Production Planning Using a Shared Resource Register Organized According to the Assumptions of Blockchain Technology
Abstract
:1. Introduction
1.1. Literature Review and Related Research Work
- The ability to join the network of all companies, regardless of their range and size,
- Strong cooperation between contractors (data decentralization, equality in data management, mutual trust between network participants),
- Functioning of BC in IoT (data autonomy),
- Possibility to create new business models,
- Exclusion of unnecessary intermediaries,
- Savings in the search for contractors,
- Easier load modification and optimization of production resources,
- Concluding smart contracts (improvement of efficiency in managing data resources, connection to a code generator).
- The number of correctly defined users of the block network (the presence of as many participants as possible is necessary, which will create new nodes and a rich database),
- Scalability,
- High energy and computing power,
- High costs of IT systems configuration,
- Lack of legal standardization for BCT users,
- Performing consensus protocols every time to maintain the integrity of the BC.
1.2. Goals and Approaches
2. Production Planning Method Based on Blockchain Technology
2.1. Motivation of Using Blockchain Technology in Production Planning
2.2. Production Planning Network
2.3. Production Planning Algorithm
- An operation requires more than one resource to be reserved, e.g., groups of employees, machines,
- The operation requires the reservation of employees with different competencies (workers with different experience and competency) [43],
- The operation requires the reservation of a machine with specification (machine type + reliability characteristics of machines + tools + distance between companies, cost of renting a machine or cost of performing an operation),
- The operation needs to be executed in order to achieve the best performance indicators.
3. Numerical Example
4. Discussion
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, L.D.; He, W.; Li, S. Internet of things in industries: A survey. IEEE Trans. Ind. Inf. 2014, 10, 2233–2243. [Google Scholar] [CrossRef]
- Ernst, R.; Haar, J. Globalization, Competitiveness, and Governability: The Three Disruptive Forces of Business in the 21st Century; Palgrave Macmillan: Cham, Switzerland, 2019. [Google Scholar]
- Jabnoun, N.; Sahraoui, S. Enabling a TQM structure through information technology. Compet. Rev. Am. Soc. Compet. 2004, 14, 72–81. [Google Scholar] [CrossRef]
- Cole, R.; Stevenson, M.; Aitken, J. BC technology: Implications for operations and supply chain management. Supply Chain Manag. Int. J. 2019, 24, 469–483. [Google Scholar] [CrossRef] [Green Version]
- Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. Decentralized Bus. Rev. 2009, 21260, 1–8. Available online: https://bitcoin.org/bitcoin.pdf (accessed on 22 November 2021).
- Buterin, V. Ethereum. 2015. Available online: https://ethereum.org/ (accessed on 22 November 2021).
- Lamport, L. The part-time parliament. ACM Trans. Comput. Syst. 1998, 16, 133–169. [Google Scholar] [CrossRef]
- Narayanan, A.; Bonneau, J.; Felten, E.; Miller, A.; Goldfede, S. Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction; Princeton University Press: Princeton, NJ, USA, 2016. [Google Scholar]
- Kumar, R.; Khan, F.; Kadry, S.; Rho, S. A Survey on BC for industrial Internet of Things. Alex. Eng. J. 2022, 61, 6001–6022. [Google Scholar] [CrossRef]
- IBM. Maersk and IBM Unveil First Industry-Wide Cross-Border Supply Chain Solution on Blockchain; IBM News Room: New York, NY, USA, 2017. [Google Scholar]
- Ho, G.T.S.; Tang, Y.M.; Tsang, K.Y.; Tang, V.; Chau, K.Y. A blockchain-based system to enhance aircraft parts traceability and trackability for inventory management. Expert Syst. Appl. 2021, 179, 115101. [Google Scholar] [CrossRef]
- Zhang, Y.; Kasahara, S.; Shen, Y.; Jiang, X.; Wan, J. Smart contract-based access control for the internet of things. IEEE Internet Things J. 2019, 6, 1594–1605. [Google Scholar] [CrossRef] [Green Version]
- Kandah, F.; Huber, B.; Altarawneh, A.; Medury, S.; Skjellu, A. BLAST: Blockchain-based trust management in smart cities andconnected vehicles setup. In Proceedings of the 2019 IEEE High Performance Extreme Computing Conference (HPEC), Waltham, MA, USA, 24–26 September 2019. [Google Scholar]
- Mettler, M. Blockchain technology in healthcare: The revolution starts here. In Proceedings of the 2016 IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom), Munich, Germany, 14–16 September 2016. [Google Scholar]
- A Document Blockchain Stamping Notary App. Available online: https://stampd.io/ (accessed on 25 May 2018).
