Condition Monitoring of Additively Manufactured Injection Mould Tooling: A Review of Demands, Opportunities and Potential Strategies
Abstract
:1. Introduction
2. Defects
2.1. Conventional Defects
2.2. Potential for Tool Defects Arising from Additive Manufacturing
3. Sensors
3.1. Acoustic Emission
3.2. Accelerometers
3.3. Ultrasound
3.4. Other Sensors
3.5. Summary
4. Signal Processing
4.1. Fourier Transforms
4.2. Wavelet Analysis
5. Decision-Making Algorithms
5.1. Data-Based
5.1.1. Threshold-Based Detection
5.1.2. Artificial Neural Networks
5.1.3. Support Vector Machine
5.1.4. Fuzzy Logic
5.2. Model-Based
5.3. Summary
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AE | Acoustic Emission |
AM | Additive Manufacturing |
ANN | Artificial Neural Network |
CART | Classification Furthermore, Regression Tree |
CCC | Conformal Cooling Channels |
CNC | Computer Numerical Control |
CNN | Convolution Neural Network |
CWT | Continuous Wavelet Transform |
DWT | Discrete Wavelet Transform |
EDM | Electrical Discharge Machining |
EKF | Extended Kalman Filter |
FL | Fuzzy Logic |
FT | Fourier Transform |
IM | Injection Moulding |
IMF | Intrinsic Mode Function |
IMM | Injection Moulding Machine |
KF | Kalman Filter |
MEMS | Microelectromechanical systems |
MLP | Multilayer Perception |
MODBNE | Multiobjective Deep Belief Networks Ensemble |
MSE | Multiscale Entropy |
NB | Naive Bayes |
NDT | Nondestructive Testing |
RF | Random Forest |
RMS | Root Mean Squared |
SHM | Structural Health Monitoring |
STFT | Short-Time Fourier Transform |
SVM | Support Vector Machine |
TCM | Tool Condition Monitoring |
UKF | Unscented Kalman Filter |
WPD | Wavelet Packet Denoising |
WPT | Wavelet Packet Transform |
References
- Singh, G.; Verma, A. A Brief Review on injection moulding manufacturing process. Mater. Today Proc. 2017, 4, 1423–1433. [Google Scholar] [CrossRef]
- Veligorskyi, O.; Chakirov, R.; Khomenko, M.; Vagapov, Y. Artificial neural network motor control for full-electric injection moulding machine. In Proceedings of the 2019 IEEE International Conference on Industrial Technology (ICIT), Melbourne, VIC, Australia, 13–15 February 2019; Volume 2019, pp. 60–65. [Google Scholar] [CrossRef] [Green Version]
- Morrow, W.R.; Qi, H.; Kim, I.; Mazumder, J.; Skerlos, S.J. Environmental aspects of laser-based and conventional tool and die manufacturing. J. Clean. Prod. 2007, 15, 932–943. [Google Scholar] [CrossRef]
- Iskender, A.; Erkan, M.E.; Erbaş, M.; Güven, D.G.; Sezen, G.; Aşik, M.; Demiraran, Y.; Yildirim, M. Evaluation of the effects of desflurane and sevoflurane anesthesia on alveolar epithelial permeability by Tc-99m DTPA inhalation scintigraphy. Turkish J. Med. Sci. 2013, 43, 858–861. [Google Scholar] [CrossRef]
- Gibson, I.; Rosen, D.; Stucker, B. Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, 2nd ed.; Springer: New York, NY, USA, 2015; pp. 1–498. [Google Scholar] [CrossRef]
- Thompson, M.K.; Moroni, G.; Vaneker, T.; Fadel, G.; Campbell, R.I.; Gibson, I.; Bernard, A.; Schulz, J.; Graf, P.; Ahuja, B.; et al. Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints. CIRP Ann. -Manuf. Technol. 2016, 65, 737–760. [Google Scholar] [CrossRef] [Green Version]
- Seepersad, C.C. Challenges and Opportunities in Design for Additive Manufacturing. 3D Print. Addit. Manuf. 2014, 1, 10–13. [Google Scholar] [CrossRef]
- Abdulhameed, O.; Al-Ahmari, A.; Ameen, W.; Mian, S.H. Additive manufacturing: Challenges, trends, and applications. Adv. Mech. Eng. 2019, 11, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Papadakis, L.; Avraam, S.; Photiou, D.; Masurtschak, S.; Pereira Falcón, J.C. Use of a Holistic Design and Manufacturing Approach to Implement Optimized Additively Manufactured Mould Inserts for the Production of Injection-Moulded Thermoplastics. J. Manuf. Mater. Process. 2020, 4, 100. [Google Scholar] [CrossRef]
- Kariminejad, M.; Kadivar, M.; McAfee, M.; McGranaghan, G.; Tormey, D. Comparison of Conventional and Conformal Cooling Channels in the Production of a Commercial Injection-Moulded Component. Key Eng. Mater. 2022, 926, 1821–1831. [Google Scholar] [CrossRef]
- Vojnová, E. The benefits of a conforming cooling systems the molds in injection moulding process. Procedia Eng. 2016, 149, 535–543. [Google Scholar] [CrossRef]
- Molitch-Hou, M. 7 Issues to Look Out for in Metal 3D Printing. Available online: https://www.engineering.com/story/7-issues-to-look-out-for-in-metal-3d-printing (accessed on 16 March 2020).
