A Sensor-Aided System for Physical Perfect Control Applications in the Continuous-Time Domain
Abstract
:1. Introduction
2. System Representation
3. Preliminaries
3.1. Generalized -Inverse
3.2. Continuous-Time Perfect Control
3.3. The LQ Regulation
3.4. The LQR with Integrating Action
3.5. Systems under Consideration
3.5.1. The Cascade Multi-Tank System
3.5.2. The Two-Level Thermal Object
3.6. Quality Criteria
- ISE—Integral of Squared Error defined by
- MOE—Minimum of energy which is an integral of squared control signal
- RT—Regulation time which is a time considered from the beginning of the simulation to receiving the tolerance range of the expected value by the system output.
4. The Real Continuous-Time Perfect Control
5. Simulation Studies
5.1. The Cascade Multi-Tank System Control
5.2. The Two-Level Thermal Object Control
6. Discussion on the Obtained Simulation Results
7. The Sensor-Aided System—A Real experiment Setup
8. A Real Experiment on a Sensor-Aided Servomechanism
8.1. The First Experiment with the RCTPC Law
8.2. The Second Experiment with the RCTPC Law
8.3. Experiment with PID Regulator
9. Discussion on the Obtained Sensor-Aided System Control Results
10. Conclusions and Open Problems
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Symbol | Description | Value | Unit |
---|---|---|---|
height of the first tank | 0.35 | m | |
height of the second tank | 0.35 | m | |
height of the third tank | 0.35 | m | |
cross-section of the first valve | m2 | ||
cross-section of the second valve | m2 | ||
cross-section of the third valve | m2 | ||
initial liquid height of the 1st tank | 0.12 | m | |
initial liquid height of the 2nd tank | 0.8 | m | |
initial liquid height of the 3rd tank | 0.15 | m | |
flow factor of the first tank | 0.5 | - | |
flow factor of the second tank | 0.5 | - | |
flow factor of the third tank | 0.5 | - | |
R | radius of the third tank | 0.365 | m |
a | the base of the first tank | 0.25 | m |
b | distance between tanks | 0.348 | m |
c | base of the second tank | 0.1 | m |
w | the width of all tanks | 0.035 | m |
set flow through the pump | (m3)/s | ||
q | liquid inlet to the upper tank | - | (m3)/s |
initial condition of liquid inlet | 0.035 | (m3)/s |
Symbol | Description | Value | Unit |
---|---|---|---|
interior temperature | - | °C | |
initial interior temperature | 0 | °C | |
exterior temperature | - | °C | |
initial exterior temperature | −20 | °C | |
attic temperature | - | °C | |
initial attic temperature | 0 | °C | |
heat power | - | W | |
initial heat power | 20,000 | W | |
interior thermal capacity | 25,714.29 | J/K | |
attic thermal capacity | 5714.29 | J/K | |
loss coefficient of the roof | 60 | - | |
loss coefficient of the external walls | 80 | - | |
loss coefficient of the ceiling | 50 | - |
References
- Perrusquía, A.; Yu, W. Identification and optimal control of nonlinear systems using recurrent neural networks and reinforcement learning: An overview. Neurocomputing 2021, 438, 145–154. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, S.; Liao, L. Near-optimal control of nonlinear dynamical systems: A brief survey. Annu. Rev. Control 2019, 47, 71–80. [Google Scholar] [CrossRef]