- Tian, F. An agri-food supply chain traceability system for china based on rfid blockchain technology. In Proceedings of the 2016 13th International Conference on Service Systems and Service Management (ICSSSM), Kunming, China, 24–26 June 2016. [Google Scholar]
- Brousmiche, K.-L.; Heno, T.; Poulain, C.; Dalmieres, A.; Hamida, E.B. Digitizing, securing and sharing vehicles life-cycle over a consortium blockchain: Lessons learned. In Proceedings of the 9th IFIP International Conference on New Technologies, Mobility and Security (NTMS), 1st International Workshop on Blockchains and Smart Contracts (BSC), Paris, France, 26–28 February 2018. [Google Scholar]
- Khanfar, A.; Iranmanesh, M.; Ghobakhloo, M.; Senali, M.; Fathi, M. Applications of BC Technology in Sustainable Manufacturing and Supply Chain Management: A Systematic Review. Sustainability 2021, 13, 7870. [Google Scholar] [CrossRef]
- Jabbar, R.; Dhib, E.; Ben Said, A.; Krichen, M.; Fetais, N.; Zaidan, E.; Barkaoui, K. BC Technology for Intelligent Transportation Systems: A Systematic Literature Review. IEEE Access 2022, 10, 20995–21031. [Google Scholar] [CrossRef]
- Casino, F.; Dasaklis, T.K.; Patsakis, C. A systematic literature review of blockchain-based applications: Current status, classification and open issues. Telemat. Inform. 2019, 36, 55–81. [Google Scholar]
- Di Francesco Maesa, D.; Mori, P. BC 3.0 applications survey. J. Parallel Distrib. Comput. 2020, 138, 99–114. [Google Scholar] [CrossRef]
- Shrestha, A.K.; Vassileva, J. Blockchain-Based Research Data Sharing Framework for Incentivizing the Data Owners. In International Conference on Blockchain; Springer: Cham, Switzerland, 2018; pp. 259–266. [Google Scholar]
- Wu, A.; Zhang, Y.; Zheng, X.; Guo, R.; Zhao, Q.; Zheng, D. Efficient and privacy-preserving traceable attribute-based encryption in blockchain. Ann. Telecommun. 2019, 74, 401–411. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, L. A Design of Digital Rights Management Mechanism Based on BC Technology. In International Conference on Blockchain; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Zhu, L.; Wu, Y.; Gai, K.; Choo, K.K.R. Controllable and trustworthy blockchain-based cloud data management. Future Gener. Comput. Syst. 2019, 91, 527–535. [Google Scholar] [CrossRef]
- Bisht, D.; Singh, R.; Gehlot, A.; Akram, S.V.; Singh, A.; Montero, E.C.; Priyadarshi, N.; Twala, B. Imperative Role of Integrating Digitalization in the Firms Finance: A Technological Perspective. Electronics 2022, 11, 3252. [Google Scholar] [CrossRef]
- Li, J.; Wu, J.; Chen, L. Block-secure: BC based scheme for secure P2P cloud storage. Inf. Sci. 2018, 465, 219–231. [Google Scholar] [CrossRef]
- Li, J.; Wang, X.; Huang, Z.; Wang, L.; Xiang, Y. Multi-level multi-secret sharing scheme for decentralized e-voting in cloud computing. J. Parallel Distrib. Comput. 2019, 130, 91–97. [Google Scholar] [CrossRef]
- Xia, Q.I.; Sifah, E.B.; Asamoah, K.O.; Gao, J.; Du, X.; Guizani, M. MeDShare: Trust-less medical data sharing among cloud service providers via blockchain. IEEE Access 2017, 5, 14757–14767. [Google Scholar] [CrossRef]
- Hammi, M.T.; Hammi, B.; Bellot, P.; Serhrouchni, A. Bubbles of Trust: A decentralized blockchain-based authentication systemfor IoT. Comput. Secur. 2018, 78, 126–142. [Google Scholar]
- Gao, X.; Zhang, W.; Zhao, B.; Zhang, J.; Wang, J.; Gao, Y. Product Authentication Technology Integrating BC and Traceability Structure. Electronics 2022, 11, 3314. [Google Scholar] [CrossRef]
