Neural Networks Application for Accurate Retina Vessel Segmentation from OCT Fundus Reconstruction
Abstract
:1. Introduction
- Reconstruction selection based on segmentation in B-scans,
- Preparation of a special dataset based on 3D OCT scans,
- Evaluation of the effectiveness of vessel segmentation using various neural networks.
1.1. Related Works
1.1.1. Vessels Segmentation from Fundus Images
- Unsupervised—for example, line detectors, co-occurrence matrix, thresholding, difference-of-Gaussian filters,
- Supervised—where ground truth is required, and after feature extraction, machine learning classifiers such as a nearest-neighbor classifier, a Bayesian, or a Gaussian Mixture Model are used.
1.1.2. Vessels Segmentation from OCT Images
- unimodal—3D OCT only based methods,
- multimodal—hybrid methods that also use, in addition to 3D OCT data, data from the fundus camera or scanning laser ophthalmology,
- optical coherence tomography angiography (OCTA)—a solution that can be found in the newest OCT devices.
2. Materials
2.1. OCT Image Dataset
2.2. Fundus Reconstruction from 3D OCT Scan
- ganglion cell layer (GCL)
- inner plexiform layer (IPL)
- outer segment of photoreceptors and retina pigment epithelium layer (OS+RPE).
- GCL layer projection—a projection of the layer defined between the NFL/GCL and GCL/IPL borders (illustrated by yellow lines in Figure 2). The pixels between the specified layer borders are averaged along the z-axis with the following equation:
- GCL+IPL layers projection—a projection of a region encompassing two neighboring layers defined between the NFL/GCL and IPL/INL borders (see Figure 2). Similarly to before, the pixel values are averaged along the z-axis:
- OS+RPE layers projection—a mean of pixels intensity values in each A-scan from the area of hyper-reflective tissues, i.e., OS and RPE layers (confined between the green lines in Figure 2):
3. Methods
3.1. UNet
3.2. IterNet
3.3. BCDU-Net
3.4. SA-UNet
3.5. FR-UNet
4. Results
4.1. Experiment Setup and Evaluation Metrics
4.2. Preprocessing and Data Augmentation
4.3. Vessels Segmentation with UNet
4.4. Vessel Segmentation with IterNet
4.5. Vessels Segmentation with BCDU-Net
4.6. Vessels Segmentation with SA-UNet
4.7. Vessels Segmentation with FR-UNet
4.8. Comparison of Models and Fundus Reconstruction Methods
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AUC | Area Under Receiver Operating Curve |
CAVRI | Computer Analysis of VitreoRetinal Interface |
ILM | Inner Limiting Membrane |
NFL | Nerve Fiber Layer |
GCL | Ganglion Cell Layer |
IPL | Inner Plexiform Layer |
INL | Inner Nuclear Layer |
OPL | Outer Plexiform Layer |
ONL | Outer Nuclear Layer |
IS | Inner Photoreceptors Segment |
OS | Outer Photoreceptors Segment |
RPE | Retinal Pigment Epithelium |
References
- Hu, Z.; Niemeijer, M.; Abramoff, M.; Garvin, M. Multimodal retinal vessel segmentation from spectral-domain optical coherence tomography and fundus photography. IEEE Trans. Med. Imaging 2012, 31, 1900–1911. [Google Scholar] [PubMed]
- Mariño, C.; Penedo, M.G.; Penas, M.; Carreira, M.J.; Gonzalez, F. Personal authentication using digital retinal images. Pattern Anal. Appl. 2006, 9, 21–33. [Google Scholar] [CrossRef]
- Hussain, A.; Bhuiyan, A.; Mian, A.; Ramamohanarao, K. Biometric Security Application for Person Authentication Using Retinal Vessel Feature. In Proceedings of the 2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA), Hobart, TAS, Australia, 26–28 November 2013; pp. 1–8. [Google Scholar] [CrossRef]
