019, 124, 1397–1411. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, Q.; Zhao, G.; Guo, Z.; Chen, Y.J. Three-dimensional conductivity model of crust and uppermost mantle at the northern Trans North China Orogen: Evidence for a mantle source of Datong volcanoes. Earth Planet. Sci. Lett. 2016, 453, 182–192. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, D.; Xu, Y.; Chen, C. 3D magnetotelluric imaging of the middle-upper crustal conduit system beneath the Lei-Hu-Ling volcanic area of northern Hainan Island, China. J. Volcanol. Geotherm. Res. 2019, 371, 220–228. [Google Scholar] [CrossRef]
- Xu, S.; Unsworth, M.J.; Hu, X.; Mooney, W.D. Magnetotelluric evidence for asymmetric simple shear extension and lithospheric thinning in South China. J. Geophys. Res. Solid Earth 2019, 124, 104–124. [Google Scholar] [CrossRef]
- Hu, H.; Dai, L.; Sun, W.; Wang, M.; Jing, C. Constraints on fluids in the continental crust from laboratory-based electrical conductivity measurements of plagioclase. Gondwana Res. 2022, 107, 1–12. [Google Scholar] [CrossRef]
- Li, S.; Unsworth, M.J.; Booker, J.R.; Wei, W.; Tan, H.; Jones, A.G. Partial melt or aqueous fluid in the mid-crust of Southern Tibet? Constraints from INDEPTH magnetotelluric data. Geophys. J. Int. 2003, 153, 289–304. [Google Scholar] [CrossRef]
- Zhang, B.H.; Guo, X.; Yoshino, T.; Xia, Q.K. Electrical conductivity of melts: Implications for conductivity anomalies in the Earth’s mantle. Natl. Sci. Rev. 2021, 8, nwab064. [Google Scholar] [CrossRef]
- Meqbel, N.M.; Egbert, G.D.; Wannamaker, P.E.; Kelbert, A.; Schultz, A. Deep electrical resistivity structure of the northwestern US derived from 3-D inversion of USArray magnetotelluric data. Earth Planet. Sci. Lett. 2014, 402, 290–304. [Google Scholar] [CrossRef]
- Booker, J.R. The magnetotelluric phase tensor: A critical review. Surv. Geophys. 2014, 35, 7–40. [Google Scholar] [CrossRef]
- Kelbert, A.; Egbert, G.D.; de Groot Hedlin, C. Crust and upper mantle electrical conductivity beneath the Yellowstone Hotspot Track. Geology 2012, 40, 447–450. [Google Scholar] [CrossRef]
- Lebedev, E.; Khitarov, N. Dependence on the beginning of melting of granite and the electrical conductivity of its melt on high water vapor pressure. Geochem. Int. 1964, 1, 193–197. [Google Scholar]
- Gaillard, F.; Malki, M.; Iacono-Marziano, G.; Pichavant, M.; Scaillet, B. Carbonatite melts and electrical conductivity in the asthenosphere. Science 2008, 322, 1363–1365. [Google Scholar] [CrossRef] [PubMed]
- Yoshino, T.; Laumonier, M.; McIsaac, E.; Katsura, T. Electrical conductivity of basaltic and carbonatite melt-bearing peridotites at high pressures: Implications for melt distribution and melt fraction in the upper mantle. Earth Planet. Sci. Lett. 2010, 295, 593–602. [Google Scholar] [CrossRef]
- Rohrbach, A.; Schmidt, M.W. Redox freezing and melting in the Earth’s deep mantle resulting from carbon–iron redox coupling. Nature 2011, 472, 209–212. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.j.; Wyllie, P.J. Liquid immiscibility between nephelinite and carbonatite from 1.0 to 2.5 GPa compared with mantle melt compositions. Contrib. Mineral. Petrol. 1997, 127, 1–16. [Google Scholar] [CrossRef]
- Minarik, W.G. Complications to carbonate melt mobility due to the presence of an immiscible silicate melt. J. Petrol. 1998, 39, 1965–1973. [Google Scholar] [CrossRef]
- Ducea, M.N.; Park, S.K. Enhanced mantle conductivity from sulfide minerals, southern Sierra Nevada, California. Geophys. Res. Lett. 2000, 27, 2405–2408. [Google Scholar] [CrossRef]
- Allegre, C.J.; Poirier, J.P.; Humler, E.; Hofmann, A.W. The chemical composition of the Earth. Earth Planet. Sci. Lett. 1995, 134, 515–526. [Google Scholar] [CrossRef]
- Hart, S.R.; Gaetani, G.A. Mantle Pb paradoxes: The sulfide solution. Contrib. Mineral. Petrol. 2006, 152, 295–308. [Google Scholar] [CrossRef]
- Li, Y.; Weng, A.; Xu, W.; Zou, Z.; Tang, Y.; Zhou, Z.; Li, S.; Zhang, Y.; Ventura, G. Translithospheric magma plumbing system of intraplate volcanoes as revealed by electrical resistivity imaging. Geology 2021, 49, 1337–1342. [Google Scholar] [CrossRef]