- Chen, Y.; Li, H.; Li, K.; Zhang, J. An improved P2P file system scheme based on IPFS and Blockchain. In Proceedings of the 2017 IEEE International Conference on Big Data (Big Data), Boston, MA, USA, 11–14 December 2017. [Google Scholar]
- Gaby, G.; Chandra, L.; Enderson, T. Towards Secure Interoperability between Heterogeneous Blockchains Using Smart Ctracts. In Proceedings of the Future Technologies Conference (FTC), Vancouver, BC, Canada, 15–16 November 2017. [Google Scholar]
- Novo, O. BC meets iot: An architecture for scalable access management in iot. IEEE Internet Things J. 2018, 5, 1184–1195. [Google Scholar] [CrossRef]
- Hassan, M.U.; Rehmani, M.H.; Chen, J. Privacy preservation in BC based IoT systems: Integration issues, prospects, challenges, and future research directions. Future Gener. Comput. Syst. 2019, 97, 512–529. [Google Scholar] [CrossRef]
- Sheel, A.; Nath, V. Effect of blockchain technology adoption on supply chain adaptability, agility, alignment and performance. Manage. Res. Rev. 2019, 42, 1353–1374. [Google Scholar]
- Wang, Y.; Han, J.H.; Beynon-Davies, P. Understanding blockchain technology for future supply chains: A systematic literature review and research agenda. Supply Chain Manage. Int. J. 2019, 24, 62–84. [Google Scholar] [CrossRef] [Green Version]
- Jiang, T. Research on warehousing business process reengineering based on the Internet of Things. Internet Things Technol. 2019, 9, 61–64. [Google Scholar]
- Gareis, M.; Parr, A.; Trabert, J.; Mehner, T.; Vossiek, M.; Carlowitz, C. Stocktaking Robots, Automatic Inventory, and 3D Product Maps: The SmartWarehouse Enabled by UHF-RFID Synthetic Aperture Localization Techniques. IEEE Microw. Mag. 2021, 22, 57–68. [Google Scholar] [CrossRef]
- Al-Jaroodi, J.; Mohamed, N. BC in Industries: A Survey. IEEE Access 2019, 7, 36500–36515. [Google Scholar] [CrossRef]
- Leng, J.; Ye, S.; Zhou, M.; Zhao, J.L.; Liu, Q.; Guo, W.; Cao, W.; Fu, L. Blockchain-Secured Smart Manufacturing in Industry 4.0: A Survey. IEEE Trans. Syst. Man Cybern. Syst. 2020, 51, 237–252. [Google Scholar] [CrossRef]
- Balon, B.; Kalinowski, K.; Paprocka, I. Application of BC Technology in Production Scheduling and Management of Human Resources Competencies. Sensors 2022, 22, 2844. [Google Scholar] [CrossRef]
- Yao, Q.; Zhang, H. Improving Agricultural Product Traceability Using Blockchain. Sensors 2022, 22, 3388. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, G.; Zhang, Y. A Comprehensive Review of BC Technology-Enabled Smart Manufacturing: A Framework, Challenges and Future Research Directions. Sensors 2023, 23, 155. [Google Scholar] [CrossRef]
- Huh, S.; Cho, S.; Kim, S. Managing iot devices using blockchain platform. In Proceedings of the 19th International Conference on Advanced Communication Technology (ICACT), PyeongChang, Korea, 19–22 February 2017; pp. 464–467. [Google Scholar]
- Hu, B.; Chen, Y.; Yu, H.; Meng, L.; Duan, Z. Blockchain-Enabled Data-Sharing Scheme for Consumer IoT Applications. IEEE Consum. Electron. Mag. 2022, 11, 77–87. [Google Scholar] [CrossRef]
- Hamledari, H.; Fischer, M. Role of blockchain-enabled smart contracts in automating construction progress payments. J. Leg. Aff. Disput. Resolut. Eng. Constr. 2021, 13, 04520038. [Google Scholar] [CrossRef]
- Merkle, R.C. A digital signature based on a conventional encryption function. In Proceedings of the Crypto’87: A Conference on the Theory and Application of Cryptographic Techniques on Advances in Cryptology, Santa Barbara, CA, USA, 16–20 August 1987; pp. 369–378. [Google Scholar]
