Acute Effects of Carbon Fiber Insole on Three Aspects of Sports Performance, Lower Extremity Muscle Activity, and Subjective Comfort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Experimental Task
2.4. Experimental Procedure
2.5. Data Analysis
2.6. Statistical Analysis
3. Results
3.1. Sports Performance
3.2. Muscular Activation
3.3. Subjective Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Tasks | Performance Measurement | Paired t-Test | d (Effect Size) | ||||
---|---|---|---|---|---|---|---|
COM | CFI | p | |||||
Mean ± SD | Range (Min, Max) | Mean ± SD | Range (Min, Max) | ||||
Power test | V-jump (Height, cm) | 44.97 ± 7.43 | (29.27, 59.58) | 45.66 ± 7.27 | (27.23, 59.07) | 0.054 ‡ | 0.37 (Medium) |
L-jump (Distance, cm) | 208.19 ± 19.17 | (166.04, 241.34) | 211.27 ± 20.75 | (156.64, 245.9) | 0.032 * | 0.41 (Medium) | |
Agility test | 5-10-5 m agility drill (Time, sec) | 5.76 ± 0.36 | (5.01, 6.64) | 5.71 ± 0.36 | (5.05, 6.45) | 0.098 ‡ | 0.29 (Small) |
Speed test | 50-m sprints (Speed, m/s) | 6.21 ± 0.45 | (5.58, 7.43) | 6.27 ± 0.49 | (5.42, 7.5) | 0.223 | 0.23 (Small) |
Localized muscular activation | Muscles | NEMG: % MVC | Paired t-Test | d (Effect Size) | |||
COM | CFI | p | |||||
Mean ±SD | Range (Min, Max) | Mean ±SD | Range (Min, Max) | ||||
RF | 54.85 ± 11.24 | (38.63, 86.27) | 54.68 ± 11.11 | (38.52, 85.7) | 0.164 | 0.27 (Small) | |
TA | 62.76 ± 11.04 | (43.87, 90.75) | 63.44 ± 10.90 | (45.43, 91.8) | 0.015 * | 0.50 (Medium) | |
BF | 61.42 ± 10.24 | (43.56, 86.21) | 61.40 ± 10.23 | (43.34, 86.68) | 0.879 | 0.03 (Small) | |
GM | 67.33 ± 11.87 | (47.22, 93.98) | 68.17 ± 11.61 | (47.85, 92.1) | 0.067 ‡ | 0.35 (Medium) |
Subjective Ratings (1–9 Scale) | Wilcoxon Signed-Rank Test | r (Effect Size) | ||||
---|---|---|---|---|---|---|
Items | COM | CFI | p | |||
Median ± SD | Range (Min, Max) | Median ± SD | Range (Min, Max) | |||
Stiffness | 2.60 ± 1.04 | (1, 5) | 6.17 ± 1.34 | (3, 9) | <0.001 * | 0.86 (Large) |
Energy Support | 4.67 ± 1.97 | (2, 9) | 5.67 ± 1.71 | (3, 8) | 0.047 * | 0.36 (Medium) |
Overall comfort | 6.77 ± 1.68 | (1, 9) | 5.43 ± 1.72 | (3, 9) | 0.002 * | 0.56 (Medium) |
Fatigue | 3.83 ± 1.60 | (2, 7) | 4.13 ± 1.55 | (2, 7) | 0.389 | 0.16 (Small) |
References
- Stefanyshyn, D.J.; Wannop, J.W. The influence of forefoot bending stiffness of footwear on athletic injury and performance. Footwear Sci. 2016, 8, 51–63. [Google Scholar] [CrossRef]
- Shorten, M.R. The energetics of running and running shoes. J. Biomech. 1993, 26, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Nigg, B.M.; Segesser, B. Biomechanical and orthopedic concepts in sport shoe construction. Med. Sci. Sports Exerc. 1992, 24, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Nigg, B.M.; MacIntosh, B.R.; Mester, J. Biomechanics and Biology of Movement; Nigg, B.M., MacIntosh, B.R., Mester, J., Eds.; Human Kinetics: Champaign, IL, USA, 2000; p. 468. [Google Scholar]
- Shorten, M.R. Biomechanics of sports shoes, by Benno M. Nigg. Footwear Sci. 2011, 3, 125–126. [Google Scholar] [CrossRef]
- Alexander, R.M.; Bennett, M. How elastic is a running shoe? New Sci. 1989, 15, 45–46. [Google Scholar]
- Turnball, A. The race for a better running shoe. New Sci. 1989, 15, 42–44. [Google Scholar]
- Stefanyshyn, D.; Nigg, B.M. Influence of midsole bending stiffness on joint energy and jump height performance. Med. Sci. Sports Exerc. 2000, 32, 471–476. [Google Scholar] [CrossRef] [PubMed]
