NITS-IQA Database: A New Image Quality Assessment Database
(This article belongs to the Section Intelligent Sensors)
Abstract
:1. Introduction
2. Literature Review
3. Statistical Observation and Analysis of the Benchmark Database
4. NITS-IQA Database Overview
4.1. Original Images
4.2. Acquisition Setup
4.3. Distortions
4.3.1. Gaussian Blur
4.3.2. Gaussian Noise
4.3.3. Uniform Noise
4.3.4. Contrast Change
4.3.5. Pixelate Mosaic
4.3.6. Motion Blur
4.3.7. JPEG Compression
4.3.8. JPEG2000 Compression
4.3.9. JPEG-XT Compression
4.4. Distorted Images
4.5. Procedure for Adobe Photoshop CS6
5. Subjective Experiment
5.1. Subjective Test Setup
5.2. Participant and Training
5.3. Data Archiving and Exporting
5.4. Data Processing
6. Comparative Analysis of Image Quality Methods
7. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Z.; Bovik, A.C. Modern Image Quality Assessment Synthesis Lectures on Image, Video, and Multimedia Processing; Morgan & Claypool: San Rafael, CA, USA, 2006. [Google Scholar]
- Larson, E.C.; Chandler, D.M. Most apparent distortion: Full-reference image quality assessment and the role of strategy. J. Electron. Imaging 2010, 19, 011006. [Google Scholar]
- Ninassi, A.; Le Callet, P.; Autrusseau, F. Subjective Quality Assessment-IVC Database. 2006. Available online: https://computervisiononline.com/dataset/1105138671 (accessed on 2 August 2013).
- Ponomarenko, N.; Ieremeiev, O.; Lukin, V.; Egiazarian, K.; Jin, L.; Astola, J.; Vozel, B.; Chehdi, K.; Carli, M.; Battisti, F.; et al. Color image database TID2013: Peculiarities and preliminary results. In Proceedings of the 4th European Workshop on Visual Information Processing (EUVIP), Paris, France, 10–12 June 2013; pp. 106–111. [Google Scholar]
- Ponomarenko, N.; Ieremeiev, O.; Lukin, V.; Jin, L.; Egiazarian, K.; Astola, J.; Vozel, B.; Chehdi, K.; Carli, M.; Battisti, F.; et al. A New Color Image Database TID2013: Innovations and Results. In Advanced Concepts for Intelligent Vision Systems: Proceedings of the 15th International Conference, ACIVS 2013, Poznań, Poland, 28–31 October 2013; Springer International Publishing: Berlin/Heidelberg, Germany, 2013; Volume 8192, pp. 402–413. [Google Scholar]
- Sheikh, H.R.; Wang, Z.; Cormack, L.; Bovik, A.C. LIVE Image Quality Assessment Database Release 2. 2005. Available online: https://live.ece.utexas.edu/research/quality/subjective.htm (accessed on 2 August 2013).
- Chandler, D.M.; Hemami, S.S. A57 Database. 2007. Available online: http://foulard.ece.coruell,edu/dmc27/vsnr/vsnr,ht-ml (accessed on 18 January 2023).
- Horita, Y.; Shibata, K.; Kawayoke, Y.; Sazzad, Z.M.P. MICT Image Quality Evaluation Database. 2011. Available online: https://computervisiononline.com/dataset/1105138668 (accessed on 2 August 2013).
- Ponomarenko, N.; Egiazarian, K. Tampere Image Database 2008 TID2008. 2009. Available online: https://qualinet.github.io/databases/image/tampere_image_database_tid2008/ (accessed on 2 August 2013).
- Strauss, C.; Pasteau, F.; Autrusseau, F.; Babel, M.; Bedat, L.; Deforges, O. Subjective and Objective Quality Evaluation of LAR coded art images. In Proceedings of the 2009 IEEE International Conference on Multimedia and Expo, New York, NY, USA, 28 June–3 July 2009. [Google Scholar]
- Engelke, U.; Zepernick, H.J.; Kusuma, M. Wireless imaging Quality Database. 2010. Available online: http://www.bth.se/tek/rcg.nsf/pages/wiq-db (accessed on 2 August 2013).
- Cuong Vu Damon Chandler, T.P. DRIQ: Digitally Retouched Image Quality Database. Available online: http://vision.okstate.edu/index.php?loc=driq (accessed on 2 August 2013).