- Heneghan, C.; Flynn, J.; O’Keefe, M.; Cahill, M. Characterization of changes in blood vessel width and tortuosity in retinopathy of prematurity using image analysis. Med. Image Anal. 2002, 6, 407–429. [Google Scholar] [CrossRef] [PubMed]
- Stankiewicz, A.; Marciniak, T.; Dąbrowski, A.; Stopa, M.; Rakowicz, P.; Marciniak, E. Denoising methods for improving automatic segmentation in OCT images of human eye. Bull. Pol. Acad. Sci. Tech. Sci. 2017, 65, 71–78. [Google Scholar] [CrossRef]
- Devalla, S.K.; Subramanian, G.; Pham, T.H.; Wang, X.; Perera, S.; Tun, T.A.; Aung, T.; Schmetterer, L.; Thiéry, A.H.; Girard, M.J. A deep learning approach to denoise optical coherence tomography images of the optic nerve head. Sci. Rep. 2019, 9, 14454. [Google Scholar] [CrossRef] [PubMed]
- Anoop, B.; Kalmady, K.S.; Udathu, A.; Siddharth, V.; Girish, G.; Kothari, A.R.; Rajan, J. A cascaded convolutional neural network architecture for despeckling OCT images. Biomed. Signal Process. Control 2021, 66, 102463. [Google Scholar] [CrossRef]
- Staal, J.; Abramoff, M.; Niemeijer, M.; Viergever, M.; van Ginneken, B. Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 2004, 23, 501–509. [Google Scholar] [CrossRef] [PubMed]
- DRIVE: Digital Retinal Images for Vessel Extraction. Available online: https://drive.grand-challenge.org/ (accessed on 27 December 2022).
- Hoover, A.; Kouznetsova, V.; Goldbaum, M. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imaging 2000, 19, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Owen, C.G.; Rudnicka, A.R.; Mullen, R.; Barman, S.A.; Monekosso, D.; Whincup, P.H.; Ng, J.; Paterson, C. Measuring retinal vessel tortuosity in 10-year-old children: Validation of the computer-assisted image analysis of the retina (CAIAR) program. Investig. Ophthalmol. Vis. Sci. 2009, 50, 2004–2010. [Google Scholar] [CrossRef] [PubMed]
- Fraz, M.; Remagnino, P.; Hoppe, A.; Uyyanonvara, B.; Rudnicka, A.; Owen, C.; Barman, S. Blood vessel segmentation methodologies in retinal images—A survey. Comput. Methods Programs Biomed. 2012, 108, 407–433. [Google Scholar] [CrossRef] [PubMed]
- Liskowski, P.; Krawiec, K. Segmenting Retinal Blood Vessels With Deep Neural Networks. IEEE Trans. Med. Imaging 2016, 35, 2369–2380. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Verma, M.; Nakashima, Y.; Nagahara, H.; Kawasaki, R. IterNet: Retinal Image Segmentation Utilizing Structural Redundancy in Vessel Networks. In Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision (WACV), Snowmass, CO, USA, 1–5 March 2020; pp. 3645–3654. [Google Scholar] [CrossRef]
- Stankiewicz, A.; Marciniak, T.; Dąbrowski, A.; Stopa, M.; Marciniak, E. Volumetric segmentation of human eye blood vessels based on OCT images. In Proceedings of the 2017 25th European Signal Processing Conference (EUSIPCO), Kos, Greece, 28 August–2 September 2017; pp. 36–40. [Google Scholar] [CrossRef]
- Niemeijer, M.; Garvin, M.; van Ginneken, B.; Sonka, M.; Abramoff, M. Vessel Segmentation in 3D Spectral OCT Scans of the Retina. In Proceedings of the SPIE Medical Imaging 2008: Image Processing, San Diego, CA, USA, 16–21 February 2008; Volume 6914, pp. 69141R1–69141R8. [Google Scholar]