- Stefanyshyn, D.J.; Nigg, B.M. Mechanical energy contribution of the metatarsophalangeal joint to running and sprinting. J. Biomech. 1997, 30, 1081–1085. [Google Scholar] [CrossRef] [PubMed]
- Butler, R.J.; Davis, I.M.; Laughton, C.M.; Hughes, M. Dual-Function Foot Orthosis: Effect on Shock and Control of Rearfoot Motion. Foot Ankle Int. 2003, 24, 410–414. [Google Scholar] [CrossRef] [PubMed]
- Hilário, B.E.; De Oliveira, M.L.; Barbosa, P.M.M.; Cunha, D.M.; Rigobello, G.D.S.; Nogueira, D.A.; Iunes, D.H.; Carvalho, L.C. Analysis of the use of insoles in the dynamic stability of the lower limbs in recreational runners: An exploratory study. Gait Posture 2022, 92, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Mündermann, A.; Stefanyshyn, D.J.; Nigg, B.M. Relationship between footwear comfort of shoe inserts and anthropometric and sensory factors. Med. Sci. Sports Exerc. 2001, 33, 1939–1945. [Google Scholar] [CrossRef] [PubMed]
- Ko, E.; Choi, H.; Kim, T.; Roh, J.; Lee, K. Effect of the Fatigue to Insole Types During Treadmill Exercise. Phys. Ther. Korea 2004, 11, 17–25. [Google Scholar]
- Melia, G.; Siegkas, P.; Levick, J.; Apps, C. Insoles of uniform softer material reduced plantar pressure compared to dual-material insoles during regular and loaded gait. Appl. Ergon. 2021, 91, 103298. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.; Williams, A.E.; Nester, C. Musculoskeletal disorders, foot health and footwear choice in occupations involving prolonged standing. Int. J. Ind. Ergon. 2021, 81, 103079. [Google Scholar] [CrossRef]
- Creaby, M.W.; May, K.; Bennell, K.L. Insole effects on impact loading during walking. Ergonomics 2011, 54, 665–671. [Google Scholar] [CrossRef] [PubMed]
- Huebner, A.; Schenk, P.; Grassme, R.; Anders, C. Effects of heel cushioning elements in safety shoes on muscle–physiological parameters. Int. J. Ind. Ergon. 2015, 46, 12–18. [Google Scholar] [CrossRef]
- Ko, M.; Ma, T.; Xiong, S. Effects of carbon fiber insole on lower-extremity muscle activation and wearing comfort during treadmill running. In Proceedings of the 13th International Conference on Applied Human Factors and Ergonomics, New York, NY, USA, 24–28 July 2022. [Google Scholar]
- Matijevich, E.S.; Honert, E.C.; Fan, Y.; Lam, G.; Nigg, B.M. A foot and footwear mechanical power theoretical framework: Towards understanding energy storage and return in running footwear. J. Biomech. 2022, 141, 111217. [Google Scholar] [CrossRef]
- Ortega, J.A.; Healey, L.A.; Swinnen, W.; Hoogkamer, W. Energetics and Biomechanics of Running Footwear with Increased Longitudinal Bending Stiffness: A Narrative Review. Sports Med. 2021, 51, 873–894. [Google Scholar] [CrossRef]
- Enders, H.; Vienneau, J.; Tomaras, E.K.; Koerger, H.; Nigg, S.R.; Nigg, B.M. Soccer shoe bending stiffness significantly alters game-specific physiology in a 25-minute continuous field-based protocol. Footwear Sci. 2015, 7, S91–S93. [Google Scholar] [CrossRef]
- Roy, J.-P.R.; Stefanyshyn, D. Shoe Midsole Longitudinal Bending Stiffness and Running Economy, Joint Energy, and EMG. Med. Sci. Sports Exerc. 2006, 38, 562–569. [Google Scholar] [CrossRef] [PubMed]
- Stefanyshyn, D.; Fusco, C. Athletics: Increased shoe bending stiffness increases sprint performance. Sports Biomech. 2004, 3, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Tinoco, N.; Bourgit, D.; Morin, J.-B. Influence of midsole metatarsophalangeal stiffness on jumping and cutting movement abilities. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2010, 224, 209–217. [Google Scholar] [CrossRef]