- Zhai, S.; Yang, Y.; Li, J.; Qiu, C.; Zhao, J. Research on the Application of Cryptography on the Blockchain. J. Phys. Conf. Ser. 2019, 1168, 032077. [Google Scholar] [CrossRef]
- Angeles, R. RFID technologies: Supply-chain applications and implementation issues. Inf. Syst. Manag. 2005, 22, 51–65. [Google Scholar] [CrossRef]
- Liu, J.; Xie, M.; Chen, S.; Ma, C.; Gong, Q. An improved DPoS consensus mechanism in BC based on PLTS for the smart autonomous multi-robot system. Inf. Sci. 2021, 575, 528–541. [Google Scholar] [CrossRef]
- Kaul, C. Auto-ID in timber supply chain—Identifying single logs using RFID tags. In Proceedings of the FORMEC Conference, Padova, Italy, 11–14 July 2010; pp. 1–7. [Google Scholar]
- Sperandio, G.; Costa, C.; Figorilli, S.; Pallottino, F.; Scrinzi, G.; Colle, G.; Proto, A.; Macrì, G.; Antonucci, F.; Menesatti, P. Valutazione economica delle tecnologie RFID e open source per la tracciabilità del legno in Calabria. Forest@ 2017, 14, 124. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Xiao, Z.; Cui, L.; Lin, Q.; Li, J.; Yu, S. BC for Internet of things applications: A review and open issues. J. Netw. Comput. Appl. 2020, 172, 102839. [Google Scholar]
- Paprocka, I.; Kempa, W.M.; Skołud, B. Predictive maintenance scheduling with reliability characteristics depending on the phase of the machine life cycle. Eng. Optim. 2021, 53, 165–183. [Google Scholar] [CrossRef]
- SomayyehGholami/Implementing-Smart-Blockchain. Available online: https://github.com/SomayyehGholami/Implementing-Smart-Blockchain (accessed on 22 November 2021).
- Kbrs Software. Available online: https://cim.polsl.pl/dla-studenta/oprogramowanie-kbrs (accessed on 22 November 2021).
- Zhang, C.; Chen, Y.; Chen, H.; Chong, D. Industry 4.0 and its implementation: A review. Inf. Syst. Front. 2021. [Google Scholar] [CrossRef]
- Vinodh, S.; Antony, J.; Agrawal, R.; Douglas, J.A. Integration of continuous improvement strategies with Industry 4.0: A systematic review and agenda for further research. TQM J. 2020, 33, 441–472. [Google Scholar] [CrossRef]
- Onu, P.; Mbohwa, C. Industry 4.0 opportunities in manufacturing SMEs: Sustainability outlook. Mater. Today Proc. 2021, 44, 1925–1930. [Google Scholar] [CrossRef]
- Jepsen, S.C.; Mork, T.I.; Hviid, J.; Worm, T. A pilot study of Industry 4.0 asset interoperability challenges in an Industry 4.0 laboratory. In Proceedings of the 2020 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Singapore, 14–17 December 2020. [Google Scholar]
- Mosterman, P.J.; Zander, J. Industry 4.0 as a Cyber-Physical System study. Softw. Syst. Model. 2015, 15, 17–29. [Google Scholar] [CrossRef]
- Grusho, A.A.; Zabezhailo, M.I.; Piskovski, V.O.; Timonina, E.E. Industry 4.0: Opportunities and Risks in the Context of Information Security Problems. Autom. Doc. Math. Linguist. 2020, 54, 55–63. [Google Scholar] [CrossRef]
Historical Period tx | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Sum |
µ(tx) | 0.300 | 0.364 | 0.427 | 0.491 | 0.555 | 0.618 | 0.682 | 0.745 | 0.809 | 0.873 | 0.936 | 1.000 | |
experience | E1 | E1 | E1 | E1 | E1 | ||||||||
(tei + 1) − tbi | 3 | 2 | 5 | ||||||||||
vi,k | 0.7 | 0.8 | |||||||||||
Partial eval. | 0.638 | 0.971 | 1.609 | ||||||||||
Planning Period tx | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
machine 1/Sum of partial eval Final eval. | 0.087 | 0.093 | 0.100 | 0.106 | 0.112 | 0.118 | 0.125 | 0.131 | 0.137 | 0.143 | 0.149 | 0.155 | |
M1 | M1 | M1 | M1 | ||||||||||
0.525 | |||||||||||||
0.621 | |||||||||||||
0.071 |
