Application of 3D Printing Technology in Sensor Development for Water Quality Monitoring
Abstract
:1. Introduction
2. The Development and Market Share of 3D Printing Technology
3. Applications of 3D Printing in Sensors’ Development
3.1. Development of Sensors’ Platform Using 3D Printing
3.2. Development of Sensor’s Cell Using 3D Printing
3.3. Development of Sensors’ Electrodes Using 3D Printing
3.4. Development of all-3D-Printed Sensors
4. Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mekonnen, M.M.; Hoekstra, A.Y. Four billion people facing severe water scarcity. Sci. Adv. 2016, 2, e1500323. [Google Scholar] [CrossRef] [Green Version]
- Guillén-Navarro, M.A.; Martínez-España, R.; Bueno-Crespo, A.; Morales-García, J.; Ayuso, B.; Cecilia, J.M. A decision support system for water optimization in anti-frost techniques by sprinklers. Sensors 2020, 20, 7129. [Google Scholar] [CrossRef]
- Sun, Y.; O’Connell, D.W. Application of visible light active photocatalysis for water contaminants: A review. Water Environ. Res. 2022, 94, e10781. [Google Scholar] [CrossRef]
- Zhu, M.; Wang, J.; Yang, X.; Zhang, Y.; Zhang, L.; Ren, H.; Wu, B.; Ye, L. A review of the application of machine learning in water quality evaluation. Eco-Environ. Health 2022, 1, 107–116. [Google Scholar] [CrossRef]
- Xu, H.; Jia, Y.; Sun, Z.; Su, J.; Liu, Q.S.; Zhou, Q.; Jiang, G. Environmental Pollution, A Hidden Culprit for Health Issues. Eco-Environ. Health 2022, 1, 31–45. [Google Scholar] [CrossRef]
- UNDP. Human Development Report 2020; UNDP (United Nations Development Programme): New York, NY, USA, 2020. [Google Scholar]
- United Nations Environment Programme. UN Environment 2016 Annual Report: Empowering People to Protect the Planet; UNEP: Nairobi, Kenya, 2016. [Google Scholar]
- Zhao, Q.; Yu, P.; Mahendran, R.; Huang, W.; Gao, Y.; Yang, Z.; Ye, T.; Wen, B.; Wu, Y.; Li, S. Global climate change and human health: Pathways and possible solutions. Eco-Environ. Health 2022, 1, 53–62. [Google Scholar] [CrossRef]
- Kruse, P. Review on water quality sensors. J. Phys. D-Appl. Phys. 2018, 51, 25. [Google Scholar] [CrossRef] [Green Version]
- Hsu, L.H.; Aryasomayajula, A.; Selvaganapathy, P.R. A Review of Sensing Systems and Their Need for Environmental Water Monitoring. Crit. Rev. Biomed. Eng. 2016, 44, 357–382. [Google Scholar] [CrossRef]
- Banna, M.; Bera, K.; Sochol, R.; Lin, L.; Najjaran, H.; Sadiq, R.; Hoorfar, M. 3D printing-based integrated water quality sensing system. Sensors 2017, 17, 1336. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, X.; Guo, X.; Kong, B.; Zhang, M.; Qian, X.; Mi, S.; Sun, W. The boom in 3D-printed sensor technology. Sensors 2017, 17, 1166. [Google Scholar] [CrossRef] [PubMed]
- Debosz, M.; Wieczorek, M.; Paluch, J.; Migdalski, J.; Bas, B.; Koscielniak, P. 3D-printed flow manifold based on potentiometric measurements with solid-state ion-selective electrodes and dedicated to multicomponent water analysis. Talanta 2020, 217, 9. [Google Scholar] [CrossRef]
- Khosravani, M.R.; Reinicke, T. 3D-printed sensors: Current progress and future challenges. Sens. Actuator A-Phys. 2020, 305, 17. [Google Scholar] [CrossRef]
