Optical Hydrogen Sensing Properties of e-Beam WO3 Films Decorated with Gold Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zheng, H.; Ou, J.Z.; Strano, M.S.; Kaner, R.B.; Mitchell, A.; Kalantar-Zadeh, K. Nanostructured Tungsten Oxide–Properties, Synthesis, and Applications. Adv. Funct. Mater. 2011, 21, 2175–2196. [Google Scholar] [CrossRef]
- Niklasson, G.A.; Granqvist, C.G. Electrochromics for Smart Windows: Thin Films of Tungsten Oxide and Nickel Oxide, and Devices Based on These. J. Mater. Chem. 2006, 17, 127–156. [Google Scholar] [CrossRef]
- Mews, M.; Korte, L.; Rech, B. Oxygen Vacancies in Tungsten Oxide and Their Influence on Tungsten Oxide/Silicon Heterojunction Solar Cells. Sol. Energy Mater. Sol. Cells 2016, 158, 77–83. [Google Scholar] [CrossRef]
- Zheng, G.; Wang, J.; Liu, H.; Murugadoss, V.; Zu, G.; Che, H.; Lai, C.; Li, H.; Ding, T.; Gao, Q.; et al. Tungsten Oxide Nanostructures and Nanocomposites for Photoelectrochemical Water Splitting. Nanoscale 2019, 11, 18968–18994. [Google Scholar] [CrossRef] [PubMed]
- Mohd Razali, N.A.; Wan Salleh, W.N.; Aziz, F.; Jye, L.W.; Yusof, N.; Ismail, A.F. Review on Tungsten Trioxide as a Photocatalysts for Degradation of Recalcitrant Pollutants. J. Clean Prod. 2021, 309, 127438. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Y.; Li, X.; Ge, C.; Hussain, S.; Liu, G.; Qiao, G. WO3 Porous Nanosheet Arrays with Enhanced Low Temperature NO2 Gas Sensing Performance. Sens. Actuators B Chem. 2020, 316, 128050. [Google Scholar] [CrossRef]
- Kimura, Y.; Ibano, K.; Uehata, K.; Hirai, I.; Tae Lee, H.; Ueda, Y. Improved Hydrogen Gas Sensing Performance of WO3 Films with Fibrous Nanostructured Surface. Appl. Surf. Sci. 2020, 532, 147274. [Google Scholar] [CrossRef]
- Mattoni, G.; de Jong, B.; Manca, N.; Tomellini, M.; Caviglia, A.D. Single-Crystal Pt-Decorated WO3 Ultrathin Films: A Platform for Sub-Ppm Hydrogen Sensing at Room Temperature. ACS Appl. Nano Mater. 2018, 1, 3446–3452. [Google Scholar] [CrossRef]
- Yadav, A.; Singh, P.; Gupta, G. Dimension Dependency of Tungsten Oxide for Efficient Gas Sensing. Env. Sci. Nano. 2022, 9, 40–60. [Google Scholar] [CrossRef]
- Adilakshmi, G.; Sivasankar Reddy, A.; Sreedhara Reddy, P.; Seshendra Reddy, C. Electron Beam Evaporated Nanostructure WO3 Films for Gas Sensor Application. Mater. Sci. Eng. B 2021, 273, 115421. [Google Scholar] [CrossRef]
- Chao, J.; Liu, Z.; Xing, S.; Gao, Q.; Zhao, J. Enhanced Ammonia Detection of Gas Sensors Based on Square-like Tungsten Oxide Loaded by Pt Nanoparticles. Sens. Actuators B Chem. 2021, 347, 130621. [Google Scholar] [CrossRef]
- Nie, L.; Guo, X.; Gao, C.; Wu, X.; Chen, J.; Peng, L. Fabrication and Optical Hydrogen Gas Sensing Property of Hierarchical WO3 Porous/Nanowires Film. Mater. Lett. 2022, 314, 131805. [Google Scholar] [CrossRef]
- Qadri, M.U.; Diaz, A.F.D.; Cittadini, M.; Martucci, A.; Pujol, M.C.; Ferré-Borrull, J.; Llobet, E.; Aguiló, M.; Díaz, F. Effect of Pt Nanoparticles on the Optical Gas Sensing Properties of WO3 Thin Films. Sensors 2014, 14, 11427–11443. [Google Scholar] [CrossRef]
