Automatic Counterfeit Currency Detection Using a Novel Snapshot Hyperspectral Imaging Algorithm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Security Features of a Taiwanese Banknote
2.2. Experimental Setup
2.3. Visible Snapshot-Based RGB to HSI Conversion Algorithm
2.4. Classification Method
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arya, S.; Sasikumar, M. Fake currency detection. In Proceedings of the 2019 International Conference on Recent Advances in Energy-Efficient Computing and Communication (ICRAECC), Nagercoil, India, 7–8 March 2019; pp. 1–4. [Google Scholar]
- Alnowaini, G.; Alttal, A.; Alabsi, A. Design and development SST Prototype for Yemeni paper currency. In Proceedings of the 2021 International Conference of Technology, Science and Administration (ICTSA), Taiz, Yemen, 22–24 March 2021; pp. 1–7. [Google Scholar]
- Kamble, K.; Bhansali, A.; Satalgaonkar, P.; Alagundgi, S. Counterfeit Currency Detection using Deep Convolutional Neural Network. In Proceedings of the 2019 IEEE Pune Section International Conference (PuneCon), Pune, India, 18–20 December 2019; pp. 1–4. [Google Scholar]
- Quercioli, E.; Smith, L. The economics of counterfeiting. Econometrica 2015, 83, 1211–1236. [Google Scholar] [CrossRef]
- Zhang, Q.; Yan, W.Q. Currency detection and recognition based on deep learning. In Proceedings of the 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Auckland, New Zealand, 27–30 November 2018; pp. 1–6. [Google Scholar]
- Guedes, A.; Algarra, M.; Prieto, A.C.; Valentim, B.; Hortelano, V.; Neto, S.; Algarra, R.; Noronha, F. Raman microspectroscopy of genuine and fake euro banknotes. Spectrosc. Lett. 2013, 46, 569–576. [Google Scholar] [CrossRef]
- Upadhyaya, A.; Shokeen, V.; Srivastava, G. Counterfeit Currency Detection Techniques. In Proceedings of the 2018 8th International Conference on Cloud Computing, Data Science & Engineering (Confluence), Noida, India, 11–12 January 2018; pp. 394–398. [Google Scholar]
- Baldwin, C.D. Til Death Do Us Part: Filthy Rich; Strategic Book Publishing & Rights Agency: Vero Beach, FL, USA, 2016. [Google Scholar]
- Upadhyaya, A.; Shokeen, V.; Srivastava, G. Analysis of Counterfeit Currency Detection Techniques for Classification Model. In Proceedings of the 2018 4th International Conference on Computing Communication and Automation (ICCCA), Noida, India, 14–15 December 2018; pp. 1–6. [Google Scholar]
- Alnowaini, G.; Alabsi, A.; Ali, H. Yemeni Paper Currency Detection System. In Proceedings of the 2019 First International Conference of Intelligent Computing and Engineering (ICOICE), Hadhramout, Yemen, 15–16 December 2019; pp. 1–7. [Google Scholar]
- Alekhya, D.; Prabha, G.D.S.; Rao, G.V.D. Fake currency detection using image processing and other standard methods. Int. J. Res. Comput. Commun. Technol. 2014, 3, 128–131. [Google Scholar]
- Lim, H.-T.; Matham, M.V. Instrumentation challenges of a pushbroom hyperspectral imaging system for currency counterfeit applications. In Proceedings of the International Conference on Optical and Photonic Engineering (icOPEN 2015), Singapore, 14–16 April 2015; pp. 658–664. [Google Scholar]