- Su, W.J.; Wang, S.C.; Bahr, R.; Tentzeris, M.M. Smart Floating Balls: 3D Printed Spherical Antennas and Sensors for Water Quality Monitoring. In Proceedings of the IEEE/MTT-S International Microwave Symposium, Philadelphia, PA, USA, 10–15 June 2018; Ieee: Philadelphia, PA, USA, 2018. [Google Scholar]
- Bhattacharjee, T.; Jiang, H.R.; Behdad, N. A Fluidic Colorimetric Sensor Design for Water Hardness Detection. IEEE Sens. J. 2015, 15, 819–826. [Google Scholar] [CrossRef]
- Hong, Y.; Wu, M.Y.; Chen, G.W.; Dai, Z.Y.; Zhang, Y.Z.; Chen, G.S.; Dong, X.C. 3D Printed Microfluidic Device with Microporous Mn2O3-Modified Screen Printed Electrode for Real-Time Determination of Heavy Metal Ions. Acs Appl. Mater. Interfaces 2016, 8, 32940–32947. [Google Scholar] [CrossRef]
- Zhao, G.; Tran, T.T.; Modha, S.; Sedki, M.; Myung, N.V.; Jassby, D.; Mulchandani, A. Multiplexed Anodic Stripping Voltammetry Detection of Heavy Metals in Water Using Nanocomposites Modified Screen-Printed Electrodes Integrated With a 3D-Printed Flow Cell. Front. Chem. 2022, 10, 13. [Google Scholar] [CrossRef]
- Wang, Z.; Li, D.; Shi, Y.; Sun, Y.; Okeke, S.I.; Yang, L.; Zhang, W.; Zhang, Z.; Shi, Y.; Xiao, L. Recent Implementations of Hydrogel-Based Microbial Electrochemical Technologies (METs) in Sensing Applications. Sensors 2023, 23, 641. [Google Scholar] [CrossRef]
- de Almeida, P.L.; Lima LM, A.; de Almeida, L.F. A 3D-printed robotic system for fully automated multiparameter analysis of drinkable water samples. Anal. Chim. Acta 2021, 1169, 12. [Google Scholar] [CrossRef]
- Liu, C.Y.; Huang, N.G.; Xu, F.; Tong, J.D.; Chen, Z.W.; Gui, X.C.; Fu, Y.L.; Lao, C.S. 3D Printing Technologies for Flexible Tactile Sensors toward Wearable Electronics and Electronic Skin. Polymers 2018, 10, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frazier, W.E. Metal Additive Manufacturing: A Review. J. Mater. Eng. Perform. 2014, 23, 1917–1928. [Google Scholar] [CrossRef]
- Kodama, H. Automatic method for fabricating a three-dimensional plastic model with photo-hardening polymer. Rev. Sci. Instrum. 1981, 52, 1770–1773. [Google Scholar] [CrossRef]
- Balogun, H.A.; Sulaiman, R.; Marzouk, S.S.; Giwa, A.; Hasan, S.W. 3D printing and surface imprinting technologies for water treatment: A review. J. Water Process. Eng. 2019, 31, 100786. [Google Scholar] [CrossRef]
- Hull, C.W. Apparatus for Production of Three-Dimensional Objects by Stereolithography. U.S. Patent US4575330A, 11 March 1986. [Google Scholar]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.; Hui, D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. Part B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, M.; Zhou, Z.; Gou, J.; Hui, D. 3D printing of polymer matrix composites: A review and prospective. Compos. Part B Eng. 2017, 110, 442–458. [Google Scholar] [CrossRef]
- Statista. Top 3D Printing Technologies 2021. Available online: https://www.statista.com/statistics/560304/worldwide-survey-3d-printing-top-technologies/ (accessed on 1 July 2022).