- Lin, H.; Hosu, V.; Saupe, D. KADID-10k: A large-scale artificially distorted IQA database. In Proceedings of the 2019 Eleventh International Conference on Quality of Multimedia Experience (QoMEX), Berlin, Germany, 5–7 June 2019; pp. 1–3. [Google Scholar]
- Hosu, V.; Lin, H.; Sziranyi, T.; Saupe, D. KonIQ-10k: An ecologically valid database for deep learning of blind image quality assessment. IEEE Trans. Image Process. 2020, 29, 4041–4056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghadiyaram, D.; Bovik, A.C. Massive online crowdsourced study of subjective and objective picture quality. IEEE Trans. Image Process. 2015, 25, 372–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, Y.; Zhu, H.; Zeng, Y.; Ma, K.; Wang, Z. Perceptual quality assessment of smartphone photography. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 3677–3686. [Google Scholar]
- Marini, E.; Autrusseau, F.; Le Callet, P.; Campisi, P. Evaluation of standard watermarking techniques. In Security, Steganography, and Watermarking of Multimedia Contents IX; SPIE: Bellingham, WA, USA, 2007; Volume 6505, pp. 248–257. [Google Scholar]
- Autrusseau, F.; Bas, P. Subjective Quality Assessment of the Broken Arrows Watermarking Technique. 2009. Available online: https://www.researchgate.net/publication/50875322_Subjective_Quality_assessment_of_the_Broken_Arrows_watermarking_technique (accessed on 2 August 2013).
- Autrusseau, F.; Le Callet, P. A robust image watermarking technique based on quantization noise visibility thresholds. Signal Process. 2007, 87, 1363–1383. [Google Scholar] [CrossRef] [Green Version]
- Le Callet, P.; Barba, D. A robust quality metric for color image quality assessment. In Proceedings of the International Conference on Image Processing, Barcelona, Spain, 14–18 September 2003; Volume 1, pp. I-437–I-440. [Google Scholar]
- Pedersen, M.; Zheng, Y.; Hardeberg, J.Y. Evaluation of Image Quality Metrics for Color Prints. In Proceedings of the Scandinavian Conference on Image Analysis SCIA, Ystad, Sweden, 9 May 2011; pp. 317–326. [Google Scholar]
- Simone, G.; Caracciolo, V.; Pedersen, M.; Cheikh, F.A. Evaluation of a difference of gaussians based image difference metric in relation to perceived compression artifacts. In Advances in Visual Computing: 6th International Symposium, ISVC 2010, Las Vegas, NV, USA, 29 November–1 December 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 491–500. [Google Scholar]
- Long, M.; Peng, F.; Zhu, Y. Identifying natural images and computer-generated graphics based on binary similarity measures of PRNU. Multim. Tools Appl. 2019, 78, 489–506. [Google Scholar] [CrossRef]
- Bibi, S.; Abbasi, A.; Haq, I.U.; Baik, S.W.; Ullah, A. Digital Image Forgery Detection Using Deep Autoencoder and CNN Features. Hum. Cent. Comput. Inf. Sci. 2021, 11, 1–17. [Google Scholar] [CrossRef]
- Pu, B.; Li, K.; Li, S.; Zhu, N. Automatic Fetal Ultrasound Standard Plane Recognition Based on Deep Learning and IIoT. IEEE Trans. Ind. Inform. 2021, 17, 7771–7780. [Google Scholar] [CrossRef]
- Chen, J.; Li, K.; Tang, Z.; Bilal, K.; Yu, S.; Weng, C.; Li, K. A Parallel Random Forest Algorithm for Big Data in a Spark Cloud Computing Environment. IEEE Trans. Parallel Distrib. Syst. 2017, 28, 919–933. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Chen, W.; Wang, L.; Sherratt, R.S.; Alfarraj, O.; Tolba, A. Data Secure Storage Mechanism of Sensor Networks Based on Blockchain. Comput. Mater. Contin. 2020, 65, 2365–2384. [Google Scholar] [CrossRef]
- JPEG 2000 Software. Available online: https://jpeg.org/jpeg2000/software.html (accessed on 2 August 2014).
- JPEG XT. Available online: https://jpeg.org/jpegxt/software.html (accessed on 2 August 2014).
- ITU-T Recommendation BT.500-11; Methodology for the Subjective Assessment of the Quality of Television Pictures. ITU: Geneva, Switzerland, 2002.