- Rathee, N.; Kadian, A.; Sachdeva, R.; Dalel, V.; Jaie, Y. Feature fusion for fake Indian currency detection. In Proceedings of the 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 16–18 March 2016; pp. 1265–1270. [Google Scholar]
- Cardin, V.; Dion-Bertrand, L.-I.; Poirier, F.; Marcet, S.; Yvon-Leroux, J. Hyperspectral VIS/SWIR wide-field imaging for ink analysis. In Proceedings of the Hyperspectral Imaging and Applications, Birmingham, UK, 4 October 2020; p. 1157609. [Google Scholar]
- Lim, H.-T.; Murukeshan, V.M. Hyperspectral imaging of polymer banknotes for building and analysis of spectral library. Opt. Lasers Eng. 2017, 98, 168–175. [Google Scholar] [CrossRef]
- Brauns, E.B.; Dyer, R.B. Fourier transform hyperspectral visible imaging and the nondestructive analysis of potentially fraudulent documents. Appl. Spectrosc. 2006, 60, 833–840. [Google Scholar] [CrossRef]
- Silva, C.S.; Pimentel, M.F.; Honorato, R.S.; Pasquini, C.; Prats-Montalbán, J.M.; Ferrer, A. Near infrared hyperspectral imaging for forensic analysis of document forgery. Analyst 2014, 139, 5176–5184. [Google Scholar] [CrossRef]
- Schneider, A.; Feussner, H. Biomedical Engineering in Gastrointestinal Surgery; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Vasefi, F.; MacKinnon, N.; Farkas, D. Hyperspectral and multispectral imaging in dermatology. In Imaging in Dermatology; Elsevier: Amsterdam, The Netherlands, 2016; pp. 187–201. [Google Scholar]
- Schelkanova, I.; Pandya, A.; Muhaseen, A.; Saiko, G.; Douplik, A. Early optical diagnosis of pressure ulcers. In Biophotonics for Medical Applications; Elsevier: Amsterdam, The Netherlands, 2015; pp. 347–375. [Google Scholar]
- ElMasry, G.; Sun, D.-W. Principles of hyperspectral imaging technology. In Hyperspectral Imaging for Food Quality Analysis and Control; Elsevier: Amsterdam, The Netherlands, 2010; pp. 3–43. [Google Scholar]
- Tsai, C.-L.; Mukundan, A.; Chung, C.-S.; Chen, Y.-H.; Wang, Y.-K.; Chen, T.-H.; Tseng, Y.-S.; Huang, C.-W.; Wu, I.-C.; Wang, H.-C. Hyperspectral Imaging Combined with Artificial Intelligence in the Early Detection of Esophageal Cancer. Cancers 2021, 13, 4593. [Google Scholar] [CrossRef]
- Tsai, T.-J.; Mukundan, A.; Chi, Y.-S.; Tsao, Y.-M.; Wang, Y.-K.; Chen, T.-H.; Wu, I.-C.; Huang, C.-W.; Wang, H.-C. Intelligent Identification of Early Esophageal Cancer by Band-Selective Hyperspectral Imaging. Cancers 2022, 14, 4292. [Google Scholar] [CrossRef]
- Fang, Y.-J.; Mukundan, A.; Tsao, Y.-M.; Huang, C.-W.; Wang, H.-C. Identification of Early Esophageal Cancer by Semantic Segmentation. J. Pers. Med. 2022, 12, 1204. [Google Scholar] [CrossRef]
- Huang, H.-Y.; Hsiao, Y.-P.; Mukundan, A.; Tsao, Y.-M.; Chang, W.-Y.; Wang, H.-C. Classification of Skin Cancer Using Novel Hyperspectral Imaging Engineering via YOLOv5. J. Clin. Med. 2023, 12, 1134. [Google Scholar] [CrossRef]
- Chen, C.-W.; Tseng, Y.-S.; Mukundan, A.; Wang, H.-C. Air Pollution: Sensitive Detection of PM2. 5 and PM10 Concentration Using Hyperspectral Imaging. Appl. Sci. 2021, 11, 4543. [Google Scholar] [CrossRef]
- Mukundan, A.; Huang, C.-C.; Men, T.-C.; Lin, F.-C.; Wang, H.-C. Air Pollution Detection Using a Novel Snap-Shot Hyperspectral Imaging Technique. Sensors 2022, 22, 6231. [Google Scholar] [CrossRef] [PubMed]