- Gregory, R.W.; Axtell, R.S.; Robertson, M.I.; Lunn, W.R. The Effects of a Carbon Fiber Shoe Insole on Athletic Performance in Collegiate Athletes. J. Sports Sci. 2018, 6, 219–230. [Google Scholar] [CrossRef] [Green Version]
- Ray, S.F.; Takahashi, K.Z. Gearing Up the Human Ankle-Foot System to Reduce Energy Cost of Fast Walking. Sci. Rep. 2020, 10, 8793. [Google Scholar] [CrossRef] [PubMed]
- Baxter, J.R.; Novack, T.A.; Van Werkhoven, H.; Pennell, D.R.; Piazza, S.J. Ankle joint mechanics and foot proportions differ between human sprinters and non-sprinters. Proc. R. Soc. B Boil. Sci. 2012, 279, 2018–2024. [Google Scholar] [CrossRef]
- Lee, S.S.M.; Piazza, S.J. Built for speed: Musculoskeletal structure and sprinting ability. J. Exp. Biol. 2009, 212, 3700–3707. [Google Scholar] [CrossRef]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
- McGuigan, M. Administration, Scoring and Interpretation of Selected Tests. In Essentials of Strength Training and Conditioning, 4th ed.; Haff, G.G., Triplett, N.T., Eds.; Human Kinetics: Champaign, IL, USA, 2016; pp. 249–315. [Google Scholar]
- Novacheck, T.F. The biomechanics of running. Tech. Orthop. 1998, 5, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Kean, C.O.; Behm, D.G.; Young, W.B. Fixed foot balance training increases rectus femoris activation during landing and jump height in recreationally active women. J. Sports Sci. Med. 2006, 5, 138–148. [Google Scholar]
- Yeow, C.-H. Hamstrings and quadriceps muscle contributions to energy generation and dissipation at the knee joint during stance, swing and flight phases of level running. Knee 2013, 20, 100–105. [Google Scholar] [CrossRef]
- Mishra, P.; Pandey, C.M.; Singh, U.; Gupta, A.; Sahu, C.; Keshri, A. Descriptive statistics and normality tests for sta-tistical data. Ann. Card. Anaesth. 2019, 22, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Kinchington, M.A.; Ball, K.A.; Naughton, G. Effects of footwear on comfort and injury in professional rugby league. J. Sports Sci. 2011, 29, 1407–1415. [Google Scholar] [CrossRef] [PubMed]
- Lohse, K.R.; Sainani, K.L.; Taylor, J.A.; Butson, M.L.; Knight, E.J.; Vickers, A.J. Systematic review of the use of “magnitude-based inference” in sports science and medicine. PLoS ONE 2020, 15, e0235318. [Google Scholar] [CrossRef]
- Welsh, A.H.; Knight, E.J. Magnitude-based Inference: A statistical review. Med. Sci. Sports Exerc. 2015, 47, 874–884. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: New York, NY, USA, 1988. [Google Scholar] [CrossRef]
- Fritz, C.O.; Morris, P.E.; Richler, J.J. Effect size estimates: Current use, calculations, and interpretation. J. Exp. Psychol. Gen. 2012, 141, 2–18. [Google Scholar] [CrossRef] [PubMed]
- Stefanyshyn, D.J.; Nigg, B.M. Contribution of the lower extremity joints to mechanical energy in running vertical jumps and running long jumps. J. Sports Sci. 1998, 16, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Corbin, D.M.; Hart, J.M.; McKeon, P.; Ingersoll, C.D.; Hertel, J. The Effect of Textured Insoles on Postural Control in Double and Single Limb Stance. J. Sport Rehabil. 2007, 16, 363–372. [Google Scholar] [CrossRef]
- DeBusk, H.; Hill, C.M.; Chander, H.; Knight, A.C.; Babski-Reeves, K. Influence of military workload and footwear on static and dynamic balance performance. Int. J. Ind. Ergon. 2018, 64, 51–58. [Google Scholar] [CrossRef]
- Ding, R.; Sterzing, T.; Qin, T.Y.; Cheung, J. Effect of metatarsal–phalangeal joint and sprint spike stiffness on sprint acceleration performance. Footwear Sci. 2011, 3, S41–S43. [Google Scholar] [CrossRef]