- ITU-T Recommendation BT.710-4; Subjective Assessment Methods for Image Quality in High-Definition Television. ITU: Geneva, Switzerland, 1998.
- ITU-T Recommendation P.910; Subjective Video Quality Assessment Methods for Multimedia Applications. ITU: Geneva, Switzerland, 2008.
- ITU-T Recommendation BT.814-1; Specification and Alignment Procedures for Setting of Brightness and Contrast of Displays. ITU: Geneva, Switzerland, 1994.
- ITU-T Recommendation BT.1129-2; Subjective Assessment of Standard Definition Digital Television (SDTV) Systems. ITU: Geneva, Switzerland, 1998.
- ITU-T Recommendation BT.1361; Worldwide Unified Colorimetry and Related Characteristics of Future Television and Imaging Systems. ITU: Geneva, Switzerland, 1998.
- ITU-T Recommendation BT.815-1; Specification of a Signal for Measurement of the Contrast Ratio of Displays. ITU: Geneva, Switzerland, 1994.
- Engeldrum, P.G. Psychometric Scaling: A Toolkit for Imaging Systems Development; Imcotek Press: Winchester, MA, USA, 2000. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [Green Version]
- Sheikh, H.R.; Bovik, A.C.; de Veciana, G. An information fidelity criterion for image quality assessment using natural scene statistics. IEEE Trans. Image Process. 2005, 14, 2117–2128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bovik, H.R.S.A.C. Image information and visual quality. IEEE Trans. Image Process. 2006, 15, 430–444. [Google Scholar]
- Chandler, D.M.; Hemami, S.S. VSNR: A Wavelet-Based Visual Signal-to-Noise Ratio for Natural Images. IEEE Trans. Image Process. 2007, 16, 2284–2298. [Google Scholar] [CrossRef] [PubMed]
- Ponomarenko, N.; Silvestri, F.; Egiazarian, K.; Carli, M.; Astola, J.; Lukin, V. On between-coefficient contrast masking of DCT basis functions. In Proceedings of the Third International Workshop on Video Processing and Quality Metrics for Consumer Electronics, VPQM 2007, Scottsdale, AZ, USA, 25–26 January 2007. [Google Scholar]
- Egiazarian, K.; Astola, J.; Lukin, V.; Battisti, F.; Carli, M. New full-reference quality metrics based on HVS. In Proceedings of the Second International Workshop on Video Processing and Quality Metrics, Scottsdale, AZ, USA, 22–24 January 2006; pp. 1–4. [Google Scholar]
- Zhang, L.; Zhang, D.; Mou, X. RFSIM: A feature based image quality assessment metric using Riesz transforms. In Proceedings of the 17th IEEE International Conference on Image Processing (ICIP), Hong Kong, China, 26–29 September 2010; pp. 321–324. [Google Scholar]
- Zhang, L.; Zhang, D.; Mou, X.; Zhang, D. FSIM: A Feature Similarity Index for Image Quality Assessment. IEEE Trans. Image Process. 2011, 20, 2378–2386. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Zhang, F.; Ma, L.; Ngan, K.N. Image Quality Assessment by Separately Evaluating Detail Losses and Additive Impairments. IEEE Trans. Multimed. 2011, 13, 935–949. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Q. Information Content Weighting for Perceptual Image Quality Assessment. IEEE Trans. Image Process. 2011, 20, 1185–1198. [Google Scholar] [CrossRef]
- Zhang, L.; Li, H. SR-SIM: A fast and high performance IQA index based on spectral residual. In Proceedings of the 19th IEEE International Conference on Image Processing (ICIP), Orlando, FL, USA, 30 September–3 October 2012; pp. 1473–1476. [Google Scholar]
- Liu, A.; Lin, W.; Narwaria, M. Image Quality Assessment Based on Gradient Similarity. IEEE Trans. Image Process. 2012, 21, 1500–1512. [Google Scholar]
- Wu, J.; Lin, W.; Shi, G.; Liu, A. Perceptual Quality Metric with Internal Generative Mechanism. IEEE Trans. Image Process. 2013, 22, 43–54. [Google Scholar]
- Xue, W.; Zhang, L.; Mou, X.; Bovik, A.C. Gradient Magnitude Similarity Deviation: A Highly Efficient Perceptual Image Quality Index. IEEE Trans. Image Process. 2014, 23, 684–695. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Bovik, A.C. A universal image quality index. IEEE Signal Process. Lett. 2002, 9, 81–84. [Google Scholar] [CrossRef]
- Wang, Z.; Simoncelli, E.P.; Bovik, A.C. Multiscale structural similarity for image quality assessment. In Proceedings of the Conference Record of the Thirty-Seventh Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 9–12 November 2003; Volume 2, pp. 1398–1402. [Google Scholar]
- Ruikar, J.; Sinha, A.; Chaudhury, S. Image quality assessment using edge correlation. Int. J. Electron. Telecommun. 2017, 63, 99–107. [Google Scholar] [CrossRef] [Green Version]
- Final Report from the Video Quality Experts Group on the Validation of Objective Models of Video Quality Assessment 2000. VQEG. Available online: https://www.academia.edu/2102517/FINAL_REPORT_FROM_THE_VIDEO_QUALITY_EXPERTS_GROUP_ON_THE_VALIDATION_OF_OBJECTIVE_MODELS_OF_VIDEO_QUALITY_ASSESSMENT_March_ (accessed on 2 August 2014).