- Li, K.-C.; Lu, M.-Y.; Nguyen, H.T.; Feng, S.-W.; Artemkina, S.B.; Fedorov, V.E.; Wang, H.-C. Intelligent identification of MoS2 nanostructures with hyperspectral imaging by 3D-CNN. Nanomaterials 2020, 10, 1161. [Google Scholar] [CrossRef] [PubMed]
- Wu, I.; Syu, H.-Y.; Jen, C.-P.; Lu, M.-Y.; Chen, Y.-T.; Wu, M.-T.; Kuo, C.-T.; Tsai, Y.-Y.; Wang, H.-C. Early identification of esophageal squamous neoplasm by hyperspectral endoscopic imaging. Sci. Rep. 2018, 8, 13797. [Google Scholar] [CrossRef] [PubMed]
- Mukundan, A.; Tsao, Y.-M.; Artemkina, S.B.; Fedorov, V.E.; Wang, H.-C. Growth Mechanism of Periodic-Structured MoS2 by Transmission Electron Microscopy. Nanomaterials 2022, 12, 135. [Google Scholar] [CrossRef]
- Mukundan, A.; Feng, S.-W.; Weng, Y.-H.; Tsao, Y.-M.; Artemkina, S.B.; Fedorov, V.E.; Lin, Y.-S.; Huang, Y.-C.; Wang, H.-C. Optical and Material Characteristics of MoS2/Cu2O Sensor for Detection of Lung Cancer Cell Types in Hydroplegia. Int. J. Mol. Sci. 2022, 23, 4745. [Google Scholar] [CrossRef] [PubMed]
- Mukundan, A.; Wang, H.-C. The Space Logistics needs will be necessary for Sustainable Space Activities Horizon 2030. In Proceedings of the AIAA SCITECH 2023 Forum, National Harbor, MD, USA, 23–27 January 2023; p. 1603. [Google Scholar]
- Mukundan, A.; Patel, A.; Saraswat, K.D.; Tomar, A.; Kuhn, T. Kalam Rover. In Proceedings of the AIAA SCITECH 2022 Forum, San Diego, CA, USA, 3–7 January 2022; p. 1047. [Google Scholar]
- Mukundan, A.; Wang, H.-C. The Brahmavarta Initiative: A Roadmap for the First Self-Sustaining City-State on Mars. Universe 2022, 8, 550. [Google Scholar] [CrossRef]
- Sun, D.-W. Hyperspectral Imaging for Food Quality Analysis and Control; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Huang, S.-Y.; Mukundan, A.; Tsao, Y.-M.; Kim, Y.; Lin, F.-C.; Wang, H.-C. Recent Advances in Counterfeit Art, Document, Photo, Hologram, and Currency Detection Using Hyperspectral Imaging. Sensors 2022, 22, 7308. [Google Scholar] [CrossRef]
- Mukundan, A.; Tsao, Y.-M.; Lin, F.-C.; Wang, H.-C. Portable and low-cost hologram verification module using a snapshot-based hyperspectral imaging algorithm. Sci. Rep. 2022, 12, 18475. [Google Scholar] [CrossRef]
- Mukundan, A.; Wang, H.-C.; Tsao, Y.-M. A Novel Multipurpose Snapshot Hyperspectral Imager used to Verify Security Hologram. In Proceedings of the 2022 International Conference on Engineering and Emerging Technologies (ICEET), Kuala, Lumpur, 27–28 October 2022; pp. 1–3. [Google Scholar]
- Feng, S.; Tang, S.; Zhao, C.; Cui, Y. A hyperspectral anomaly detection method based on low-rank and sparse decomposition with density peak guided collaborative representation. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–13. [Google Scholar] [CrossRef]
- Mukundan, A.; Wang, H.-C. Simplified Approach to Detect Satellite Maneuvers Using TLE Data and Simplified Perturbation Model Utilizing Orbital Element Variation. Appl. Sci. 2021, 11, 10181. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, X.; Wang, F.; Song, M.; Yu, C. Meta-learning based hyperspectral target detection using Siamese network. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [Google Scholar] [CrossRef]
- Hong, D.; He, W.; Yokoya, N.; Yao, J.; Gao, L.; Zhang, L.; Chanussot, J.; Zhu, X. Interpretable hyperspectral artificial intelligence: When nonconvex modeling meets hyperspectral remote sensing. IEEE Geosci. Remote Sens. Mag. 2021, 9, 52–87. [Google Scholar] [CrossRef]