- Smith, G.; Lake, M.; Sterzing, T.; Milani, T. The influence of sprint spike bending stiffness on sprinting performance and metatarsophalangeal joint function. Footwear Sci. 2016, 8, 109–118. [Google Scholar] [CrossRef]
- Willwacher, S.; Kurz, M.; Menne, C.; Schrödter, E.; Willwacher, S.; Kurz, M.; Menne, C.; Schrödter, E.; Willwacher, S.; Kurz, M.; et al. Biomechanical response to altered footwear longitudinal bending stiffness in the early acceleration phase of sprinting. Footwear Sci. 2016, 8, 99–108. [Google Scholar] [CrossRef]
- Scholz, M.N.; Bobbert, M.F.; Van Soest, A.J.; Clark, J.R.; van Heerden, J. Running biomechanics: Shorter heels, better economy. J. Exp. Biol. 2008, 211, 3266–3271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnes, K.R.; Mcguigan, M.R.; Kilding, A.E. Lower-Body Determinants of Running Economy in Male and Female Distance Runners. J. Strength Cond. Res. 2014, 28, 1289–1297. [Google Scholar] [CrossRef]
- Kovács, B.; Kóbor, I.; Sebestyén, Ö.; Tihanyi, J. Longer Achilles tendon moment arm results in better running economy. Physiol. Int. 2020, 107, 527–541. [Google Scholar] [CrossRef] [PubMed]
- Madden, R.; Sakaguchi, M.; Tomaras, E.K.; Wannop, J.W.; Stefanyshyn, D. Forefoot bending stiffness, running economy and kinematics during overground running. Footwear Sci. 2016, 8, 91–98. [Google Scholar] [CrossRef]
- Oh, K.; Park, S. The bending stiffness of shoes is beneficial to running energetics if it does not disturb the natural MTP joint flexion. J. Biomech. 2017, 53, 127–135. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Hawley, J.; Burke, L.M. Design and analysis of research on sport performance enhancement. Med. Sci. Sports Exerc. 1999, 31, 472–485. [Google Scholar] [CrossRef]
- Alice, B.; Stéphane, A. Normal Gait. In Orthopedic Management of Children With Cerebral Palsy: A Comprehensive Approach; Nova Science Publishers Inc.: New York, NY, USA, 2015; p. 567. [Google Scholar]
- Wannop, J.W.; Killick, A.; Madden, R.; Stefanyshyn, D. The influence of gearing footwear on running biomechanics. Footwear Sci. 2017, 9, 111–119. [Google Scholar] [CrossRef]
- Breese, B.C.; Barker, A.R.; Armstrong, N.; Fulford, J.; Williams, C.A. Influence of thigh activation on the VO2 slow component in boys and men. Eur. J. Appl. Physiol. 2014, 114, 2309–2319. [Google Scholar] [CrossRef]
- Saunders, M.J.; Evans, E.M.; Arngrimsson, S.A.; Allison, J.D.; Warren, G.; Cureton, K. Muscle activation and the slow component rise in oxygen uptake during cycling. Med. Sci. Sports Exerc. 2000, 32, 2040–2045. [Google Scholar] [CrossRef] [PubMed]
- Nigg, B.M.; Vienneau, J.; Smith, A.C.; Trudeau, M.B.; Mohr, M.; Nigg, S.R. The Preferred Movement Path Paradigm: Influence of Running Shoes on Joint Movement. Med. Sci. Sports Exerc. 2017, 49, 1641–1648. [Google Scholar] [CrossRef]
- Crago, D.; Bishop, C.; Arnold, J.B. The effect of foot orthoses and insoles on running economy and performance in distance runners: A systematic review and meta-analysis. J. Sports Sci. 2019, 37, 2613–2624. [Google Scholar] [CrossRef]
- Fletcher, J.R.; MacIntosh, B.R. Achilles tendon strain energy in distance running: Consider the muscle energy cost. J. Appl. Physiol. 2015, 118, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Van Werkhoven, H.; Piazza, S.J. Does Foot Anthropometry Predict Metabolic Cost During Running? J. Appl. Biomech. 2017, 33, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Stearne, S.M.; McDonald, K.A.; Alderson, J.A.; North, I.; Oxnard, C.E.; Rubenson, J. The Foot’s Arch and the Energetics of Human Locomotion. Sci. Rep. 2016, 6, 19403. [Google Scholar] [CrossRef] [PubMed]