- Deckard, C. Method and Apparatus for Producing Parts by Selective Sintering. U.S. Patent US4863538A, 5 September 1989. [Google Scholar]
- Gu, D.D.; Meiners, W.; Wissenbach, K.; Poprawe, R. Laser additive manufacturing of metallic components: Materials, processes and mechanisms. Int. Mater. Rev. 2012, 57, 133–164. [Google Scholar] [CrossRef]
- Chua, C.K.; Leong, K.F.; Lim, C.S. Rapid Prototyping: Principles and Applications (with Companion CD-ROM); World Scientific Publishing Company: Singapore, 2010. [Google Scholar]
- Crump, S.S. Apparatus and Method for Creating Three-Dimensional Objects. U.S. Patent US5121329A, 9 June 1992. [Google Scholar]
- Sachs, E.; Haggerty, J.; Cima, M.; Williams, P. Three-Dimensional Printing Techniques. U.S. Patent US5204055A, 20 April 1993. [Google Scholar]
- Lu, Y.; Mapili, G.; Suhali, G.; Chen, S.; Roy, K. A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds. J. Biomed. Mater. Red. A 2006, 77A, 396–405. [Google Scholar] [CrossRef]
- Chohan, J.S.; Singh, R.; Boparai, K.S.; Penna, R.; Fraternali, F. Dimensional accuracy analysis of coupled fused deposition modeling and vapour smoothing operations for biomedical applications. Compos. Part B Eng. 2017, 117, 138–149. [Google Scholar] [CrossRef]
- Joshi, A.; Goh, J.K.; Goh, K.E.J. Chapter 3—Polymer-based conductive composites for 3D and 4D printing of electrical circuits. In 3D and 4D Printing of Polymer Nanocomposite Materials; Sadasivuni, K.K., Deshmukh, K., Almaadeed, M.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 45–83. [Google Scholar]
- Sachs, E.; Cima, M.; Cornie, J.; Brancazio, D.; Bredt, J.; Curodeau, A.; Fan, T.; Khanuja, S.; Lauder, A.; Lee, J.; et al. Three-Dimensional Printing: The Physics and Implications of Additive Manufacturing. CIRP Annals 1993, 42, 257–260. [Google Scholar] [CrossRef]
- Zhu, W.; Ma, X.Y.; Gou, M.L.; Mei, D.Q.; Zhang, K.; Chen, S.C. 3D printing of functional biomaterials for tissue engineering. Curr. Opin. Biotechnol. 2016, 40, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Tai, X.Y.; Zhakeyev, A.; Wang, H.; Jiao, K.; Zhang, H.; Xuan, J. Accelerating Fuel Cell Development with Additive Manufacturing Technologies: State of the Art, Opportunities and Challenges. Fuel Cells 2019, 19, 636–650. [Google Scholar] [CrossRef]
- Macdonald, N.P.; Cabot, J.M.; Smejkal, P.; Guijt, R.M.; Paull, B.; Breadmore, M.C. Comparing Microfluidic Performance of Three-Dimensional (3D) Printing Platforms. Anal. Chem. 2017, 89, 3858–3866. [Google Scholar] [CrossRef]
- Malladi, A.; Karunakaran, K. DMLS—An Insight for Unproblematic Production. In Proceedings of the International Conference on Newer Trends and Innovations in Mechanical Engineering (ICONTIME)—Materials Science, Electr Network, Tiruchirappalli, India, 15–16 October 2020; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1986–1990. [Google Scholar]
- Baumgartner, B.; Freitag, S.; Gasser, C.; Lendl, B. A pocket-sized 3D-printed attenuated total reflection-infrared filtometer combined with functionalized silica films for nitrate sensing in water. Sens. Actuator B-Chem. 2020, 310, 7. [Google Scholar] [CrossRef]
