A Low-Power Wireless System for Predicting Early Signs of Sudden Cardiac Arrest Incorporating an Optimized CNN Model Implemented on NVIDIA Jetson
Abstract
:1. Introduction
2. Design and Experimental Setup
2.1. Wireless ECG Module
2.2. Physionet SCA Data
2.3. Optimized, Subject-Wise Cross-Validated CNN Model
3. Results and Discussion
3.1. Wireless Module
3.2. CNN Module
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American Heart Association. Heart Disease and Stroke Statistics Update Fact Sheet at-a-Glance; American Heart Association: Chicago, IL, USA, 2021; pp. 626–644. [Google Scholar]
- Tsao, C.W.; Aday, A.W.; Almarzooq, Z.I.; Alonso, A.; Beaton, A.Z.; Bittencourt, M.S.; Boehme, A.K.; Buxton, A.E.; Carson, A.P.; Commodore-Mensah, Y.; et al. Heart disease and stroke statistics—2022 update: A report from the American Heart Association. Circulation 2022, 145, e153–e639. [Google Scholar] [CrossRef]
- Virani, S.S.; Alonso, A.; Aparicio, H.J.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Cheng, S.; Delling, F.N.; et al. Heart disease and stroke statistics—2021 update: A report from the American Heart Association. Circulation 2021, 143, e254–e743. [Google Scholar] [CrossRef]
- Rao, B.H. Global burden of sudden cardiac death and insights from India. Indian Heart J. 2014, 66, S18–S23. [Google Scholar] [CrossRef] [Green Version]
- Murugappan, M.; Murugesan, L.; Jerritta, S.; Adeli, H. Sudden Cardiac Arrest (SCA) prediction using ECG morphological features. Arab. J. Sci. Eng. 2021, 46, 947–961. [Google Scholar] [CrossRef]
- Tse, G.; Yan, B.P. Traditional and novel electrocardiographic conduction and repolarization markers of sudden cardiac death. Ep Eur. 2017, 19, 712–721. [Google Scholar] [CrossRef]
- Velázquez-González, J.R.; Peregrina-Barreto, H.; Rangel-Magdaleno, J.J.; Ramirez-Cortes, J.M.; Amezquita-Sanchez, J.P. ECG-Based Identification of Sudden Cardiac Death through Sparse Representations. Sensors 2021, 21, 7666. [Google Scholar] [CrossRef]
- Güvenç, H. Wireless ECG Device with Arduino. In Proceedings of the 2020 Medical Technologies Congress (TIPTEKNO), Antalya, Turkey, 19–20 November 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–4. [Google Scholar]
- Page, W. In Proceedings of the 2009 1st International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology, Aalborg, Denmark, 17–20 May 2009.
- Bonek, L.; Fenech, S.; Sapoznik, N.; Hanson, A.J.; Masihi, S.; Maddipatla, D.; Panahi, M.; Atashbar, M.Z. Development of a flexible and wireless ECG monitoring device. In Proceedings of the 2020 IEEE SENSORS, Virtual, 25–28 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–4. [Google Scholar]
- Kumar, V.; Sonavane, S.S.; Patil, B.P. Designing ultra low power Wireless Sensor Network with TCP/IP link. In Proceedings of the 2009 2nd International Conference on Adaptive Science & Technology (ICAST), Accra, Ghana, 14–16 January 2009; pp. 86–91. [Google Scholar]
- Shen, T.-W.; Shen, H.-P.; Lin, C.-H.; Ou, Y.-L. Detection and prediction of sudden cardiac death (SCD) for personal healthcare. In Proceedings of the 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 22–26 August 2007; pp. 2575–2578. [Google Scholar]
- Tonekaboni, S.; Mazwi, M.; Laussen, P.; Eytan, D.; Greer, R.; Goodfellow, S.D.; Goodwin, A.; Brudno, M.; Goldenberg, A. Prediction of cardiac arrest from physiological signals in the pediatric ICU. In Proceedings of the Machine Learning for Healthcare Conference, PMLR, Stanford, CA, USA, 16–18 August 2018; pp. 534–550. [Google Scholar]
- Kota, D.; Mahbub, I. A Low-Power ECG Readout Circuit Integrated with Machine Learning Based ECG Heartbeat Classifier. In Proceedings of the 2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), Lansing, MI, USA, 13 September 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 639–643. [Google Scholar]
- Pullano, S.A.; Kota, V.D.; Kakaraparty, K.; Fiorillo, A.S.; Mahbub, I. Optically Unobtrusive Zeolite-Based Dry Electrodes for Wearable ECG Monitoring. IEEE Sens. J. 2022, 22, 10630–10639. [Google Scholar] [CrossRef]