- Liu, W.; Yang, H.; Tian, T.; Cao, Z.; Pan, X.; Xu, W.; Jin, Y.; Gao, F. Full-Resolution Network and Dual-Threshold Iteration for Retinal Vessel and Coronary Angiograph Segmentation. IEEE J. Biomed. Health Inform. 2022, 26, 4623–4634. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z. Automatic Localization and Segmentation of the Ventricles in Magnetic Resonance Images. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 621–631. [Google Scholar] [CrossRef]
- Wu, J.; Gerendas, B.S.; Waldstein, S.M.; Langs, G.; Simader, C.; Schmidt-Erfurth, U. Stable registration of pathological 3D-OCT scans using retinal vessels. In Proceedings of the Ophthalmic Medical Image Analysis International Workshop, Boston, MA, USA, 14–18 September 2014; Volume 1. [Google Scholar]
- Frangi, A.F.; Niessen, W.J.; Vincken, K.L.; Viergever, M.A. Multiscale vessel enhancement filtering. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Cambridge, MA, USA, 11–13 October 1998; Springer: Berlin/Heidelberg, Germany, 1998; pp. 130–137. [Google Scholar]
- Pan, L.; Guan, L.; Chen, X. Segmentation Guided Registration for 3D Spectral-Domain Optical Coherence Tomography Images. IEEE Access 2019, 7, 138833–138845. [Google Scholar] [CrossRef]
- Marciniak, T.; Stankiewicz, A.; Dąbrowski, A.; Stopa, M.; Rakowicz, P.; Marciniak, E. Measurement of retina vessels by segmentation of images reconstructed from optical coherence tomography data. Metrol. Meas. Syst. 2019, 26, 449–461. [Google Scholar]
- Moura, J.D.; Novo, J.; Ortega, M.; Charlón, P. 3D retinal vessel tree segmentation and reconstruction with OCT images. In Proceedings of the International Conference on Image Analysis and Recognition, Póvoa de Varzim, Portugal, 13–15 July 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 716–726. [Google Scholar]
- Stankiewicz, A.; Marciniak, T.; Dabrowski, A.; Stopa, M.; Marciniak, E. CAVRI Datasets for Retina Image Analysis. CAVRI-C Dataset. Available online: http://dsp.org.pl/CAVRI_Database/191/ (accessed on 27 December 2022).
- Stankiewicz, A. OCTAnnotate v1.8. Available online: https://github.com/krzyk87/OCTAnnotate (accessed on 30 June 2021).
- Xu, J.; Tolliver, D.; Ishikawa, H.; Wollstein, G.; Schuman, J. 3D OCT retinal vessel segmentation based on boosting learning. In Proceedings of the World Congress on Medical Physics and Biomedical Engineering, Munich, Germany, 7–12 September 2009; Dössel, O., Schlegel, W.C., Eds.; Volume 25/XI, pp. 179–182. [Google Scholar]
- Niemeijer, M.; Sonka, M.; Garvin, M.K.; van Ginneken, B.; Abramoff, M.D. Automated Segmentation of the Retinal Vasculature in 3D Optical Coherence Tomography Images. Investig. Ophthalmol. Vis. Sci. 2008, 49, 1832. [Google Scholar]
- Optovue. RTVue XR 100 Avanti System. User Manual. Software Version 2016.0.0; Optovue: Fremont, CA, USA, 2016. [Google Scholar]
- MATLAB, Version 9.4.0 (R2018a); The MathWorks Inc.: Natick, MA, USA, 2018.
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Azad, R.; Asadi-Aghbolaghi, M.; Fathy, M.; Escalera, S. Bi-Directional ConvLSTM U-Net with Densley Connected Convolutions. arXiv 2019, arXiv:1909.00166. [Google Scholar] [CrossRef]
- Guo, C.; Szemenyei, M.; Yi, Y.; Wang, W.; Chen, B.; Fan, C. SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation. arXiv 2020, arXiv:2004.03696. [Google Scholar] [CrossRef]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Retina Blood Vessel Segmentation with a Convolution Neural Network (U-Net). Available online: https://github.com/orobix/retina-unet (accessed on 27 December 2022).