- Gul, I.; Aer, L.; Zhang, M.; Jiang, H.J.; Khan, A.A.; Bilal, M.; Fang, R.Q.; Feng, J.; Zeng, H.J.; Tang, L.X. Multifunctional 3D-printed platform integrated with a smartphone ambient light sensor for halocarbon contaminants monitoring. Environ. Technol. Innov. 2021, 24, 12. [Google Scholar] [CrossRef]
- Leal, V.G.; Batista, A.D.; Petruci, J.F.D. 3D-printed and fully portable fluorescent-based platform for sulfide determination in waters combining vapor generation extraction and digital images treatment. Talanta 2021, 222, 7. [Google Scholar] [CrossRef] [PubMed]
- Das, P.; Chetry, B.; Paul, S.; Bhattacharya, S.S.; Nath, P. Detection and quantification of phosphate in water and soil using a smartphone. Microchem J. 2022, 172, 8. [Google Scholar] [CrossRef]
- Ruan, X.F.; Wang, Y.J.; Kwon, E.Y.; Wang, L.M.; Cheng, N.; Niu, X.H.; Ding, S.C.; Van Wie, B.J.; Lin, Y.H.; Du, D. Nanomaterial-enhanced 3D-printed sensor platform for simultaneous detection of atrazine and acetochlor. Biosens. Bioelectron. 2021, 184, 9. [Google Scholar] [CrossRef] [PubMed]
- Rajasulochana, P.; Ganesan, Y.; Kumar, P.S.; Mahalaxmi, S.; Tasneem, F.; Ponnuchamy, M.; Kapoor, A. Paper-based microfluidic colorimetric sensor on a 3D printed support for quantitative detection of nitrite in aquatic environments. Environ. Res. 2022, 208, 10. [Google Scholar] [CrossRef]
- Kinar, N.J.; Brinkmann, M. Development of a sensor and measurement platform for water quality observations: Design, sensor integration, 3D printing, and open-source hardware. Environ. Monit. Assess. 2022, 194, 22. [Google Scholar] [CrossRef]
- Santangelo, M.F.; Shtepliuk, I.; Filippini, D.; Puglisi, D.; Vagin, M.; Yakimova, R.; Eriksson, J. Epitaxial Graphene Sensors Combined with 3D-Printed Microfluidic Chip for Heavy Metals Detection. Sensors 2019, 19, 13. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, S.; Nadaraja, A.V.; Roberts, D.J.; Zarifi, M.H. Real-time and hazard-free water quality monitoring based on microwave planar resonator sensor. Sens. Actuator A Phys. 2020, 303, 11. [Google Scholar] [CrossRef]
- Di Lorenzo, M.; Thomson, A.R.; Schneider, K.; Cameron, P.J.; Ieropoulos, I. A small-scale air-cathode microbial fuel cell for on-line monitoring of water quality. Biosens. Bioelectron. 2014, 62, 182–188. [Google Scholar] [CrossRef] [Green Version]
- Jyoti; Redondo, E.; Alduhaish, O.; Pumera, M. 3D-printed nanocarbon sensors for the detection of chlorophenols and nitrophenols: Towards environmental applications of additive manufacturing. Electrochem. Commun. 2021, 125, 6. [Google Scholar] [CrossRef]
- Jyoti; Redondo, E.; Alduhaish, O.; Pumera, M. 3D-printed Electrochemical Sensor for Organophosphate Nerve Agents. Electroanalysis 2022, 7, 1226. [Google Scholar] [CrossRef]
- Joao, A.F.; Castro SV, F.; Cardoso, R.M.; Gamela, R.R.; Rocha, D.P.; Richter, E.M.; Munoz, R.A. 3D printing pen using conductive filaments to fabricate affordable electrochemical sensors for trace metal monitoring. J. Electroanal. Chem. 2020, 876, 9. [Google Scholar] [CrossRef]
- Katseli, V.; Thomaidis, N.; Economou, A.; Kokkinos, C. Miniature 3D-printed integrated electrochemical cell for trace voltammetric Hg (II) determination. Sens. Actuator B Chem. 2020, 308, 7. [Google Scholar] [CrossRef]