- Chang, C.H.; Chou, T.C.; Chen, W.C.; Niu, J.S.; Lin, K.W.; Cheng, S.Y.; Tsai, J.H.; Liu, W.C. Study of a WO3 Thin Film Based Hydrogen Gas Sensor Decorated with Platinum Nanoparticles. Sens. Actuators B Chem. 2020, 317, 128145. [Google Scholar] [CrossRef]
- Nishijima, Y.; Enomonoto, K.; Okazaki, S.; Arakawa, T.; Balčytis, A.; Juodkazis, S. Pulsed Laser Deposition of Pt-WO3 of Hydrogen Sensors under Atmospheric Conditions. Appl. Surf. Sci. 2020, 534, 147568. [Google Scholar] [CrossRef]
- Lee, J.; Koo, H.; Kim, S.Y.; Kim, S.J.; Lee, W. Electrostatic Spray Deposition of Chemochromic WO3-Pd Sensor for Hydrogen Leakage Detection at Room Temperature. Sens. Actuators B Chem. 2021, 327, 128930. [Google Scholar] [CrossRef]
- Longato, A.; Vanzan, M.; Colusso, E.; Corni, S.; Martucci, A.; Longato, A.; Colusso, E.; Martucci, A.; Vanzan, M.; Corni, S. Enhancing Tungsten Oxide Gasochromism with Noble Metal Nanoparticles: The Importance of the Interface. Small 2022, 19, 2205522. [Google Scholar] [CrossRef]
- Boudiba, A.; Roussel, P.; Zhang, C.; Olivier, M.G.; Snyders, R.; Debliquy, M. Sensing Mechanism of Hydrogen Sensors Based on Palladium-Loaded Tungsten Oxide (Pd–WO3). Sens. Actuators B Chem. 2013, 187, 84–93. [Google Scholar] [CrossRef]
- Ippolito, S.J.; Kandasamy, S.; Kalantar-Zadeh, K.; Wlodarski, W. Hydrogen Sensing Characteristics of WO3 Thin Film Conductometric Sensors Activated by Pt and Au Catalysts. Sens. Actuators B Chem. 2005, 108, 154–158. [Google Scholar] [CrossRef]
- Mineo, G.; Moulaee, K.; Neri, G.; Mirabella, S.; Bruno, E. H2 Detection Mechanism in Chemoresistive Sensor Based on Low-Cost Synthesized WO3 Nanorods. Sens. Actuators B Chem. 2021, 348, 130704. [Google Scholar] [CrossRef]
- Della Gaspera, E.; Martucci, A.; Yaacob, M.; Ou, J.; Kalantar-Zadeh, K.; Wlodarski, W. WO3-Au-Pt Nanocrystalline Thin Films as Optical Gas Sensors. Sens. Lett. 2011, 9, 595–599. [Google Scholar] [CrossRef]
- Amrehn, S.; Wu, X.; Wagner, T. Tungsten Oxide Photonic Crystals as Optical Transducer for Gas Sensing. ACS Sens. 2018, 3, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.Z.; Sadek, A.Z.; Yaacob, M.H.; Anderson, D.P.; Matthews, G.; Golovko, V.B.; Wlodarski, W. Optical Characterisation of Nanostructured Au/WO3 Thin Films for Sensing Hydrogen at Low Concentrations. Sens. Actuators B Chem. 2013, 179, 125–130. [Google Scholar] [CrossRef]
- Widenkvist, E.; Quinlan, R.A.; Holloway, B.C.; Grennberg, H.; Jansson, U. Synthesis of Nanostructured Tungsten Oxide Thin Films. Cryst. Growth Des. 2008, 8, 3750–3753. [Google Scholar] [CrossRef]
- Evecan, D.; Zayim, E. Highly Uniform Electrochromic Tungsten Oxide Thin Films Deposited by E-Beam Evaporation for Energy Saving Systems. Curr. Appl. Phys. 2019, 19, 198–203. [Google Scholar] [CrossRef]