- Kozak, J.; Zakrzewski, T. Accuracy problems of additive manufacturing using SLS/SLM processes. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2018; Volume 2017. [Google Scholar] [CrossRef]
- Kim, F.H.; Moylan, S.P. Literature Review of Metal Additive Manufacturing Defects. Gaithersburg, MD, USA: US Department of Commerce, National Institute of Standards and Technology. NIST Adv. Manuf. Ser. 2018, 1–17. [Google Scholar]
- Kek, T.; Kusic, D.; Hancic, A.; Grum, J. Acoustic emission crack detection in injection molding. In Proceedings of the VIIIth International Workshop NDT in Progress (NDTP2015), Prague, Czech Republic, 12–14 October 2015. [Google Scholar]
- Moreira, E.E.; Alves, F.S.; Martins, M.; Ribeiro, G.; Pina, A.A.; Aguiam, D.E.; Sotgiu, E.; Fernandes, E.P.; Gaspar, J.J. Industry 4.0: Real-time monitoring of an injection molding tool for smart predictive maintenance. In Proceedings of the IEEE International Conference on Emerging Technologies and Factory Automation, ETFA, Vienna, Austria, 8–11 September 2020; Volume 2020, pp. 1209–1212. [Google Scholar] [CrossRef]
- Dapino, M.J. Smart Structure Integration Through Ultrasonic Additive Manufacturing. In Proceedings of the Smart Materials, Adaptive Structures and Intelligent Systems, Volume 2: Mechanics and Behavior of Active Materials; Integrated System Design andImplementation; Bioinspired Smart Materials and Systems; Energy Harvesting, Newport, RI, USA, 8–10 September 2014. [Google Scholar] [CrossRef] [Green Version]
- Kazmer, D.O. Injection Mold Design Engineering, 2nd ed.; Hanser Publishers: Munich, Germany, 2016; p. 9781569905715. [Google Scholar] [CrossRef] [Green Version]
- Papageorgiou, D.; Medrea, C.; Kyriakou, N. Failure analysis of H13 working die used in plastic injection moulding. Eng. Fail. Anal. 2013, 35, 355–359. [Google Scholar] [CrossRef]
- Jung, I.; Lubich, V.; Wieland, H.J. Tool Failures—Causes and Prevention. In Proceedings of the 6th International Tooling Conference, Karlstad, Sweden, 10–13 September 2002; pp. 1343–1362. [Google Scholar]
- Knack, O. 11 Injection Molding Defects and How to Prevent Them. Available online: https://www.intouch-quality.com/blog/injection-molding-defects-and-how-to-prevent (accessed on 1 January 2020).