Historical Period | No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Sum | λi |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 5 | 150 | 180 | 200 | 230 | 240 | 1000 | 0.005 | ||||
2 | 6 | 100 | 140 | 150 | 190 | 210 | 200 | 990 | 0.006 | |||
3 | 6 | 50 | 100 | 150 | 150 | 280 | 250 | 980 | 0.006 | |||
4 | 4 | 100 | 250 | 250 | 300 | 900 | 0.004 | |||||
… | ||||||||||||
12 | 8 | 80 | 100 | 120 | 125 | 135 | 140 | 140 | 150 | 990 | 0.008 | |
Planned period | predicted | 0.007 |
Period (i) | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Sum | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
µ(tei,k) | 0.5 | 0.556 | 0.611 | 0.667 | 0.722 | 0.778 | 0.833 | 0.889 | 0.944 | 1 | Comp = 1 | |
M1 | Comp | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | |
vi,m | 0.5 | 0.8 | 0.8 | 0.5 | 0.7 | 0.5 | 0.6 | 0.9 | 0.9 | 0.8 | ||
ui,m | 0.150 | 0.250 | 0.275 | 0.200 | 0.289 | 0.233 | 0.292 | 0.444 | 0.472 | 0.450 | 2.131 | |
M2 | Comp | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | - | |
vi,m | 0.6 | 0.7 | 0.6 | 0.6 | 0.7 | 0.5 | 0.6 | 0.8 | 0.8 | - | ||
ui,m | 0.175 | 0.222 | 0.214 | 0.233 | 0.289 | 0.233 | 0.292 | 0.400 | 0.425 | - | 0.844 | |
M3 | Comp | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | |
vi,m | 0.5 | 0.5 | 0.5 | 0.6 | 0.6 | 0.6 | 0.7 | 0.7 | 0.8 | 0.7 | ||
ui,m | 0.150 | 0.167 | 0.183 | 0.233 | 0.253 | 0.272 | 0.333 | 0.356 | 0.425 | 0.400 | 1.658 | |
M4 | Comp | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 1 | |
vi,m | 0.7 | 0.7 | 0.6 | 0.5 | 0.6 | 0.5 | 0.5 | 0.6 | 0.7 | 0.7 | ||
ui,m | 0.200 | 0.222 | 0.214 | 0.200 | 0.253 | 0.233 | 0.250 | 0.311 | 0.378 | 0.400 | 1.764 | |
M5 | Comp | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | |
vi,m | 0.7 | 0.8 | 0.7 | 0.7 | 0.7 | 0.7 | 0.8 | 0.8 | 0.7 | 0.8 | ||
ui,m | 0.200 | 0.250 | 0.244 | 0.267 | 0.289 | 0.311 | 0.375 | 0.400 | 0.378 | 0.450 | 1.286 |
M1 | 0.006702 | 2.131 | 0.469361 | 0.99332 | 0.00668 | 0.001568 | ||
M2 | 0.007143 | 0.844 | 1.184211 | 0.992883 | 0.007117 | 0.004214 | ||
M3 | 1 | 0.007535 | 1.658 | 1 | 0.603015 | 0.992493 | 0.007507 | 0.006017 |
M4 | 0.5 | 0.006944 | 1.764 | 0.5 | 0.566929 | 0.99308 | 0.00692 | 0.003692 |
M5 | 0.6 | 0.007937 | 1.286 | 0.6 | 0.777538 | 0.992095 | 0.007905 | 0.005445 |
Approach | tR1 | tW1 | tV1 | tD | tR2 | tW2 | tV2 | tFS | tA | Sum(T) | sq |
---|---|---|---|---|---|---|---|---|---|---|---|
IR | 5 | 1 | 5 | 1 | - | - | - | 2 | 1 | 15 | sqIR |
IE | 5 | 1 | 5 | 1 | 5 | 20 | 5 | 2 | 15 | 59 | sqIE ≥ sqIR |
BC | 5 | 1 | 5 | - | - | - | - | 2 | 1 | 15 | sqBC ≥sqIR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balon, B.; Kalinowski, K.; Paprocka, I. Production Planning Using a Shared Resource Register Organized According to the Assumptions of Blockchain Technology. Sensors 2023, 23, 2308. https://doi.org/10.3390/s23042308
Balon B, Kalinowski K, Paprocka I. Production Planning Using a Shared Resource Register Organized According to the Assumptions of Blockchain Technology. Sensors. 2023; 23(4):2308. https://doi.org/10.3390/s23042308
Chicago/Turabian StyleBalon, Barbara, Krzysztof Kalinowski, and Iwona Paprocka. 2023. "Production Planning Using a Shared Resource Register Organized According to the Assumptions of Blockchain Technology" Sensors 23, no. 4: 2308. https://doi.org/10.3390/s23042308
APA StyleBalon, B., Kalinowski, K., & Paprocka, I. (2023). Production Planning Using a Shared Resource Register Organized According to the Assumptions of Blockchain Technology. Sensors, 23(4), 2308. https://doi.org/10.3390/s23042308