- Wannamaker, P.E. Anisotropy versus heterogeneity in continental solid earth electromagnetic studies: Fundamental response characteristics and implications for physicochemical state. Surv. Geophys. 2005, 26, 733–765. [Google Scholar] [CrossRef]
- Wang, D.; Karato, S.i.; Jiang, Z. An experimental study of the influence of graphite on the electrical conductivity of olivine aggregates. Geophys. Res. Lett. 2013, 40, 2028–2032. [Google Scholar] [CrossRef]
- Luque del Villar, F.J.; Pasteris, J.D.; Wopenka, B.; Rodas, M.; Fernández Barrenechea, J.M. Natural fluid-deposited graphite: Mineralogical characteristics and mechanisms of formation. Am. J. Sci. 1998, 298, 471–498. [Google Scholar] [CrossRef]
- Nover, G.; Stoll, J.B.; von Der Gönna, J. Promotion of graphite formation by tectonic stress–a laboratory experiment. Geophys. J. Int. 2005, 160, 1059–1067. [Google Scholar] [CrossRef]
- Ross, J.; Bustin, R. The role of strain energy in creep graphitization of anthracite. Nature 1990, 343, 58–60. [Google Scholar] [CrossRef]
- Murphy, B.S.; Egbert, G.D. Electrical conductivity structure of southeastern North America: Implications for lithospheric architecture and Appalachian topographic rejuvenation. Earth Planet. Sci. Lett. 2017, 462, 66–75. [Google Scholar] [CrossRef] [Green Version]
- Duba, A.; Heikamp, S.; Meurer, W.; Mover, G.; Will, G. Evidence from borehole samples for the role of accessory minerals in lower-crustal conductivity. Nature 1994, 367, 59–61. [Google Scholar] [CrossRef]
- Shankland, T.; Waff, H. Partial melting and electrical conductivity anomalies in the upper mantle. J. Geophys. Res. 1977, 82, 5409–5417. [Google Scholar] [CrossRef]
- Zhang, B.; Yoshino, T. Effect of graphite on the electrical conductivity of the lithospheric mantle. Geochem. Geophys. Geosystems 2017, 18, 23–40. [Google Scholar] [CrossRef]
- Frost, B.R. Mineral equilibria involving mixed-volatiles in a COH fluid phase; the stabilities of graphite and siderite. Am. J. Sci. 1979, 279, 1033–1059. [Google Scholar] [CrossRef]
- Kontny, A.; Friedrich, G.; Behr, H.; De Wall, H.; Horn, E.; Moeller, P.; Zulauf, G. Formation of ore minerals in metamorphic rocks of the German continental deep drilling site (KTB). J. Geophys. Res. Solid Earth 1997, 102, 18323–18336. [Google Scholar] [CrossRef]
- Jones, A.G.; Ledo, J.; Ferguson, I.J. Electromagnetic images of the Trans-Hudson orogen: The North American Central Plains anomaly revealed. Can. J. Earth Sci. 2005, 42, 457–478. [Google Scholar] [CrossRef]
- Lee, C.T.A.; Luffi, P.; Chin, E.J.; Bouchet, R.; Dasgupta, R.; Morton, D.M.; Le Roux, V.; Yin, Q.z.; Jin, D. Copper systematics in arc magmas and implications for crust-mantle differentiation. Science 2012, 336, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.G.; Katsube, T.J.; Schwann, P. The longest conductivity anomaly in the world explained: Sulphides in fold hinges causing very high electrical anisotropy. J. Geomagn. Geoelectr. 1997, 49, 1619–1629. [Google Scholar] [CrossRef]
- Gokarn, S.; Gupta, G.; Rao, C. Geoelectric structure of the Dharwar craton from magnetotelluric studies: Archean suture identified along the Chitradurga-Gadag schist belt. Geophys. J. Int. 2004, 158, 712–728. [Google Scholar] [CrossRef]
- Hou, Z.; Yang, Z.; Lu, Y.; Kemp, A.; Zheng, Y.; Li, Q.; Tang, J.; Yang, Z.; Duan, L. A genetic linkage between subduction-and collision-related porphyry Cu deposits in continental collision zones. Geology 2015, 43, 247–250. [Google Scholar] [CrossRef] [Green Version]
- Saxena, S.; Pommier, A.; Tauber, M. Iron sulfides and anomalous electrical resistivity in cratonic environments. J. Geophys. Res. Solid Earth 2021, 126, e2021JB022297. [Google Scholar] [CrossRef]
- Pommier, A.; Le-Trong, E. “SIGMELTS”: A web portal for electrical conductivity calculations in geosciences. Comput. Geosci. 2011, 37, 1450–1459. [Google Scholar] [CrossRef]
- Pommier, A.; Roberts, J. Understanding electrical signals from below Earth’s surface. Eos, 19 November 2018; 99. [Google Scholar] [CrossRef]