- Kharytonau, D.S.; Zimowska, M.; Gurgul, J.; Mordarski, G.; Powalisz, R.; Rutowski, A.; Putynkowski, G.; Zięba, A.; Mokrzycki, Ł.; Socha, R.P. Corrosion failure analysis of a cooling system of an injection mold. Eng. Fail. Anal. 2022, 135, 106118. [Google Scholar] [CrossRef]
- Arif, A.F.; Sheikh, A.K.; Qamar, S.Z. A study of die failure mechanisms in aluminum extrusion. J. Mater. Process. Technol. 2003, 134, 318–328. [Google Scholar] [CrossRef]
- Chen, B.; Wu, H.; Zhou, H.; Sun, D. EMP: Extended kalman filter based self-adaptive mold protection method on a toggle mechanism. Appl. Sci. 2020, 10, 940. [Google Scholar] [CrossRef] [Green Version]
- Yadav, A.; Srivastav, A.; Singh, A.; Mushtaque, M.D.; Khan, S.A.; Kumar, H.; Arora, P.K. Investigation on the materials used in additive manufacturing: A study. Mater. Today Proc. 2020, 43, 154–157. [Google Scholar] [CrossRef]
- Yakout, M.; Elbestawi, M.A.; Veldhuis, S.C. A review of metal additive manufacturing technologies. Solid State Phenom. 2018, 278 SSP, 1–14. [Google Scholar]
- Kumar, M.B.; Sathiya, P.; Varatharajulu, M. Selective Laser Sintering. In Advances in Additive Manufacturing Processes; China Bentham Books: Beijing, China, 2021; p. 28. [Google Scholar]
- Ahmed Obeidi, M.; Uí Mhurchadha, S.M.; Raghavendra, R.; Conway, A.; Souto, C.; Tormey, D.; Ahad, I.U.; Brabazon, D. Comparison of the porosity and mechanical performance of 316L stainless steel manufactured on different laser powder bed fusion metal additive manufacturing machines. J. Mater. Res. Technol. 2021, 13, 2361–2374. [Google Scholar] [CrossRef]
- Ye, D.; Hsi Fuh, J.Y.; Zhang, Y.; Hong, G.S.; Zhu, K. In situ monitoring of selective laser melting using plume and spatter signatures by deep belief networks. ISA Trans. 2018, 81, 96–104. [Google Scholar] [CrossRef]
- Moshiri, M.; Candeo, S.; Carmignato, S.; Mohanty, S.; Tosello, G. Benchmarking of Laser Powder Bed Fusion Machines. J. Manuf. Mater. Process. 2019, 3, 85. [Google Scholar] [CrossRef] [Green Version]
- Lane, B.; Moylan, S.; Whitenton, E. Post-Process Machining of Additive Manufactured Stainless Steel. In Proceedings of the Proceedings—ASPE 2015 Spring Topical Meeting: Achieving Precision Tolerances in Additive Manufacturing, Raleigh, NC, USA, 26–29 April 2015. [Google Scholar]
- Kilundu, B.; Dehombreux, P.; Chiementin, X. Tool wear monitoring by machine learning techniques and singular spectrum analysis. Mech. Syst. Signal Process. 2011, 25, 400–415. [Google Scholar] [CrossRef]
- Huang, J. 2 - Non-destructive evaluation (NDE) of composites: Acoustic emission (AE). In Non-Destructive Evaluation (NDE) of Polymer Matrix Composites; Karbhari, V.M., Ed.; Woodhead Publishing Series in Composites Science and Engineering; Woodhead Publishing: Sawston, UK, 2013; pp. 12–32. [Google Scholar] [CrossRef]
- Kuntoğlu, M.; Aslan, A.; Pimenov, D.Y.; Usca, Ü.A.; Salur, E.; Gupta, M.K.; Mikolajczyk, T.; Giasin, K.; Kapłonek, W.; Sharma, S. A review of indirect tool condition monitoring systems and decision-making methods in turning: Critical analysis and trends. Sensors 2021, 21, 108. [Google Scholar] [CrossRef]
- Kuntoğlu, M.; Sağlam, H. Investigation of signal behaviors for sensor fusion with tool condition monitoring system in turning. Meas. J. Int. Meas. Confed. 2021, 173, 108582. [Google Scholar] [CrossRef]
- Li, X. A brief review: Acoustic emission method for tool wear monitoring during turning. Int. J. Mach. Tools Manuf. 2002, 42, 157–165. [Google Scholar] [CrossRef] [Green Version]
- Ambhore, N.; Kamble, D.; Chinchanikar, S.; Wayal, V. Tool condition monitoring system: A review. Mater. Today Proc. 2015, 2, 3419–3428. [Google Scholar] [CrossRef]
- Chiou, R.Y.; Liang, S.Y. Analysis of acoustic emission in chatter vibration with tool wear effect in turning. Int. J. Mach. Tools Manuf. 2000, 40, 927–941. [Google Scholar] [CrossRef]
- Du, Y.; Zhou, S.; Jing, X.; Peng, Y.; Wu, H.; Kwok, N. Damage detection techniques for wind turbine blades: A review. Mech. Syst. Signal Process. 2020, 141, 106445. [Google Scholar] [CrossRef]