- Worobets, J.; Tomaras, E.; Wannop, J.W.; Stefanyshyn, D. Running shoe cushioning properties can influence oxygen consumption. Footwear Sci. 2013, 5, S75–S76. [Google Scholar] [CrossRef]
- Bergeron, M.F. Heat Stress and Thermal Strain Challenges in Running. J. Orthop. Sports Phys. Ther. 2014, 44, 831–838. [Google Scholar] [CrossRef] [PubMed]
- Pugh, L. The influence ofwind resistance in running and walking and the mechanical efficiency of work against horizontal or vertical forces. J. Physiol. 1971, 213, 255–276. [Google Scholar] [CrossRef]
- Arellano, C.J.; Kram, R. The metabolic cost of human running: Is swinging the arms worth it? J. Exp. Biol. 2014, 217, 2456–2461. [Google Scholar] [CrossRef]
- Modica, J.R.; Kram, R. Metabolic energy and muscular activity required for leg swing in running. J. Appl. Physiol. 2005, 98, 2126–2131. [Google Scholar] [CrossRef] [PubMed]
- Gruber, A.H.; Umberger, B.; Braun, B.; Hamill, J. Economy and rate of carbohydrate oxidation during running with rearfoot and forefoot strike patterns. J. Appl. Physiol. 2013, 115, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Ogueta-Alday, A.; Rodríguez-Marroyo, J.A.; García-López, J. Rearfoot Striking Runners Are More Economical Than Midfoot Strikers. Med. Sci. Sports Exerc. 2014, 46, 580–585. [Google Scholar] [CrossRef]
- Agresta, C.E.; Goulet, G.C.; Peacock, J.; Housner, J.; Zernicke, R.F.; Zendler, J. Years of running experience influences stride-to-stride fluctuations and adaptive response during step frequency perturbations in healthy distance runners. Gait Posture 2019, 70, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Weir, G.; Wyatt, H.; Van Emmerik, R.; Trudeau, M.B.; Willwacher, S.; Brüggemann, G.-P.; Hamill, J. Influence of neutral and stability athletic footwear on lower extremity coordination variability during a prolonged treadmill run in male rearfoot runners. Eur. J. Sport Sci. 2020, 20, 776–782. [Google Scholar] [CrossRef] [PubMed]
- Msc, L.F.C.; Castro, A.; Msc, A.F.D.A.N.; Laroche, D.P.; Cardozo, A.C.; Gonçalves, M. Utility of electromyographic fatigue threshold during treadmill running. Muscle Nerve 2015, 52, 1030–1039. [Google Scholar] [CrossRef]
Characteristics | Mean ± SD (n = 30) |
---|---|
Age (years) | 25.4 ± 3.2 |
Height (cm) | 173.2 ± 5.5 |
Body mass (kg) | 69.8 ± 11.3 |
Shoe size (mm) | 266.5 ± 4.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ko, M.; Ma, T.; Xiong, S. Acute Effects of Carbon Fiber Insole on Three Aspects of Sports Performance, Lower Extremity Muscle Activity, and Subjective Comfort. Sensors 2023, 23, 2154. https://doi.org/10.3390/s23042154
Ko M, Ma T, Xiong S. Acute Effects of Carbon Fiber Insole on Three Aspects of Sports Performance, Lower Extremity Muscle Activity, and Subjective Comfort. Sensors. 2023; 23(4):2154. https://doi.org/10.3390/s23042154
Chicago/Turabian StyleKo, Myeonghoon, Tiejun Ma, and Shuping Xiong. 2023. "Acute Effects of Carbon Fiber Insole on Three Aspects of Sports Performance, Lower Extremity Muscle Activity, and Subjective Comfort" Sensors 23, no. 4: 2154. https://doi.org/10.3390/s23042154
APA StyleKo, M., Ma, T., & Xiong, S. (2023). Acute Effects of Carbon Fiber Insole on Three Aspects of Sports Performance, Lower Extremity Muscle Activity, and Subjective Comfort. Sensors, 23(4), 2154. https://doi.org/10.3390/s23042154