- Nasarre, M.; Strik, M.; Ramirez, F.D.; Buliard, S.; Marchand, H.; Abu-Alrub, S.; Ploux, S.; Haïssaguerre, M.; Bordachar, P. Using a smartwatch electrocardiogram to detect abnormalities associated with sudden cardiac arrest in young adults. EP Eur. 2022, 24, 406–412. [Google Scholar] [CrossRef]
- Nelson, B.W.; Allen, N.B. Accuracy of consumer wearable heart rate measurement during an ecologically valid 24-hour period: Intraindividual validation study. JMIR mHealth uHealth 2019, 7, e10828. [Google Scholar] [CrossRef]
- Goldberger, A.L.; Amaral, L.A.N.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 2000, 101, e215–e220. [Google Scholar] [CrossRef] [Green Version]
- IEEE Staff. In Proceedings of the 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, India, 22–24 March 2017; IEEE: Piscataway, NJ, USA, 2017.
- Lyon, R.J.; Brooke, J.M.; Knowles, J.D.; Stappers, B.W. A study on classification in imbalanced and partially-labelled data streams. In Proceedings of the 2013 IEEE International Conference on Systems, Man, and Cybernetics, Manchester, UK, 13–16 October 2013; pp. 1506–1511. [Google Scholar]
- Vanitha, L.; Suresh, G.R.; JenefarSheela, C. Sudden Cardiac Death prediction system using Hybrid classifier. In Proceedings of the 2014 International Conference on Electronics and Communication Systems (ICECS), Coimbatore, India, 13–14 February 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1–5. [Google Scholar]
- Nguyen, M.T.; Kiseon, K. Feature learning using convolutional neural network for cardiac arrest detection. In Proceedings of the 2018 International Conference on Smart Green Technology in Electrical and Information Systems (ICSGTEIS), Bali, Indonesia, 25–27 October 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 39–42. [Google Scholar]
- Little, M.A.; Varoquaux, G.; Saeb, S.; Lonini, L.; Jayaraman, A.; Mohr, D.C.; Kording, K.P. Using and understanding cross-validation strategies. Perspectives on Saeb et al. GigaScience 2017, 6, 1–6. [Google Scholar] [CrossRef]
- Bin Rafiq, R.; Modave, F.; Guha, S.; Albert, M.V. Validation methods to promote real-world applicability of machine learning in medicine. In Proceedings of the 2020 3rd International Conference on Digital Medicine and Image Processing, Kyoto, Japan, 6–9 November 2020; pp. 13–19. [Google Scholar]
- Mittal, S. A Survey on optimized implementation of deep learning models on the NVIDIA Jetson platform. J. Syst. Archit. 2019, 97, 428–442. [Google Scholar] [CrossRef]
- Kota, V.D.; Pullano; Andrea, S.; Fiorillo, A.S.; Mahbub, I. Effects of Geometry on Performances of Optically Unobtrusive Zeolite-Based Electrodes. In Proceedings of the IEEE Sensors Conference, Dallas, TX, USA, 30 October–2 November 2022. [Google Scholar]
- Abidi, B.; Jilbab, A.; Mohamed, E.H. Wireless body area network for health monitoring. J. Med Eng. Technol. 2019, 43, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, H.S.; Al, A.A. Wireless sensor network for medical applications. Iraqi J. Electr. Electron. Eng. 2015, 11, 49–59. [Google Scholar] [CrossRef]
- Liu, J.-H.; Chang, H.-K.; Wu, C.-T.; Lim, W.S.; Wang, H.-C.; Jang, J.-S.R. Machine learning based early detection system of cardiac arrest. In Proceedings of the 2019 International Conference on Technologies and Applications of Artificial Intelligence (TAAI), Kaohsiung, Taiwan, 21–23 November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar]
- Chang, H.-K.; Wu, C.-T.; Liu, J.-H.; Lim, W.S.; Wang, H.-C.; Chiu, S.-I.; Jang, J.-S.R. Early detecting in-hospital cardiac arrest based on machine learning on imbalanced data. In Proceedings of the 2019 IEEE International Conference on Healthcare Informatics (ICHI), Xi’an, China, 10–13 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–10. [Google Scholar]
- Yılmaz, A. Risk Assessment for Cardiac Arrest: A Deep Learning Approach. 2021. Available online: https://assets.researchsquare.com/files/rs-72162/v2_covered.pdf?c=1631877650 (accessed on 9 February 2023).