- Shen, G.; Wu, Z.; Zhang, J. Advances in Acoustic Emission Technology: Proceedings of the World Conference on Acoustic Emission-2013. Springer Proc. Phys. 2015, 158, 369–382. [Google Scholar] [CrossRef]
- Bhuiyan, M.S.; Choudhury, I.A.; Nukman, Y. Tool condition monitoring using acoustic emission and vibration signature in turning. Lect. Notes Eng. Comput. Sci. 2012, 3, 1612–1616. [Google Scholar]
- Bhuiyan, M.S.; Choudhury, I.A.; Dahari, M.; Nukman, Y.; Dawal, S.Z. Application of acoustic emission sensor to investigate the frequency of tool wear and plastic deformation in tool condition monitoring. Meas. J. Int. Meas. Confed. 2016, 92, 208–217. [Google Scholar] [CrossRef]
- Rizal, M.; Ghani, J.A.; Nuawi, M.Z.; Haron, C.H.C. A review of sensor system and application in milling process for tool condition monitoring. Res. J. Appl. Sci. Eng. Technol. 2014, 7, 2083–2097. [Google Scholar] [CrossRef]
- Fu-Cheng, X. Common vibration sensor and its typical application circuit. Pract. Electron. 2008, 10, 13–15. [Google Scholar]
- Kene, A.P.; Choudhury, S.K. Analytical modeling of tool health monitoring system using multiple sensor data fusion approach in hard machining. Meas. J. Int. Meas. Confed. 2019, 145, 118–129. [Google Scholar] [CrossRef]
- Özbek, O.; Saruhan, H. The effect of vibration and cutting zone temperature on surface roughness and tool wear in eco-friendly MQL turning of AISI D2. J. Mater. Res. Technol. 2020, 9, 2762–2772. [Google Scholar] [CrossRef]
- Jiayu, L.; Xiaomao, X.; Yuxi, S. Turning Knife Health Monitoring Based on Vibration Signal with Machine Learning Algorithms. J. Phys. Conf. Ser. 2022, 2281, 012021. [Google Scholar] [CrossRef]
- Madhusudana, C.K.; Kumar, H.; Narendranath, S. Condition monitoring of face milling tool using K-star algorithm and histogram features of vibration signal. Eng. Sci. Technol. Int. J. 2016, 19, 1543–1551. [Google Scholar] [CrossRef] [Green Version]
- Suhaimi, A.A.; Chuan Huat, N. Study on Hot Press Forming Die Condition by using Vibration Monitoring System. Res. Prog. Mech. Manuf. Eng. 2020, 1, 153–159. [Google Scholar]
- Mohanraj, T.; Shankar, S.; Rajasekar, R.; Sakthivel, N.R.; Pramanik, A. Tool condition monitoring techniques in milling process-a review. J. Mater. Res. Technol. 2020, 9, 1032–1042. [Google Scholar] [CrossRef]
- Zhou, Y.; Xue, W. Review of tool condition monitoring methods in milling processes. Int. J. Adv. Manuf. Technol. 2018, 96, 2509–2523. [Google Scholar] [CrossRef]
- Bhuiyan, M.S.; Choudhury, I.A. Review of Sensor Applications in Tool Condition Monitoring in Machining; Elsevier Ltd.: Dublin, Ireland, 2014; Volume 13, pp. 539–569. [Google Scholar] [CrossRef]
- Madhusudanan, A.; Prabhakaran, S.; Ruba, P.H.; Rufus, E. Structural health monitoring using ultrasonic techniques. In IOP Conference Series: Materials Science and Engineering; IOP Publishing Ltd.: Bristol, UK, 2017; Volume 263. [Google Scholar] [CrossRef]
- Malekimoghadam, R.; Krause, S.; Czichon, S. A critical review on the structural health monitoring methods of the composite wind turbine blades. In Proceedings of the 1st International Conference on Structural Damage Modelling and Assessment: Ghent University, Belgium, 4–5 August 2020. Lect. Notes Civ. Eng. Abdel Wahab, M., Ed.; Springer: Singapore, 2021; Volume 110, pp. 409–438. [Google Scholar] [CrossRef]
- Sunil Kumar, H.S.; Anand, R.B. A case study on damage detection of wind turbine composite blade. FME Trans. 2019, 47, 135–141. [Google Scholar] [CrossRef]
- Jasiūnienė, E.; Raišutis, R.; Šliteris, R.; Voleišis, A.; Jakas, M.; Jasiuniene, E.; Raišutis, R.; Šliteris, R.; Voleišis, A.; Jakas, M. Ultrasonic NDT of wind turbine blades using contact pulse-echo immersion testing with moving water container. Ultragarsas 2008, 63, 28–32. [Google Scholar] [CrossRef]
- Raišutis, R.; Jasiūnienė, E.; Žukauskas, E. Ultrasonic NDT of wind turbine blades using guided waves. Ultragarsas / Ultrasound 2008, 63, 7–11. [Google Scholar]
- Soerensen, B.F.; Lading, L.; Sendrup, P. Fundamentals for Remote Structural Health Monitoring of Wind Turbine Blades—A Pre-Project. 2002. Available online: https://www.osti.gov/etdeweb/biblio/20273791 (accessed on 22 January 2023).