Parameter | Network Architecture | ||||
---|---|---|---|---|---|
UNet | IterNet | BCDU-Net | SA-UNet | FR-UNet | |
Number of epochs | 50 | 50 | 20 | 100 | 40 |
Batch size | 32 | 32 | 8 | 8 | 24 |
Optimizer | SDG = momentum = 0 | Adam = = 0.9 = 0.999 | Adam = = 0.9 = 0.999 | Adam = = 0.9 = 0.999 | Adam = = 0.9 = 0.999 |
Loss function | Categorical cross-entropy | Binary cross-entropy | Binary cross-entropy | Binary cross-entropy | Binary cross-entropy |
Dataset | 20,000 patches px | 2000 patches px generated every epoch | 5000 patches px | 180 images px | 5120 patches px |
Training/Validation split | 90%/10% | 100%/0% | 80%/20% | 80%/20% | 90%/10% |
Method | Accuracy | Sensitivity | Specificity | Precision | F1-Score | AUC | |
---|---|---|---|---|---|---|---|
Shadowgraph [15] | 0.932 | 0.511 | 0.969 | 0.584 | 0.538 | 0.749 | |
Shadowgraph [15] | 0.904 | 0.326 | 0.954 | 0.389 | 0.350 | 0.637 | |
Shadowgraph [15] | 0.931 | 0.389 | 0.979 | 0.612 | 0.470 | 0.667 | |
Morphological filtering—BML [22] | 0.972 | 0.791 | 0.986 | 0.839 | 0.816 | n/a | |
Morphological filtering—BDD [22] | 0.924 | 0.811 | 0.932 | 0.508 | 0.625 | n/a | |
Morphological filtering—BH [22] | 0.907 | 0.656 | 0.930 | 0.450 | 0.534 | n/a | |
UNet | P1 | 0.946 | 0.862 | 0.953 | 0.618 | 0.718 | 0.974 |
P2 | 0.923 | 0.824 | 0.931 | 0.560 | 0.648 | 0.957 | |
P3 | 0.948 | 0.796 | 0.962 | 0.648 | 0.703 | 0.974 | |
IterNet | P1 | 0.976 | 0.765 | 0.993 * | 0.910 * | 0.828 | 0.987 |
P2 | 0.975 | 0.798 | 0.990 | 0.872 | 0.832 | 0.984 | |
P3 | 0.977 | 0.835 | 0.989 | 0.870 | 0.851 | 0.990 | |
BCDU-Net | P1 | 0.977 | 0.815 | 0.991 | 0.887 | 0.848 | 0.989 |
P2 | 0.975 | 0.796 | 0.990 | 0.880 | 0.834 | 0.988 | |
P3 | 0.977 | 0.828 | 0.990 | 0.874 | 0.849 | 0.990 | |
SA-UNet | P1 | 0.974 | 0.794 | 0.989 | 0.868 | 0.828 | 0.977 |
P2 | 0.973 | 0.782 | 0.989 | 0.864 | 0.816 | 0.979 | |
P3 | 0.975 | 0.807 | 0.990 | 0.870 | 0.836 | 0.983 | |
FR-UNet without DTI | P1 | 0.977 | 0.851 | 0.988 | 0.855 | 0.851 | 0.989 |
P2 | 0.976 | 0.842 | 0.988 | 0.853 | 0.845 | 0.989 | |
P3 | 0.978 * | 0.862 | 0.988 | 0.855 | 0.857 * | 0.991 * | |
FR-UNet with DTI | P1 | 0.973 | 0.903 | 0.978 | 0.783 | 0.837 | n/a |
P2 | 0.972 | 0.895 | 0.979 | 0.783 | 0.833 | n/a | |
P3 | 0.973 | 0.912 * | 0.979 | 0.785 | 0.843 | n/a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marciniak, T.; Stankiewicz, A.; Zaradzki, P. Neural Networks Application for Accurate Retina Vessel Segmentation from OCT Fundus Reconstruction. Sensors 2023, 23, 1870. https://doi.org/10.3390/s23041870
Marciniak T, Stankiewicz A, Zaradzki P. Neural Networks Application for Accurate Retina Vessel Segmentation from OCT Fundus Reconstruction. Sensors. 2023; 23(4):1870. https://doi.org/10.3390/s23041870
Chicago/Turabian StyleMarciniak, Tomasz, Agnieszka Stankiewicz, and Przemyslaw Zaradzki. 2023. "Neural Networks Application for Accurate Retina Vessel Segmentation from OCT Fundus Reconstruction" Sensors 23, no. 4: 1870. https://doi.org/10.3390/s23041870
APA StyleMarciniak, T., Stankiewicz, A., & Zaradzki, P. (2023). Neural Networks Application for Accurate Retina Vessel Segmentation from OCT Fundus Reconstruction. Sensors, 23(4), 1870. https://doi.org/10.3390/s23041870