- Lowe, A.; Harrison, N.; French, A.P. Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress. Plant Methods 2017, 13, 1–12. [Google Scholar] [CrossRef]
- Kapare, D.V.; Lokhande, S.; Kale, S. Automatic Cash Deposite Machine With Currency Detection Using Fluorescent And UV Light. Int. J. Comput. Eng. Res. 2013, 3, 309–311. [Google Scholar]
- Agasti, T.; Burand, G.; Wade, P.; Chitra, P. Fake currency detection using image processing. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Birmingham, UK, 13–15 October 2017; p. 052047. [Google Scholar]
- Bhatia, A.; Kedia, V.; Shroff, A.; Kumar, M.; Shah, B.K. Fake Currency Detection with Machine Learning Algorithm and Image Processing. In Proceedings of the 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 6–8 May 2021; pp. 755–760. [Google Scholar]
- Girgis, S.; Amer, E.; Gadallah, M. Deep learning algorithms for detecting fake news in online text. In Proceedings of the 2018 13th International Conference on Computer Engineering and Systems (ICCES), Cairo, Egypt, 18–19 December 2018; pp. 93–97. [Google Scholar]
- Vedaldi, A.; Lenc, K. Matconvnet: Convolutional neural networks for matlab. In Proceedings of the 23rd ACM International Conference on Multimedia, Brisbane, Australia, 26–30 October 2015; pp. 689–692. [Google Scholar]
- Alshayeji, M.H.; Al-Rousan, M.; Hassoun, D.T. Detection method for counterfeit currency based on bit-plane slicing technique. Int. J. Multimed. Ubiquitous Eng. 2015, 10, 225–242. [Google Scholar] [CrossRef]
- Gogoi, M.; Ali, S.E.; Mukherjee, S. Automatic Indian currency denomination recognition system based on artificial neural network. In Proceedings of the 2015 2nd International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 19–20 February 2015; pp. 553–558. [Google Scholar]
- Hymans, J.E.; Fu, R.T.-m. The diffusion of international norms of banknote iconography: A case study of the New Taiwan Dollar. Political Geogr. 2017, 57, 49–59. [Google Scholar] [CrossRef]
- Franses, P.H.; Welz, M. Cash use of the Taiwan dollar: Is it efficient? J. Risk Financ. Manag. 2019, 12, 13. [Google Scholar] [CrossRef]
- Wang, K.; Chang, M.; Wang, W.; Wang, G.; Pan, W. Predictions models of Taiwan dollar to US dollar and RMB exchange rate based on modified PSO and GRNN. Clust. Comput. 2019, 22, 10993–11004. [Google Scholar] [CrossRef]
- Chang, C.; Yu, T.; Yen, H. Paper Currency Verification with Support Vector Machines. In Proceedings of the 2007 Third International IEEE Conference on Signal-Image Technologies and Internet-Based System, Shanghai, China, 16–18 December 2007; pp. 860–865. [Google Scholar]
- Bolton, F.J.; Bernat, A.S.; Bar-Am, K.; Levitz, D.; Jacques, S. Portable, low-cost multispectral imaging system: Design, development, validation, and utilization. J. Biomed. Opt. 2018, 23, 121612. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, L.; Wang, J.; Song, Z.; Rehman, T.U.; Bureetes, T.; Ma, D.; Chen, Z.; Neeno, S.; Jin, J. Leaf Scanner: A portable and low-cost multispectral corn leaf scanning device for precise phenotyping. Comput. Electron. Agric. 2019, 167, 105069. [Google Scholar] [CrossRef]