- Buso, D.; Pacifico, J.; Martucci, A.; Mulvaney, P. Gold-Nanoparticle-Doped TiO2 Semiconductor Thin Films: Optical Characterization. Adv. Funct. Mater. 2007, 17, 347–354. [Google Scholar] [CrossRef]
- Buso, D.; Palmer, L.; Bello, V.; Mattei, G.; Post, M.; Mulvaney, P.; Martucci, A. Self-Assembled Gold Nanoparticle Monolayers in Sol–Gel Matrices: Synthesis and Gas Sensing Applications. J. Mater. Chem. 2009, 19, 2051–2057. [Google Scholar] [CrossRef]
- Valyukh, I.; Green, S.; Arwin, H.; Niklasson, G.A.; Wäckelgård, E.; Granqvist, C.G. Spectroscopic Ellipsometry Characterization of Electrochromic Tungsten Oxide and Nickel Oxide Thin Films Made by Sputter Deposition. Sol. Energy Mater. Sol. Cells 2010, 94, 724–732. [Google Scholar] [CrossRef]
- Sando, D.; Carrétéro, C.; Grisolia, M.N.; Barthélémy, A.; Nagarajan, V.; Bibes, M. States in the Gap. Adv. Opt. Mater. 2018, 6, 1700836. [Google Scholar] [CrossRef]
- Kwong, W.L.; Qiu, H.; Nakaruk, A.; Koshy, P.; Sorrell, C.C. Photoelectrochemical Properties of WO3 Thin Films Prepared by Electrodeposition. Energy Procedia 2013, 34, 617–626. [Google Scholar] [CrossRef] [Green Version]
- Bujji Babu, M.; Madhuri, V.; Structural, K. Morphological and Optical Properties of Electron Beam Evaporated WO3 Thin Films. J. Taibah Univ. Sci. 2017, 11, 1232–1237. [Google Scholar] [CrossRef]
- Chen, Q.L.; Lai, X.; Yan, M.L.; Tang, G.R.; Luo, J.Y.; Chen, J.; Xie, W.G. Preparation of Tungsten Oxide Nanoplate Thin Film and Its Gas Sensing Properties. Adv. Mater. Res. 2013, 687–690. [Google Scholar] [CrossRef]
- Della Gaspera, E.; Bersani, M.; Mattei, G.; Nguyen, T.L.; Mulvaney, P.; Martucci, A. Cooperative Effect of Au and Pt inside TiO2 Matrix for Optical Hydrogen Detection at Room Temperature Using Surface Plasmon Spectroscopy. Nanoscale 2012, 4, 5972–5979. [Google Scholar] [CrossRef]
- Burkhardt, S.; Elm, M.T.; Lani-Wayda, B.; Klar, P.J. In Situ Monitoring of Lateral Hydrogen Diffusion in Amorphous and Polycrystalline WO3 Thin Films. Adv. Mater. Interfaces 2018, 5, 1701587. [Google Scholar] [CrossRef]
- Yaacob, M.H.; Breedon, M.; Kalantar-zadeh, K.; Wlodarski, W. Absorption Spectral Response of Nanotextured WO3 Thin Films with Pt Catalyst towards H2. Sens. Actuators B Chem. 2009, 137, 115–120. [Google Scholar] [CrossRef]
- Xiang, Q.; Meng, G.F.; Zhao, H.B.; Zhang, Y.; Li, H.; Ma, W.J.; Xu, J.Q. Au Nanoparticle Modified WO3 Nanorods with Their Enhanced Properties forPhotocatalysis and Gas Sensing. J. Phys. Chem. C 2010, 114, 2049–2055. [Google Scholar] [CrossRef]
- Della Gaspera, E.; Gulglielmi, M.; Martucci, A.; Giancaterini, L.; Cantalini, C. Enhanced optical and electrical gas sensing response of sol–gel based NiO–Au and ZnO–Au nanostructured thin films. Sens. Actuators B Chem. 2012, 164, 54–63. [Google Scholar] [CrossRef]
- Amani, E.; Khojier, K.; Zoriasatain, S. Improving the hydrogen gas sensitivity of WO3 thin films by modifying the deposition angle andthickness of different promoter layers. Int. J. Hydrogen Energy 2017, 42, 29620–29628. [Google Scholar] [CrossRef]