- Hill, G.; Roots, E.; Frieman, B.; Haugaard, R.; Craven, J.; Smith, R.; Snyder, D.; Zhou, X.; Sherlock, R. On Archean craton growth and stabilisation: Insights from lithospheric resistivity structure of the Superior Province. Earth Planet. Sci. Lett. 2021, 562, 116853. [Google Scholar] [CrossRef]
- Selway, K.; O’Donnell, J.P.; Özaydin, S. Upper mantle melt distribution from petrologically constrained magnetotellurics. Geochem. Geophys. Geosystems 2019, 20, 3328–3346. [Google Scholar] [CrossRef]
- Rippe, D.; Unsworth, M.J.; Currie, C.A. Magnetotelluric constraints on the fluid content in the upper mantle beneath the southern Canadian Cordillera: Implications for rheology. J. Geophys. Res. Solid Earth 2013, 118, 5601–5624. [Google Scholar] [CrossRef]
- Dai, L.; Karato, S.i. The effect of pressure on the electrical conductivity of olivine under the hydrogen-rich conditions. Phys. Earth Planet. Inter. 2014, 232, 51–56. [Google Scholar] [CrossRef]
- Utada, H.; Koyama, T.; Shimizu, H.; Chave, A. A semi-global reference model for electrical conductivity in the mid-mantle beneath the north Pacific region. Geophys. Res. Lett. 2003, 30, 1194. [Google Scholar] [CrossRef]
- Kuvshinov, A.; Utada, H.; Avdeev, D.; Koyama, T. 3-D modelling and analysis of Dst C-responses in the North Pacific Ocean region, revisited. Geophys. J. Int. 2005, 160, 505–526. [Google Scholar] [CrossRef]
- Padrón-Navarta, J.; Hermann, J. A subsolidus olivine water solubility equation for the Earth’s upper mantle. J. Geophys. Res. Solid Earth 2017, 122, 9862–9880. [Google Scholar] [CrossRef] [Green Version]
- Laumonier, M.; Farla, R.; Frost, D.J.; Katsura, T.; Marquardt, K.; Bouvier, A.S.; Baumgartner, L.P. Experimental determination of melt interconnectivity and electrical conductivity in the upper mantle. Earth Planet. Sci. Lett. 2017, 463, 286–297. [Google Scholar] [CrossRef]
- Fullea, J. On joint modelling of electrical conductivity and other geophysical and petrological observables to infer the structure of the lithosphere and underlying upper mantle. Surv. Geophys. 2017, 38, 963–1004. [Google Scholar] [CrossRef]
- Zhang, L.; Wei, W.; Jin, S.; Ye, G.; Jing, J. Studies on the temperature dependence of electrical conductivity of upper mantle rocks. Prog. Geophys. 2011, 26, 505–510. [Google Scholar]
- Bai, D.; Unsworth, M.J.; Meju, M.A.; Ma, X.; Teng, J.; Kong, X.; Sun, Y.; Sun, J.; Wang, L.; Jiang, C.; et al. Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging. Nat. Geosci. 2010, 3, 358–362. [Google Scholar] [CrossRef]
- McGary, R.S.; Evans, R.L.; Wannamaker, P.E.; Elsenbeck, J.; Rondenay, S. Pathway from subducting slab to surface for melt and fluids beneath Mount Rainier. Nature 2014, 511, 338–340. [Google Scholar] [CrossRef] [PubMed]
- Worzewski, T.; Jegen, M.; Kopp, H.; Brasse, H.; Castillo, W.T. Magnetotelluric image of the fluid cycle in the Costa Rican subduction zone. Nat. Geosci. 2011, 4, 108–111. [Google Scholar] [CrossRef]
- Hill, G.J.; Caldwell, T.G.; Heise, W.; Chertkoff, D.G.; Bibby, H.M.; Burgess, M.K.; Cull, J.P.; Cas, R.A. Distribution of melt beneath Mount St Helens and Mount Adams inferred from magnetotelluric data. Nat. Geosci. 2009, 2, 785–789. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, W.; Yang, B.; Han, B.; Hu, X. A Review of Subsurface Electrical Conductivity Anomalies in Magnetotelluric Imaging. Sensors 2023, 23, 1803. https://doi.org/10.3390/s23041803
Lin W, Yang B, Han B, Hu X. A Review of Subsurface Electrical Conductivity Anomalies in Magnetotelluric Imaging. Sensors. 2023; 23(4):1803. https://doi.org/10.3390/s23041803
Chicago/Turabian StyleLin, Wule, Bo Yang, Bo Han, and Xiangyun Hu. 2023. "A Review of Subsurface Electrical Conductivity Anomalies in Magnetotelluric Imaging" Sensors 23, no. 4: 1803. https://doi.org/10.3390/s23041803
APA StyleLin, W., Yang, B., Han, B., & Hu, X. (2023). A Review of Subsurface Electrical Conductivity Anomalies in Magnetotelluric Imaging. Sensors, 23(4), 1803. https://doi.org/10.3390/s23041803