- Kitić, G.; Tagarakis, A.; Cselyuszka, N.; Panić, M.; Birgermajer, S.; Sakulski, D.; Matović, J. A new low-cost portable multispectral optical device for precise plant status assessment. Comput. Electron. Agric. 2019, 162, 300–308. [Google Scholar] [CrossRef]
- Helfer, G.A.; Barbosa, J.L.V.; Alves, D.; da Costa, A.B.; Beko, M.; Leithardt, V.R.Q. Multispectral cameras and machine learning integrated into portable devices as clay prediction technology. J. Sens. Actuator Netw. 2021, 10, 40. [Google Scholar] [CrossRef]
- Sun, R.; Bouchard, M.B.; Burgess, S.A.; Radosevich, A.J.; Hillman, E.M. A low-cost, portable system for high-speed multispectral optical imaging. In Biomedical Optics and 3-D Imaging; Paper BTuD41; Optica Publishing Group: Washington, DC, USA, 2010. [Google Scholar]
- Alcázar, J.L.; León, M.; Galván, R.; Guerriero, S. Assessment of cyst content using mean gray value for discriminating endometrioma from other unilocular cysts in premenopausal women. Ultrasound Obstet. Gynecol. Off. J. Int. Soc. Ultrasound Obstet. Gynecol. 2010, 35, 228–232. [Google Scholar] [CrossRef]
- Guerriero, S.; Pilloni, M.; Alcazar, J.; Sedda, F.; Ajossa, S.; Mais, V.; Melis, G.B.; Saba, L. Tissue characterization using mean gray value analysis in deep infiltrating endometriosis. Ultrasound Obstet. Gynecol. 2013, 41, 459–464. [Google Scholar] [CrossRef]
- Lakshmanaprabu, S.; Mohanty, S.N.; Shankar, K.; Arunkumar, N.; Ramirez, G. Optimal deep learning model for classification of lung cancer on CT images. Future Gener. Comput. Syst. 2019, 92, 374–382. [Google Scholar]
- Frighetto-Pereira, L.; Menezes-Reis, R.; Metzner, G.A.; Rangayyan, R.M.; Azevedo-Marques, P.M.; Nogueira-Barbosa, M.H. Semiautomatic classification of benign versus malignant vertebral compression fractures using texture and gray-level features in magnetic resonance images. In Proceedings of the 2015 IEEE 28th International Symposium on Computer-Based Medical Systems, Carlos, Brazil, 22–25 June 2015; pp. 88–92. [Google Scholar]
- Costa, A.F.; Humpire-Mamani, G.; Traina, A.J.M. An efficient algorithm for fractal analysis of textures. In Proceedings of the 2012 25th SIBGRAPI Conference on Graphics, Patterns and Images, Ouro Preto, Brazil, 22–25 August 2012; pp. 39–46. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukundan, A.; Tsao, Y.-M.; Cheng, W.-M.; Lin, F.-C.; Wang, H.-C. Automatic Counterfeit Currency Detection Using a Novel Snapshot Hyperspectral Imaging Algorithm. Sensors 2023, 23, 2026. https://doi.org/10.3390/s23042026
Mukundan A, Tsao Y-M, Cheng W-M, Lin F-C, Wang H-C. Automatic Counterfeit Currency Detection Using a Novel Snapshot Hyperspectral Imaging Algorithm. Sensors. 2023; 23(4):2026. https://doi.org/10.3390/s23042026
Chicago/Turabian StyleMukundan, Arvind, Yu-Ming Tsao, Wen-Min Cheng, Fen-Chi Lin, and Hsiang-Chen Wang. 2023. "Automatic Counterfeit Currency Detection Using a Novel Snapshot Hyperspectral Imaging Algorithm" Sensors 23, no. 4: 2026. https://doi.org/10.3390/s23042026
APA StyleMukundan, A., Tsao, Y. -M., Cheng, W. -M., Lin, F. -C., & Wang, H. -C. (2023). Automatic Counterfeit Currency Detection Using a Novel Snapshot Hyperspectral Imaging Algorithm. Sensors, 23(4), 2026. https://doi.org/10.3390/s23042026