Sample | WO3 Phase | Processing Conditions | Thickness nm |
---|---|---|---|
A-WO3 | amorphous | E-beam deposition + thermal stabilization @300 °C × 3 h | 470 |
C-WO3_500 | crystalline | E-beam deposition + thermal treatment @550 °C × 2 h | 420 |
C-WO3_300 | crystalline | E-beam deposition + thermal treatment @550 °C × 2 h | 340 |
Nano-WO3 | crystalline nanoplates | E-beam deposition + HNO3 1.5 M @ 50 °C × 3 h + drying over plate @150 °C × 30 min + thermal treatment @550 °C × 2 h | / |
Sample | Process | Operating Temperature | Type of Response | Hydrogen Concentration | Response Time | Reference |
---|---|---|---|---|---|---|
C-WO3_500 | E-beam + NPs spinning | 250 °C | Absorbance | 1% in air | 3.1 min | This work |
C-WO3_300 | E-beam + NPs spinning | 250 °C | Absorbance | 1% in air | 1.8 min | This work |
Nano-WO3 | E-beam + acid treatment + NPs spinning | 250 °C | Absorbance | 1% in air | 53 s | This work |
NiO-Au | Sol-gel | 300 °C | Absorbance | 1% in air | 2.5 min | [37] |
ZnO-Au | Sol-gel | 300 °C | Absorbance | 1% in air | 70 s | [37] |
TiO2-Au | Sol-gel | Room T | Absorbance | 1% in air | 3 min | [33] |
TiO2-Pt | Sol-gel | Room T | Absorbance | 1% in air | 20–40 s | [33] |
WO3-Au | Sol-gel | 200 °C | Absorbance | 5% in Ar | 19 min | [17] |
WO3-Pt | Sol-gel | 200 °C | Absorbance | 5% in Ar | 20 s | [17] |
WO3-Pt | RF-Magnetron Sputtering | 300 K | Absorbance | 1% in air | 55 s | [13] |
WO3-Pt | RF-Magnetron Sputtering | 423 K | Absorbance | 1% in air | 360 s | [13] |
Porous/nanowires WO3-Pt films | Solvothermal And PS template + sputtering | Room T | Transmittance | 4% in Ar | 24.8 s | [12] |
WO3-Pd | Electrostatic Spray deposition | Room T | Color (reflectance) | 1% in N2 | 15–30 s | [16] |
WO3-Au Nano rods | Hydrothermal | 290 °C | Resistance | 50 ppm | 8 s | [36] |
WO3-Pt | E-beam | 80 °C | Current | 0.1% in air | 40 s | [38] |
WO3-Au | E-beam | 200 °C | Current | 0.1% in air | 60 s | [38] |
WO3-Pt | Sputtering | 200 °C | Current | 1% in air | 200 s | [14] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colusso, E.; Rigon, M.; Corso, A.J.; Pelizzo, M.G.; Martucci, A. Optical Hydrogen Sensing Properties of e-Beam WO3 Films Decorated with Gold Nanoparticles. Sensors 2023, 23, 1936. https://doi.org/10.3390/s23041936
Colusso E, Rigon M, Corso AJ, Pelizzo MG, Martucci A. Optical Hydrogen Sensing Properties of e-Beam WO3 Films Decorated with Gold Nanoparticles. Sensors. 2023; 23(4):1936. https://doi.org/10.3390/s23041936
Chicago/Turabian StyleColusso, Elena, Michele Rigon, Alain Jody Corso, Maria Guglielmina Pelizzo, and Alessandro Martucci. 2023. "Optical Hydrogen Sensing Properties of e-Beam WO3 Films Decorated with Gold Nanoparticles" Sensors 23, no. 4: 1936. https://doi.org/10.3390/s23041936
APA StyleColusso, E., Rigon, M., Corso, A. J., Pelizzo, M. G., & Martucci, A. (2023). Optical Hydrogen Sensing Properties of e-Beam WO3 Films Decorated with Gold Nanoparticles. Sensors, 23(4), 1936. https://doi.org/10.3390/s23041936