Marine Sensors: Recent Advances and Challenges
Conflicts of Interest
References
- Faria, C.L.; Martins, M.S.; Matos, T.; Lima, R.; Miranda, J.M.; Gonçalves, L.M. Underwater Energy Harvesting to Extend Operation Time of Submersible Sensors. Sensors 2022, 22, 1341. [Google Scholar] [CrossRef] [PubMed]
- Dyomin, V.; Davydova, A.; Polovtsev, I.; Olshukov, A.; Kirillov, N.; Davydov, S. Underwater Holographic Sensor for Plankton Studies In Situ including Accompanying Measurements. Sensors 2021, 21, 4863. [Google Scholar] [CrossRef] [PubMed]
- Martins, M.S.; Faria, C.L.; Matos, T.; Goncalves, L.M.; Cabral, J.; Silva, A.; Jesus, S.M. Wideband and Wide Beam Polyvinylidene Difluoride (PVDF) Acoustic Transducer for Broadband Underwater Communications. Sensors 2019, 19, 3991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, H.-T.; Lee, E.-H.; Lee, S. Study on the Classification Performance of Underwater Sonar Image Classification Based on Convolutional Neural Networks for Detecting a Submerged Human Body. Sensors 2020, 20, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheng, X.; Dong, C.; Guo, L.; Li, L. A Bioinspired Twin Inverted Multiscale Matched Filtering Method for Detecting an Underwater Moving Target in a Reverberant Environment. Sensors 2019, 19, 5305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matos, T.; Faria, C.L.; Martins, M.S.; Henriques, R.; Gomes, P.A.; Goncalves, L.M. Development of a Cost-Effective Optical Sensor for Continuous Monitoring of Turbidity and Suspended Particulate Matter in Marine Environment. Sensors 2019, 19, 4439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penso, C.M.; Rocha, J.L.; Martins, M.S.; Sousa, P.J.; Pinto, V.C.; Minas, G.; Silva, M.M.; Goncalves, L.M. PtOEP–PDMS-Based Optical Oxygen Sensor. Sensors 2021, 21, 5645. [Google Scholar] [CrossRef] [PubMed]
- Subochev, P.; Kurnikov, A.; Sergeeva, E.; Kirillin, M.; Kapustin, I.; Belyaev, R.; Ermoshkin, A.; Molkov, A. Optoacoustic Sensing of Surfactant Crude Oil in Thermal Relaxation and Nonlinear Regimes. Sensors 2021, 21, 6142. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lin, M.; Yin, X.; Zhou, W. Analysis of the Antenna Array Orientation Performance of the Interferometric Microwave Radiometer (IMR) Onboard the Chinese Ocean Salinity Satellite. Sensors 2020, 20, 5396. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, J.; Zhou, C.; Ding, G.; Chen, M.; Zou, J.; Wang, G.; Kang, Y.; Pan, X. A Microfluidic Prototype System towards Microalgae Cell Separation, Treatment and Viability Characterization. Sensors 2019, 19, 4940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Wei, N.; Du, X. Waveform Design for Improved Detection of Extended Targets in Sea Clutter. Sensors 2019, 19, 3957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Höschle, C.; Cubaynes, H.C.; Clarke, P.J.; Humphries, G.; Borowicz, A. The Potential of Satellite Imagery for Surveying Whales. Sensors 2021, 21, 963. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zheng, X.; Li, X.; Wei, W.; Du, S.; Guo, F. Vicarious Radiometric Calibration of Ocean Color Bands for FY-3D/MERSI-II at Lake Qinghai, China. Sensors 2021, 21, 139. [Google Scholar] [CrossRef] [PubMed]
- Aslamov, I.; Kirillin, G.; Makarov, M.; Kucher, K.; Gnatovsky, R.; Granin, N. Autonomous System for Lake Ice Monitoring. Sensors 2021, 21, 8505. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonçalves, L.; Martins, M.S.; Lima, R.A.; Minas, G. Marine Sensors: Recent Advances and Challenges. Sensors 2023, 23, 2203. https://doi.org/10.3390/s23042203
Gonçalves L, Martins MS, Lima RA, Minas G. Marine Sensors: Recent Advances and Challenges. Sensors. 2023; 23(4):2203. https://doi.org/10.3390/s23042203
Chicago/Turabian StyleGonçalves, Luís, Marcos Silva Martins, Rui A. Lima, and Graça Minas. 2023. "Marine Sensors: Recent Advances and Challenges" Sensors 23, no. 4: 2203. https://doi.org/10.3390/s23042203
APA StyleGonçalves, L., Martins, M. S., Lima, R. A., & Minas, G. (2023). Marine Sensors: Recent Advances and Challenges. Sensors, 23(4), 2203. https://doi.org/10.3390/s23042203