- Li, Y.; Yang, T.; Tong, S. Adaptive neural networks finite-time optimal control for a class of nonlinear systems. IEEE Trans. Neural Netw. Learn. Syst. 2019, 31, 4451–4460. [Google Scholar]
- Abdulkareem, K.H.; Arbaiy, N.; Zaidan, A.; Zaidan, B.; Albahri, O.S.; Alsalem, M.; Salih, M.M. A new standardisation and selection framework for real-time image dehazing algorithms from multi-foggy scenes based on fuzzy Delphi and hybrid multi-criteria decision analysis methods. Neural Comput. Appl. 2021, 33, 1029–1054. [Google Scholar]
- Kuznetsov, B.; Bovdui, I.; Nikitina, T. Robust electromechanical servo system parametric synthesis as multi criteria game decision based on particles multi swarm optimization. In Proceedings of the 2019 IEEE 5th International Conference Actual Problems of Unmanned Aerial Vehicles Developments (APUAVD), Kiev, Ukraine, 22–24 October 2019; pp. 206–209. [Google Scholar]
- Ozdemir, S.; Sahin, G. Multi-criteria decision-making in the location selection for a solar PV power plant using AHP. Measurement 2018, 129, 218–226. [Google Scholar]
- Mishra, A.R.; Rani, P.; Pardasani, K.R.; Mardani, A.; Stević, Ž.; Pamučar, D. A novel entropy and divergence measures with multi-criteria service quality assessment using interval-valued intuitionistic fuzzy TODIM method. Soft Comput. 2020, 24, 11641–11661. [Google Scholar]
- Okwu, M.O.; Tartibu, L.K.; Maware, C.; Enarevba, D.R.; Afenogho, J.O.; Essien, A. Emerging Technologies of Industry 4.0: Challenges and Opportunities. In Proceedings of the 2022 International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems (icABCD), Durban, South Africa, 4–5 August 2022; pp. 1–13. [Google Scholar] [CrossRef]
- Majewski, P.; Pawuś, D.; Szurpicki, K.; Hunek, W.P. Toward Optimal Control of a Multivariable Magnetic Levitation System. Appl. Sci. 2022, 12, 674. [Google Scholar]
- Singh, A.; Sharma, S.; Purohit, K.C.; Kumar, K.N. Artificial Intelligence based Framework for Effective Performance of Traffic Light Control System. In Proceedings of the 2021 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES), Chennai, India, 24–25 September 2021; pp. 1–4. [Google Scholar]
- Noye, S.; Martinez, R.M.; Carnieletto, L.; De Carli, M.; Aguirre, A.C. A review of advanced ground source heat pump control: Artificial intelligence for autonomous and adaptive control. Renew. Sustain. Energy Rev. 2022, 153, 111685. [Google Scholar]
- Ullah, N.; Sami, I.; Chowdhury, M.S.; Techato, K.; Alkhammash, H.I. Artificial intelligence integrated fractional order control of doubly fed induction generator-based wind energy system. IEEE Access 2020, 9, 5734–5748. [Google Scholar]
- Soong, M.F.; Ramli, R.; Saifizul, A.A.; Mamat, A. Handling performance criteria evaluation for vehicle suspension system with semi-active control strategies. Int. J. Adv. Mechatron. Syst. 2021, 9, 11–20. [Google Scholar] [CrossRef]
- Izci, D.; Ekinci, S.; Kayri, M.; Eker, E. A novel improved arithmetic optimization algorithm for optimal design of PID controlled and Bode’s ideal transfer function based automobile cruise control system. Evol. Syst. 2022, 13, 453–468. [Google Scholar] [CrossRef]
- Majewski, P.; Hunek, W.P.; Krok, M. Perfect Control for Continuous-Time LTI State-Space Systems: The Nonzero Reference Case Study. IEEE Access 2021, 9, 82848–82856. [Google Scholar] [CrossRef]