- Oliveira, M.A.; Simas Filho, E.F.; Albuquerque, M.C.; Santos, Y.T.; da Silva, I.C.; Farias, C.T. Ultrasound-based identification of damage in wind turbine blades using novelty detection. Ultrasonics 2020, 108, 106166. [Google Scholar] [CrossRef]
- Benyahia, A.; Benammar, A.; Guessoum, A. Delamination Defects Localization in Carbon Fiber Composite Laminates Using Ultrasonic Signal Processing. In Proceedings of the SIENR 2021—6th International Symposium on New and Renewable Energy, Ghadaia, Algeria, 13–14 October 2021. [Google Scholar] [CrossRef]
- Aranguren, G.; Etxaniz, J.; Cantero, S.; Malik, M.K.; de la Escalera, F.M.; Essa, Y. Proposal for an industrial structural health monitoring system based in ultrasound signal. In Proceedings of the 9th European Workshop on Structural Health Monitoring EWSHM 2018, Manchester, UK, 10–13 July 2018; pp. 1–9. [Google Scholar]
- Yadav, S.K.; Chung, H.; Kopsaftopoulos, F.; Chang, F.K. Damage quantification of active sensing acousto-ultrasound-based SHM based on a multi-path unit-cell approach. In Proceedings of the 11th International Workshop on Structural Health Monitoring, Stanford, CA, USA, 12–14 September 2017; Volume 2, pp. 3093–3103. [Google Scholar] [CrossRef]
- Ahmed, S.; Kopsaftopoulos, F. Stochastic Identification-based Active Sensing Acousto-Ultrasound SHM Using Stationary Time Series Models. arXiv 2022, arXiv:2201.11233. [Google Scholar]
- Ritou, M.; Garnier, S.; Furet, B.; Hascoet, J.Y. Angular approach combined to mechanical model for tool breakage detection by eddy current sensors. Mech. Syst. Signal Process. 2014, 44, 211–220. [Google Scholar] [CrossRef] [Green Version]
- Jiao, S.; Cheng, L.; Li, X.; Li, P.; Ding, H. Monitoring fatigue cracks of a metal structure using an eddy current sensor. EURASIP J. Wirel. Commun. Netw. 2016, 2016, 188. [Google Scholar] [CrossRef] [Green Version]
- Niculescu, N.A.; Corcau, J.I.; Alexandru, G. Integrated System for Monitoring Aircraft Structural Condition by Using the Strain Gauge Marks Method. In Proceedings of the 2021 International Conference on Applied and Theoretical Electricity (ICATE), Craiova, Romania, 27–29 May 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Sun, S.; Wang, T.; Chu, F. In-situ condition monitoring of wind turbine blades: A critical and systematic review of techniques, challenges, and futures. Renew. Sustain. Energy Rev. 2022, 160, 112326. [Google Scholar] [CrossRef]
- Sánchez, R.; Martinez, A.; Mercado, D.; Carbonel, A.; Aisa, J. Rapid heating injection moulding: An experimental surface temperature study. Polym. Test. 2021, 93, 106928. [Google Scholar] [CrossRef]
- Broberg, P. Surface crack detection in welds using thermography. NDT E Int. 2013, 57, 69–73. [Google Scholar] [CrossRef]
- Kunpeng, Z.; San, W.Y.; Soon, H.G. Signal Processing for Tool Condition Monitoring: From Wavelet Analysis to Sparse Decomposition; Woodhead Publishing Limited: Sawston, UK, 2012; pp. 115–157. [Google Scholar] [CrossRef]
- Qamar, S.Z.; Pervez, T.; Chekotu, J.C. Die defects and die corrections in metal extrusion. Metals 2018, 8, 380. [Google Scholar] [CrossRef] [Green Version]
- Terchi, A.; Au, Y.H. Acoustic Emission Signal Processing; SAGE Publications Ltd.: Thousand Oaks, CA, USA, 2001; Volume 34, pp. 240–244. [Google Scholar] [CrossRef] [Green Version]
- Nandi, A.; Ahmed, H. Frequency Domain Analysis. In Condition Monitoring with Vibration Signals; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2019; Chapter 4; pp. 63–77. Available online: https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119544678.ch4 (accessed on 1 February 2022).