Database Name | Year | Ref. Image | Dist. Image | Dist. Types | Observer | Image Type | Image Format | MOS/ DMOS | MOS/ DMOS Range |
---|---|---|---|---|---|---|---|---|---|
MICT [8] | 2008 | 14 | 168 | 2 | 14 | Color | bmp | MOS | [1, 5] |
IVC [3] | 2005 | 10 | 185 | 4 | 15 | Gray | bmp | MOS | [1, 5] |
LIVE [6] | 2006 | 29 | 779 | 5 | 161 | Color | bmp | DMOS | [0, 100] |
A57 [7] | 2007 | 3 | 54 | 6 | 7 | Gray | bmp | DMOS | [0, 1] |
TID2008 [9] | 2008 | 25 | 1700 | 17 | 838 | Color | bmp | MOS | [0, 9] |
WIQ [11] | 2009 | 7 | 80 | 5 | 30 | Gray | bmp | MOS | [0, 100] |
CSIQ [2] | 2009 | 30 | 866 | 6 | 35 | Color | png | DMOS | [0, 1] |
LAR [10] | 2009 | 8 | 120 | 3 | 20 | Color | bmp and ppm | MOS | [1, 5] |
TID 2013 [4,5] | 2013 | 25 | 3000 | 24 | 985 | Color | bmp | MOS | [0, 9] |
KADID-10k [13] | 2019 | 81 | 10125 | 25 | 2209 | Color | png | DMOS | [1, 5] |
KonIQ-10k [14] | 2018 | - | 10073 | - | 1467 | Color | jpg | MOS | [1, 5] |
ChallengeDB [15] | 2017 | - | 1162 | - | 8100 | Color | jpg and bmp | MOS | [0, 100] |
SPAQ [16] | 2020 | - | 11125 | - | 600 | Color | jpg | MOS | [0, 100] |
Database Name | Developed By | Specific Distortion |
---|---|---|
MICT [8] | University of Toyama, Japan | (1) JPEG (2) JPEG2000 |
IVC [3] | University of Nantes, France | (1) JPEG (2) JPEG2000 (3) LAR coding (4) Blurring. |
LIVE [6] | University of Texas at Austin | (1) JPEG2000 (2) JPEG (3) White noise (4) Gaussian blur (5) Fast-fading |
A57 Database [7] | Image Coding and Analysis Lab, Oklahoma State University | (1) contrast (2) JPEG compression (3) JPEG-2000 compression (4) JPEG-2000+DCQ compression (5) Gaussian blur (6) Gaussian white noise |
TID2008 [9] | Tampere Univ. of Tech., Finland | (1) Gaussian noise (2) Additive noise (3) Spatially correlated noise (4) Masked noise (5) High-frequency noise (6) Impulse noise (7) Quantization noise (8) Gaussian blur (9) Image denoising (10) JPEG (11) JPEG2000 (12) JPEG transmission errors (13) JPEG2000 transmission errors (14) Non-eccentricity pattern noise (15) Local block-wise distortions (16) Mean shift (intensity shift) (17) Contrast change |
WIQ [11] | Communications and Computer Systems Laboratory, Blekinge Institute of Technology, Sweden | (1) Blocking, (2) Ringing (3) Block intensity shift, (4) Blurring, (5) Noise |
CSIQ [2] | Oklahoma State Univ., USA | (1) JPEG (2) JPEG-2000 (3) Gaussian pink noise, (4) Gaussian white noise, (5) Blurring, (6) Contrast |
LAR [10] | University of Nantes, France | (1) JPEG (2) JPEG2000 (3) LAR coding |
DRIQ [12] | Oklahoma State Univ., USA | Contrast, sharpness, brightness, color, or combination of these properties, with different levels |