- Feliks, T.; Hunek, W.P.; Krok, M. Towards a new general IMC-based high-order minimum-energy perfect control design paradigm. In Proceedings of the 2020 7th International Conference on Control, Decision and Information Technologies (CoDIT), Prague, Czech Republic, 29 June–2 July 2020; Volume 1, pp. 891–896. [Google Scholar]
- Krok, M.; Hunek, W.P.; Majewski, P. Continuous-Time Perfect Control Algorithm—A State Feedback Approach. Appl. Sci. 2021, 11, 7466. [Google Scholar] [CrossRef]
- Krok, M.; Majewski, P.; Hunek, W.P.; Feliks, T. Energy Optimization of the Continuous-Time Perfect Control Algorithm. Energies 2022, 15, 1555. [Google Scholar]
- Molloy, T.L.; Inga, J.; Flad, M.; Ford, J.J.; Perez, T.; Hohmann, S. Inverse open-loop noncooperative differential games and inverse optimal control. IEEE Trans. Autom. Control 2019, 65, 897–904. [Google Scholar] [CrossRef]
- Krok, M.; Hunek, W.P.; Feliks, T. Switching perfect control algorithm. Symmetry 2020, 12, 816. [Google Scholar] [CrossRef]
- Cao, F.; Yang, T.; Li, Y.; Tong, S. Adaptive neural inverse optimal control for a class of strict feedback stochastic nonlinear systems. In Proceedings of the 2019 IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS), Dali, China, 24–27 May 2019; pp. 432–436. [Google Scholar]
- Šitum, Ž.; Ćorić, D. Position Control of a Pneumatic Drive Using a Fuzzy Controller with an Analytic Activation Function. Sensors 2022, 22, 1004. [Google Scholar] [CrossRef]
- Zhang, R.; Gao, L. The Brushless DC motor control system Based on neural network fuzzy PID control of power electronics technology. Optik 2022, 271, 169879. [Google Scholar]
- Zaki, A.M.; El-Bardini, M.; Soliman, F.; Sharaf, M.M. Embedded two level direct adaptive fuzzy controller for DC motor speed control. Ain Shams Eng. J. 2018, 9, 65–75. [Google Scholar]
- You, S.; Gil, J.; Kim, W. Extended state observer based robust position tracking control for DC motor with external disturbance and system uncertainties. J. Electr. Eng. Technol. 2019, 14, 1637–1646. [Google Scholar] [CrossRef]
- Ramanandan, A. High Accuracy Sensor Aided Inertial Navigation Systems. Ph.D. Thesis, University of California, Riverside, CA, USA, 2011. [Google Scholar]
- Sun, Y.; Xu, J.; Qiang, H.; Chen, C.; Lin, G. Adaptive sliding mode control of maglev system based on RBF neural network minimum parameter learning method. Measurement 2019, 141, 217–226. [Google Scholar] [CrossRef]
- Kocić, J.; Jovičić, N.; Drndarević, V. Sensors and sensor fusion in autonomous vehicles. In Proceedings of the 2018 26th Telecommunications Forum (TELFOR), Belgrade, Serbia, 20–21 November 2018; pp. 420–425. [Google Scholar]
- Cheng, P.; Deng, R.; Chen, J. Energy-efficient cooperative spectrum sensing in sensor-aided cognitive radio networks. IEEE Wirel. Commun. 2012, 19, 100–105. [Google Scholar] [CrossRef]
- Pawuś, D.; Paszkiel, S. Application of EEG Signals Integration to Proprietary Classification Algorithms in the Implementation of Mobile Robot Control with the Use of Motor Imagery Supported by EMG Measurements. Appl. Sci. 2022, 12, 5762. [Google Scholar]
- Ishola, F.; Cho, M. Experimental Study on Photodiode Array Sensor Aided MEMS Fine Steering Mirror Control for Laser Communication Platforms. IEEE Access 2021, 9, 100197–100207. [Google Scholar] [CrossRef]