Sl. No | nRF24L01 Pins | Arduino Pins |
---|---|---|
1. | GND | GND |
2. | V | 3.3 V |
3. | C | D7 |
4. | CSN | D8 |
5. | MOSI | D11 |
6. | MISO | D12 |
7. | SCK | D13 |
8. | IRQ | NC |
Sl. No | Beat and Non-Beat Annotations | Description |
---|---|---|
1. | B | Bundle branch block beat |
2. | E | Ventricular escape beat |
3. | F | Fusion of ventricular and normal beat |
4. | J | Nodal (Junctional) premature beat |
5. | N | Normal beat |
6. | S | Supraventricular escape beat |
7. | V | Premature ventricular contraction |
8. | | | Isolated QRS like artifact |
Sl. No | Hyperparameters | Values |
---|---|---|
1. | Activation Function | ReLU |
2. | Learning rate | 0.00001 |
3. | Batch size | 32 |
4. | Epochs | 10–20 |
5. | Optimizer Algorithm | Adam |
Reference | [28] | [27] | [11] | This Work |
---|---|---|---|---|
Current (mA) in TX | 11.3 | 7.22 | 8.5 | 3.4 |
Current (mA) in RX | 13.5 | 6.75 | 12.5 | 1.4 |
Data rate (Mbps) | 2 | 2 | (1–2) | 0.25 |
Power (mW) | 37.3 | 23.8 | 28 | 11.2 |
Distance (m) | NA | NA | NA | 5 |
Bit Error Rate | NA | NA | NA | (0–0.1)% |
Precision | Recall | F1 Score | |
---|---|---|---|
Abnormal | 0.59 | 0.87 | 0.7 |
Normal | 0.98 | 0.90 | 0.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kota, V.D.; Sharma, H.; Albert, M.V.; Mahbub, I.; Mehta, G.; Namuduri, K. A Low-Power Wireless System for Predicting Early Signs of Sudden Cardiac Arrest Incorporating an Optimized CNN Model Implemented on NVIDIA Jetson. Sensors 2023, 23, 2270. https://doi.org/10.3390/s23042270
Kota VD, Sharma H, Albert MV, Mahbub I, Mehta G, Namuduri K. A Low-Power Wireless System for Predicting Early Signs of Sudden Cardiac Arrest Incorporating an Optimized CNN Model Implemented on NVIDIA Jetson. Sensors. 2023; 23(4):2270. https://doi.org/10.3390/s23042270
Chicago/Turabian StyleKota, Venkata Deepa, Himanshu Sharma, Mark V. Albert, Ifana Mahbub, Gayatri Mehta, and Kamesh Namuduri. 2023. "A Low-Power Wireless System for Predicting Early Signs of Sudden Cardiac Arrest Incorporating an Optimized CNN Model Implemented on NVIDIA Jetson" Sensors 23, no. 4: 2270. https://doi.org/10.3390/s23042270
APA StyleKota, V. D., Sharma, H., Albert, M. V., Mahbub, I., Mehta, G., & Namuduri, K. (2023). A Low-Power Wireless System for Predicting Early Signs of Sudden Cardiac Arrest Incorporating an Optimized CNN Model Implemented on NVIDIA Jetson. Sensors, 23(4), 2270. https://doi.org/10.3390/s23042270