- Brandt, A. Noise and Vibration Analysis: Signal Analysis and Experimental Procedures; John Wiley & Sons, Ltd: Hoboken, NJ, USA, 2011. [Google Scholar] [CrossRef]
- Zhang, J.Z.; Chen, J.C. Tool condition monitoring in an end-milling operation based on the vibration signal collected through a microcontroller-based data acquisition system. Int. J. Adv. Manuf. Technol. 2008, 39, 118–128. [Google Scholar] [CrossRef]
- Chuangwen, X.; Hualing, C. Fractal analysis of vibration signals for monitoring the condition of milling tool wear. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2009, 223, 909–918. [Google Scholar] [CrossRef]
- Wang, G.F.; Yang, Y.W.; Zhang, Y.C.; Xie, Q.L. Vibration sensor based tool condition monitoring using ν support vector machine and locality preserving projection. Sens. Actuators Phys. 2014, 209, 24–32. [Google Scholar] [CrossRef]
- Yan, R.; Chen, X.; Mukhopadhyay, S.C. Structural Health Monitoring: An Advanced Signal Processing Perspective; Springer: Cham, Switzerland, 2017; Volume 26, pp. 1–11. [Google Scholar]
- Novelo, X.E.A.; Chu, H.Y. Application of vibration analysis using time-frequency analysis to detect and predict mechanical failure during the nut manufacturing process. Adv. Mech. Eng. 2022, 14, 1–17. [Google Scholar] [CrossRef]
- El-Galy, I.; Behrens, B.A. Online Monitoring of Hot Die Forging Processes Using Acoustic Emission (Part-Ii). Ewgae 2010, 26, 208–218. [Google Scholar]
- Zhao, L.; Kang, L.; Yao, S. Research and Application of Acoustic Emission Signal Processing Technology. IEEE Access 2019, 7, 984–993. [Google Scholar] [CrossRef]
- Misiti, M.; Misiti, Y.; Oppenheim, G.; Poggi, J.M. Wavelet Toolbox ™ User’s Guide How to Contact MathWorks; MathWorks: Natick, MA, USA, 2015; p. 700. [Google Scholar]
- Kim, H.; Melhem, H. Damage detection of structures by wavelet analysis. Eng. Struct. 2004, 26, 347–362. [Google Scholar] [CrossRef]
- Lange, J.H.; Abu-Zahra, N.H. Tool chatter monitoring in turning operations using wavelet analysis of ultrasound waves. Int. J. Adv. Manuf. Technol. 2002, 20, 248–254. [Google Scholar] [CrossRef]
- Li, X.; Wu, J. Wavelet analysis of acoustic emission signals in boring. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2000, 214, 421–424. [Google Scholar] [CrossRef]
- Boutros, T.; Liang, M. Detection and diagnosis of bearing and cutting tool faults using hidden Markov models. Mech. Syst. Signal Process. 2011, 25, 2102–2124. [Google Scholar] [CrossRef]
- Zhao, Q.; Li, W.; Shao, Y.; Yao, X.; Tian, H.; Zhang, J. Damage detection of wind turbine blade based on wavelet analysis. In Proceedings of the 2015 8th International Congress on Image and Signal Processing (CISP), Shenyang, China, 14–16 October 2015; pp. 1406–1410. [Google Scholar] [CrossRef]
- Kek, T.; Kusić, D.; Grum, J. Wavelet packet decomposition to characterize injection molding tool damage. Appl. Sci. 2016, 6, 45. [Google Scholar] [CrossRef] [Green Version]
- Beale, C.; Niezrecki, C.; Inalpolat, M. An adaptive wavelet packet denoising algorithm for enhanced active acoustic damage detection from wind turbine blades. Mech. Syst. Signal Process. 2020, 142, 106754. [Google Scholar] [CrossRef]
- Kozjek, D.; Vrabič, R.; Kralj, D.; Butala, P. A Data-Driven Holistic Approach to Fault Prognostics in a Cyclic Manufacturing Process. Procedia CIRP 2017, 63, 664–669. [Google Scholar] [CrossRef]
- Frumosu, F.D.; Rønsch, G.Ø.; Kulahci, M. Mould wear-out prediction in the plastic injection moulding industry: A case study. Int. J. Comput. Integr. Manuf. 2020, 33, 1245–1258. [Google Scholar] [CrossRef]
- Li, X.; Liu, X.; Yue, C.; Liang, S.Y.; Wang, L. Systematic review on tool breakage monitoring techniques in machining operations. Int. J. Mach. Tools Manuf. 2022, 176, 103882. [Google Scholar] [CrossRef]
- Tiwari, K.; Shaik, A.; Arunachalam, N.; N, A. Tool wear prediction in end milling of Ti-6Al-4V through Kalman filter based fusion of texture features and cutting forces. Procedia Manuf. 2018, 26, 1459–1470. [Google Scholar] [CrossRef]