TID 2013 [4,5] | Tampere Univ. of Tech., Finland | (1) Gaussian noise (2) Additive noise (3) Spatially correlated noise (4) Masked noise (5) High-frequency noise (6) Impulse noise (7) Quantization noise (8) Gaussian blur (9) Image denoising (10) JPEG (11) JPEG2000 (12) JPEG transmission errors (13) JPEG2000 transmission errors (14) Non-eccentricity pattern noise (15) Local block-wise distortions (16) Mean shift (17) Contrast (18) Change of color saturation (19) Multiplicative Gaussian noise (20) Comfort noise (21) Lossy compression of noisy images (22) Image color quantization (23) Chromatic aberrations (24) Sparse sampling and reconstruction |
Descriptive Statistics | LIVE | CSIQ | A57 | MICT | TID | IVC | LAR | WIQ | TID 2013 | DRIQ |
---|---|---|---|---|---|---|---|---|---|---|
Mean | 0.4034 | 0.3507 | 0.3636 | 0.5340 | 0.5807 | 0.5037 | 0.6316 | 0.4430 | 0.6070 | 0.4345 |
Standard Error | 0.0087 | 0.0089 | 0.0371 | 0.0244 | 0.0042 | 0.0231 | 0.0308 | 0.0286 | 0.0032 | 0.0279 |
Median | 0.4129 | 0.3232 | 0.3079 | 0.5399 | 0.5917 | 0.5347 | 0.7869 | 0.4264 | 0.6250 | 0.4632 |
Mode | N/A | 0.0000 | 0.0252 | 0.9356 | 0.5185 | 0.8416 | 0.9899 | 0.4880 | 0.5390 | N/A |
Standard Deviation | 0.2420 | 0.2627 | 0.2725 | 0.3411 | 0.1740 | 0.3145 | 0.3375 | 0.2556 | 0.1778 | 0.2468 |
Variance | 0.0586 | 0.0690 | 0.0743 | 0.1163 | 0.0303 | 0.0989 | 0.1139 | 0.0654 | 0.0316 | 0.0609 |
Kurtosis | −1.0516 | −0.8453 | −0.5148 | −1.5216 | 0.1420 | −1.4043 | −1.3188 | −0.4470 | −0.1416 | −1.0680 |
Skewness | 0.1198 | 0.4664 | 0.6246 | −0.1206 | −0.4932 | −0.1331 | −0.4948 | 0.4443 | −0.5549 | 0.0617 |
No. of images | 779 | 866 | 54 | 196 | 1700 | 185 | 120 | 80 | 3000 | 78 |
Confidence Level (95.0%) | 0.0170 | 0.0175 | 0.0744 | 0.0480 | 0.0083 | 0.0456 | 0.0610 | 0.0569 | 0.0064 | 0.0556 |
Coefficient of Variation in % | 59.99 | 74.91 | 74.94 | 63.88 | 29.96 | 62.44 | 53.44 | 57.70 | 29.29 | 56.80 |
Method | Purpose | Occurred during | Parameters | Low Level | High Level |
---|---|---|---|---|---|
Gaussian Blur | Smoothen image | Image Acquisition | Filter radius | 0.1 | 1000 |
Gaussian Noise | Illumination can be poor or temperature can be high | Image Acquisition and Transmission | Filter | 0.1 | 400 |
Uniform Noise (Quantization noise) | Quantization of the pixel | Image Acquisition Image registration | |||
Filter | 0.1 | 400 | |||
Contrast change (Without Brightness change) | Adjust the contrast | Image acquisition, gamma correction | Contrast gain | −50 | 100 |
Pixelate Mosaic | Pixelation | Image registration | Filter | 2 | 200 |
Motion Blur | Capturing at single exposure, either due to movement or long exposure | Image acquisition | Filter radius | 1 | 2000 |
JPEG | Compromise between image size and its quality | JPEG Compression, image acquisition, image storage, image transmission | Encoding | 1 | 100 |