- Dong, X.; Mehmet, C.V.; Irmak, S. Autonomous precision agriculture through integration of wireless underground sensor networks with center pivot irrigation systems. Ad Hoc Netw. 2013, 11, 1975–1987. [Google Scholar] [CrossRef]
- Borrelly, J.J.; Coste-Maniere, É; Espiau, B.; Kapellos, K.; Pissard-Gibollet, R.; Simon, D.; Turro, N. The ORCCAD Architecture. Int. J. Robot. Res. 1998, 17, 338–359. [Google Scholar] [CrossRef]
- Purwanto, F.H.; Utami, E.; Pramono, E. Design of server room temperature and humidity control system using fuzzy logic based on microcontroller. In Proceedings of the 2018 International Conference on Information and Communications Technology (ICOIACT), Yogyakarta, Indonesia, 6–7 March 2018; pp. 390–395. [Google Scholar]
- Monea, B.F.; Ionete, E.I.; Spiridon, S.I.; Ion-Ebrasu, D.; Petre, E. Carbon nanotubes and carbon nanotube structures used for temperature measurement. Sensors 2019, 19, 2464. [Google Scholar]
- Sokół, S.; Pawuś, D.; Majewski, P.; Krok, M. The Study of the Effectiveness of Advanced Algorithms for Learning Neural Networks Based on FPGA in the Musical Notation Classification Task. Appl. Sci. 2022, 12, 9829. [Google Scholar] [CrossRef]
- Shinoda, J.; Mylonas, A.; Kazanci, O.B.; Tanabe, S.I.; Olesen, B.W. Differences in temperature measurement by commercial room temperature sensors: Effects of room cooling system, loads, sensor type and position. Energy Build. 2021, 231, 110630. [Google Scholar]
- Pawuś, D.; Paszkiel, S. BCI Wheelchair Control Using Expert System Classifying EEG Signals Based on Power Spectrum Estimation and Nervous Tics Detection. Appl. Sci. 2022, 12, 10385. [Google Scholar] [CrossRef]
- Guntner, A.T.; Abegg, S.; Konigstein, K.; Gerber, P.A.; Schmidt-Trucksass, A.; Pratsinis, S.E. Breath sensors for health monitoring. ACS Sensors 2019, 4, 268–280. [Google Scholar] [CrossRef]
- Palacín, J.; Martínez, D. Improving the Angular Velocity Measured with a Low-Cost Magnetic Rotary Encoder Attached to a Brushed DC Motor by Compensating Magnet and Hall-Effect Sensor Misalignments. Sensors 2021, 21, 4763. [Google Scholar]
- Hunek, W.P.; Krok, M. Parameter matrix σ-inverse in design of structurally stable pole-free perfect control for state-space systems. In Proceedings of the 2018 24th International Conference on Automation and Computing (ICAC), Newcastle Upon Tyne, UK, 6–7 September 2018; pp. 1–6. [Google Scholar]
- Yit, K.K.; Rajendran, P. Enhanced longitudinal motion control of UAV simulation by using P-LQR method. Int. J. Micro Air Veh. 2015, 7, 203–210. [Google Scholar]
- Kwakernaak, H.; Sivan, R. Linear Optimal Control Systems; Wiley-Interscience: Hoboken, NJ, USA, 1969; Volume 1072. [Google Scholar]
- Levine, W.S. The Control Handbook (Three Volume Set); CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Hunek, W.P. Towards a General Theory of Control Zeros for LTI MIMO Systems; Oficyna Wydawnicza Politechniki Opolskiej: Opole, Poland, 2011. [Google Scholar]
- Bakun, P.; Długoński, O.; Piotrowski, R. Zaawansowane metody sterowania kaskadowym układem zbiorników. Pomiary Autom. Robot. 2015, 19, 25–30. [Google Scholar] [CrossRef] [Green Version]
- INTECO. Modular Servo System, User’s Manual. Available online: http://www.inteco.com.pl/products/modular-servo/ (accessed on 7 December 2022).