- Mia, M.; Dhar, N.R. Prediction of surface roughness in hard turning under high pressure coolant using Artificial Neural Network. Measurement 2016, 92, 464–474. [Google Scholar] [CrossRef]
- Zhao, R.; Yan, R.; Chen, Z.; Mao, K.; Wang, P.; Gao, R.X. Deep learning and its applications to machine health monitoring. Mech. Syst. Signal Process. 2019, 115, 213–237. [Google Scholar] [CrossRef]
- Attanasio, A.; Ceretti, E.; Giardini, C. Analytical Models for Tool Wear Prediction During AISI 1045 Turning Operations. Procedia CIRP 2013, 8, 218–223. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.J.; Kim, A.R.; Lee, S.W. Artificial neural network-based automated crack detection and analysis for the inspection of concrete structures. Appl. Sci. 2020, 10, 8105. [Google Scholar] [CrossRef]
- Yusof, N.A.; Ibrahim, A.; Noor, M.H.; Tahir, N.M.; Yusof, N.M.; Abidin, N.Z.; Osman, M.K. Deep convolution neural network for crack detection on asphalt pavement. J. Physics Conf. Ser. 2019, 1349, 12020. [Google Scholar] [CrossRef]
- Hawryluk, M.; Mrzygłód, B. A durability analysis of forging tools for different operating conditions with application of a decision support system based on artificial neural networks (ANN). Eksploat. Niezawodn. 2017, 19, 338–348. [Google Scholar] [CrossRef]
- Liu, C.; Li, Y.; Zhou, G.; Shen, W. A sensor fusion and support vector machine based approach for recognition of complex machining conditions. J. Intell. Manuf. 2018, 29, 1739–1752. [Google Scholar] [CrossRef]
- Su, C.-H.; Shen, J.-S.; Jiang, M.-S.; Sui, Q.-M.; Lv, S.-S.; Geng, X.-Y. Simulation study on identification of delamination size of composite based on the support vector machine. In Proceedings of the Proceedings—2017 Chinese Automation Congress, CAC 2017, Jinan, China, 20–22 October 2017; Volume 2017, pp. 4253–4256. [Google Scholar] [CrossRef]
- Sari, Y.; Prakoso, P.B.; Baskara, A.R. Road Crack Detection using Support Vector Machine (SVM) and OTSU Algorithm. In Proceedings of the ICEVT 2019—Proceeding: 6th International Conference on Electric Vehicular Technology 2019, Bali, Indonesia, 18–21 November 2019; pp. 349–354. [Google Scholar] [CrossRef]
- Dib, M.; Ribeiro, B.; Prates, P. Model Prediction of Defects in Sheet Metal Forming Processes; Springer International Publishing: Midtown Manhattan, NY, USA, 2018; Volume 893, pp. 169–180. [Google Scholar] [CrossRef]
- Kuntoğlu, M.; Aslan, A.; Sağlam, H.; Pimenov, D.Y.; Giasin, K.; Mikolajczyk, T. Optimization and analysis of surface roughness, flank wear and 5 different sensorial data via tool condition monitorTing system in turning of aisi 5140. Sensors 2020, 20, 4377. [Google Scholar] [CrossRef]
- Gowd, B.P.; Jayasree, K.; Hegde, M.N. Comparison of artificial neural networks and fuzzy logic approaches for crack detection in a beam like structure. Int. J. Artif. Intell. Appl. 2018, 9, 35–51. [Google Scholar]
- Bernardi, E.; Adam, E.J. Observer-based fault detection and diagnosis strategy for industrial processes. J. Franklin Inst. 2020, 357, 10054–10081. [Google Scholar] [CrossRef]
- Park, Y.J.; Fan, S.K.S.; Hsu, C.Y. A Review on Fault Detection and Process Diagnostics in Industrial Processes. Processes 2020, 8, 1123. [Google Scholar] [CrossRef]
- Tidriri, K.; Chatti, N.; Verron, S.; Tiplica, T. Bridging data-driven and model-based approaches for process fault diagnosis and health monitoring: A review of researches and future challenges. Annu. Rev. Control 2016, 42, 63–81. [Google Scholar] [CrossRef]
- McAfee, M.; Kariminejad, M.; Weinert, A.; Huq, S.; Stigter, J.D.; Tormey, D. State Estimators in Soft Sensing and Sensor Fusion for Sustainable Manufacturing. Sustainability 2022, 14, 3635. [Google Scholar] [CrossRef]
- Wei, X.; Liu, L. Fault detection of large scale wind turbine systems. In Proceedings of the ICCSE 2010—5th International Conference on Computer Science and Education, Final Program and Book of Abstracts, Hefei, China, 24–27 August 2010. [Google Scholar] [CrossRef]
- Hong, J.; Laflamme, S.; Dodson, J.; Joyce, B. Introduction to state estimation of high-rate system dynamics. Sensors 2018, 18, 217. [Google Scholar] [CrossRef] [Green Version]