JPEG2000 | Compression | JPEG2000 Compression, image acquisition, image storage, image transmission | Encoding | 1 | 100 |
JPEG-XT | Compression | JPEG-XT Compression, image acquisition, image storage, image transmission | Encoding | 1 | 100 |
Distortion | Range | Unit | Levels 1 | Levels 2 | Levels 3 | Levels 4 | Levels 5 |
---|---|---|---|---|---|---|---|
Gaussian Blur | 0.1–1000 | pixels | 0.2 | 0.9 | 1.5 | 3 | 6 |
Gaussian Noise (Chromatic) | 0.1–400% | percentage | 1 | 2 | 4 | 7 | 11 |
Uniform Noise (Chromatic) | 0.1–400% | percentage | 1 | 2 | 5 | 11 | 17 |
Contrast change (Without Brightness change) | −150 | points | −50 | −25 | 25 | 50 | 100 |
Pixelate Mosaic | 2 to 200 | cells | 2 | 3 | 4 | 5 | 6 |
Motion Blur | 1 to 2000 | pixels | 1 | 2 | 4 | 6 | 10 |
JPEG | 1–100 | bpp | 12 | 20 | 35 | 50 | 99 |
JPEG2000 | 1–100 | bpp | 1 | 0.03 | 0.01 | 0.07 | 0.05 |
JPEG-XT | 1–100 | bpp | 12 | 20 | 35 | 50 | 99 |
IQM | PLCC | SROCC | KROCC | RMSE |
---|---|---|---|---|
SSIM [38] | 0.8659 | 0.8489 | 0.6434 | 12.0473 |
IFC [39] | 0.8878 | 0.8802 | 0.6858 | 11.0865 |
VIFP [40] | 0.8976 | 0.8858 | 0.6962 | 10.6189 |
VSNR [41] | 0.5903 | 0.6608 | 0.4991 | 19.4409 |
P_HVS_M [42] | 0.5392 | 0.5923 | 0.4727 | 20.2838 |
P_HVS [43] | 0.6241 | 0.6363 | 0.4923 | 18.8186 |
RFSIM [44] | 0.8178 | 0.8171 | 0.6145 | 13.8616 |
FSIM [45] | 0.8807 | 0.8774 | 0.6863 | 11.4104 |
ADM [46] | 0.8796 | 0.8780 | 0.6918 | 11.4592 |
IWSSIM [47] | 0.8799 | 0.8787 | 0.6884 | 11.4451 |
IWMSE [47] | 0.5493 | 0.5994 | 0.4980 | 20.1258 |
IWPSNR [47] | 0.5896 | 0.5994 | 0.4979 | 19.4532 |
SRSIM [48] | 0.6566 | 0.8543 | 0.6614 | 18.1656 |
GSM [49] | 0.8593 | 0.8577 | 0.6686 | 12.3172 |
IGM [50] | 0.8656 | 0.8633 | 0.6755 | 12.0617 |
GMSD [51] | 0.8918 | 0.8893 | 0.7008 | 10.8958 |
MSE | 0.6607 | 0.6745 | 0.4980 | 18.0792 |
PSNR | 0.6512 | 0.6638 | 0.4915 | 18.2776 |
UQI [52] | 0.8841 | 0.8744 | 0.6770 | 11.2542 |
MSSIM [53] | 0.8690 | 0.8691 | 0.6724 | 11.9163 |
WSNR [47] | 0.8878 | 0.8802 | 0.6858 | 11.0865 |
SGF [54] | 0.8984 | 0.889 | 0.697 | 10.579979 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruikar, J.; Chaudhury, S. NITS-IQA Database: A New Image Quality Assessment Database. Sensors 2023, 23, 2279. https://doi.org/10.3390/s23042279
Ruikar J, Chaudhury S. NITS-IQA Database: A New Image Quality Assessment Database. Sensors. 2023; 23(4):2279. https://doi.org/10.3390/s23042279
Chicago/Turabian StyleRuikar, Jayesh, and Saurabh Chaudhury. 2023. "NITS-IQA Database: A New Image Quality Assessment Database" Sensors 23, no. 4: 2279. https://doi.org/10.3390/s23042279
APA StyleRuikar, J., & Chaudhury, S. (2023). NITS-IQA Database: A New Image Quality Assessment Database. Sensors, 23(4), 2279. https://doi.org/10.3390/s23042279