- Mrugalski, M.; Luzar, M.; Pazera, M.; Witczak, M.; Aubrun, C. Neural network-based robust actuator fault diagnosis for a non-linear multi-tank system. ISA Trans. 2016, 61, 318–328. [Google Scholar] [CrossRef]
- Yang, Z.J.; Sugiura, H. Robust nonlinear control of a three-tank system using finite-time disturbance observers. Control Eng. Pract. 2019, 84, 63–71. [Google Scholar]
- Yonchev, A.; Mladenov, M. H∞ Control Design of a Multitank System; Publishing House of Technical University of Sofia: Sofia, Bulgaria, 2020; Volume 70. [Google Scholar]
- Jovanović, Z.; Antić, D.; Milojković, M.; Nikolić, S. A New Laboratory Framework for Practical Work in Process Control; Faculty of Electronic Engineering, University of Nis: Nis, Serbia, 2018. [Google Scholar]
- Mai, W.; Chung, C. Model predictive control based on thermal dynamic building model in the demand-side management. In Proceedings of the 2016 IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, USA, 17–21 July 2016; pp. 1–5. [Google Scholar]
- Gray, F.M.; Schmidt, M. Thermal building modelling using Gaussian processes. Energy Build. 2016, 119, 119–128. [Google Scholar]
- Boodi, A.; Beddiar, K.; Amirat, Y.; Benbouzid, M. Simplified building thermal model development and parameters evaluation using a stochastic approach. Energies 2020, 13, 2899. [Google Scholar]
- Troitzsch, S.; Hamacher, T. Control-oriented thermal building modelling. In Proceedings of the 2020 IEEE Power & Energy Society General Meeting (PESGM), Montreal, QC, Canada, 2–6 August 2020; pp. 1–5. [Google Scholar]
- Pashchenko, F.; Kudinov, Y.; Pashchenko, A.; Duvanov, E. Fuzzy quadratic control of thermal object. In Proceedings of the 2019 1st International Conference on Control Systems, Mathematical Modelling, Automation and Energy Efficiency (SUMMA), Lipetsk, Russia, 20–22 November 2019; pp. 288–293. [Google Scholar]
- Bansal, H.O.; Sharma, R.; Shreeraman, P. PID controller tuning techniques: A review. J. Control Eng. Technol. 2012, 2, 168–176. [Google Scholar]
- Özdemir, M.T.; Öztürk, D. Comparative performance analysis of optimal PID parameters tuning based on the optics inspired optimization methods for automatic generation control. Energies 2017, 10, 2134. [Google Scholar] [CrossRef] [Green Version]
(m) | |||
(s) | |||
MOE (m3/s) |
(°C) | |||
(s) | |||
(W) |
Symbol | Description | Unit |
---|---|---|
input voltage | V | |
armature current | [A] | |
angular velocity of the rotor | [rad/s] | |
R | armature resistance | [Ω] |
damping factor | - | |
electromagnetic field | - |
RCTPC | 100 [°] | 300 [°] |
---|---|---|
[°] | ||
[°] | ||
[°] | ||
[s] | ||
[s] | ||
PID | 100 [°] | 300 [°] |
[°] | ||
[s] | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majewski, P.; Hunek, W.P.; Pawuś, D.; Szurpicki, K.; Wojtala, T. A Sensor-Aided System for Physical Perfect Control Applications in the Continuous-Time Domain. Sensors 2023, 23, 1947. https://doi.org/10.3390/s23041947
Majewski P, Hunek WP, Pawuś D, Szurpicki K, Wojtala T. A Sensor-Aided System for Physical Perfect Control Applications in the Continuous-Time Domain. Sensors. 2023; 23(4):1947. https://doi.org/10.3390/s23041947
Chicago/Turabian StyleMajewski, Paweł, Wojciech P. Hunek, Dawid Pawuś, Krzysztof Szurpicki, and Tomasz Wojtala. 2023. "A Sensor-Aided System for Physical Perfect Control Applications in the Continuous-Time Domain" Sensors 23, no. 4: 1947. https://doi.org/10.3390/s23041947
APA StyleMajewski, P., Hunek, W. P., Pawuś, D., Szurpicki, K., & Wojtala, T. (2023). A Sensor-Aided System for Physical Perfect Control Applications in the Continuous-Time Domain. Sensors, 23(4), 1947. https://doi.org/10.3390/s23041947