- Avendaño-Valencia, L.D.; Chatzi, E.N.; Tcherniak, D. Gaussian process models for mitigation of operational variability in the structural health monitoring of wind turbines. Mech. Syst. Signal Process. 2020, 142, 106686. [Google Scholar] [CrossRef]
- Dong, T.; Kim, N.H. Cost-effectiveness of structural health monitoring in fuselage maintenance of the civil aviation industry. Aerospace 2018, 5, 87. [Google Scholar] [CrossRef] [Green Version]
- Tomaz, I.; Uí Mhurchadha, S.M.; Marques, S.; Quinn, P.; Funke, H.; Birkholz, F.; Zietzschmann, S.; Raghavendra, R. The development of a smart additively manufactured part with an embedded surface acoustic wave sensor. Addit. Manuf. Lett. 2021, 1, 100004. [Google Scholar] [CrossRef]
- Yang, D.X.; Hu, Z.; Zhao, H.; Hu, H.F.; Sun, Y.Z.; Hou, B.J. Through-Metal-Wall Power Delivery and Data Transmission for Enclosed Sensors: A Review. Sensors 2015, 15, 31581–31605. [Google Scholar] [CrossRef]
- Zhang, X.; Liou, F. Chapter 1—Introduction to additive manufacturing. In Additive Manufacturing; Pou, J., Riveiro, A., Davim, J.P., Eds.; Handbooks in Advanced Manufacturing; Elsevier: Madrid, Spain, 2021; pp. 1–31. [Google Scholar] [CrossRef]
- Reis, M.S.; Gins, G. Industrial process monitoring in the big data/industry 4.0 era: From detection, to diagnosis, to prognosis. Processes 2017, 5, 35. [Google Scholar] [CrossRef] [Green Version]
- Yin, S.; Ding, S.X.; Xie, X.; Luo, H. A review on basic data-driven approaches for industrial process monitoring. IEEE Trans. Ind. Electron. 2014, 61, 6418–6428. [Google Scholar] [CrossRef]
- Heiserich, G.; Jungk, A.; Overmeyer, L. Tool Monitoring and Electronic Event Logging for Sheet Metal Forming Processes. In Proceedings of the WMSCI 2009—13th World Multi-Conference on Systemics, Cybernetics and Informatics, Orlando, FL, USA, 10–13 July 2009; Volume 2, pp. 7–10. [Google Scholar]
- Kong, L.X.; Nahavandi, S. On-line tool condition monitoring and control system in forging processes. J. Mater. Process. Technol. 2002, 125–126, 464–470. [Google Scholar] [CrossRef]
- Tatipala, S.; Wall, J.; Johansson, C.; Larsson, T. A Hybrid Data-Based and Model-Based Approach to Process Monitoring and Control in Sheet Metal Forming. Processes 2020, 8, 89. [Google Scholar] [CrossRef] [Green Version]
Pros | Cons | |
---|---|---|
Model-based | Does not require historical data for generation of physical model of the system Offers identification of faulty sensors based on generated residuals Faulty behaviour is monitored based on generated signature matrix through structural analysis | Such systems require high computational power Difficult to model response of AE and accelerometer sensors in the complex machine environment |
Data-based | This approach does not require high computational power Detects fault based on sensor output and comparison to the collected healthy dataset | Requires a large amount of historical data about the system Sensor fault is more difficult to identify |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weinert, A.; Tormey, D.; O’Hara, C.; McAfee, M. Condition Monitoring of Additively Manufactured Injection Mould Tooling: A Review of Demands, Opportunities and Potential Strategies. Sensors 2023, 23, 2313. https://doi.org/10.3390/s23042313
Weinert A, Tormey D, O’Hara C, McAfee M. Condition Monitoring of Additively Manufactured Injection Mould Tooling: A Review of Demands, Opportunities and Potential Strategies. Sensors. 2023; 23(4):2313. https://doi.org/10.3390/s23042313
Chicago/Turabian StyleWeinert, Albert, David Tormey, Christopher O’Hara, and Marion McAfee. 2023. "Condition Monitoring of Additively Manufactured Injection Mould Tooling: A Review of Demands, Opportunities and Potential Strategies" Sensors 23, no. 4: 2313. https://doi.org/10.3390/s23042313
APA StyleWeinert, A., Tormey, D., O’Hara, C., & McAfee, M. (2023). Condition Monitoring of Additively Manufactured Injection Mould Tooling: A Review of Demands, Opportunities and Potential Strategies. Sensors, 23(4), 2313. https://doi.org/10.3390/s23042313