- Carvalho, R.M.; Ferreira, V.S.; Lucca, B.G. A novel all-3D-printed thread-based microfluidic device with an embedded electrochemical detector: First application in environmental analysis of nitrite. Anal. Methods 2021, 13, 1349–1357. [Google Scholar] [CrossRef] [PubMed]
- Pal, A.; Amreen, K.; Dubey, S.K.; Goel, S. Highly Sensitive and Interference-Free Electrochemical Nitrite Detection in a 3D Printed Miniaturized Device. IEEE Trans. Nanobiosci. 2021, 20, 175–182. [Google Scholar] [CrossRef]
- Sibug-Torres, S.M.; Go, L.P.; Castillo, V.C.G.; Pauco, J.L.R.; Enriquez, E.P. Fully integrated 3D-printed electrochemical cell with a modified inkjet-printed Ag electrode for voltammetric nitrate analysis. Anal. Chim. Acta 2021, 1160, 13. [Google Scholar] [CrossRef]
- Wong, Y.J.; Nakayama, R.; Shimizu, Y.; Kamiya, A.; Shen, S.; Muhammad Rashid, I.Z.; Nik Sulaiman, N.M. Toward industrial revolution 4.0: Development, validation, and application of 3D-printed IoT-based water quality monitoring system. J. Clean Prod. 2021, 324, 129230. [Google Scholar] [CrossRef]
- Li, D.; Shi, Y.; Sun, Y.; Wang, Z.; KKehoe, D.; Romeral, L.; Gao, F.; Yang, L.; McCurtin, D.; Gun’ko, Y.K.; et al. Microbe-Based Sensor for Long-Term Detection of Urine Glucose. Sensors 2022, 22, 5340. [Google Scholar] [CrossRef]
- Li, D.; Shi, Y.; Gao, F.; Yang, L.; Kehoe, D.K.; Romeral, L.; Gun’ko, Y.K.; Lyonsa, M.G.; Wang, J.J.; Mullarkey, D.; et al. Characterising and control of ammonia emission in microbial fuel cells. Chem. Eng. J. 2020, 389, 124462. [Google Scholar] [CrossRef]
- Li, D.; Shi, Y.; Gao, F.; Yang, L.; Li, S.; Xiao, L. Understanding the current plummeting phenomenon in microbial fuel cells (MFCs). J. Water Process Eng. 2021, 40, 101984. [Google Scholar] [CrossRef]
- Di Lorenzo, M.; Curtis, T.P.; Head, I.M.; Scott, K. A single-chamber microbial fuel cell as a biosensor for wastewaters. Water Res. 2009, 43, 3145–3154. [Google Scholar] [CrossRef]
- Yang, G.-X.; Sun, Y.-M.; Kong, X.-Y.; Zhen, F.; Li, Y.; Li, L.-H.; Lei, T.-Z.; Yuan, Z.-H.; Chen, G.-Y. Factors affecting the performance of a single-chamber microbial fuel cell-type biological oxygen demand sensor. Water Sci. Technol. 2013, 68, 1914–1919. [Google Scholar] [CrossRef]
- Li, D.; Sun, Y.; Shi, Y.; Wang, Z.; Okeke, S.; Yang, L.; Zhang, W.; Xiao, L. Structure evolution of air cathodes and their application in electrochemical sensor development and wastewater treatment. Sci. Total Environ. 2023, 869, 161689. [Google Scholar] [CrossRef]
- Achouch, S.; Masmoudi, L.; Nonnon, P.; Gharbi, M. 3D Printed Capacitive Relative Pressure Sensor for Use in a CAE Environment. In Proceedings of the 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC), Virtual Conference, 27–30 January 2021; pp. 1366–1369. [Google Scholar]
- Tuna, A.; Erden, O.K.; Gokdel, Y.D.; Sarioglu, B. 3D Printed Capacitive Pressure Sensor with Corrugated Surface. In Proceedings of the 2017 13th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), Taormina, Italy, 12–15 June 2017; pp. 149–152. [Google Scholar]
- Shen, S.; Liu, H.; Pang, F.; Guo, Z.; Yang, J.; Chen, Z.; Wang, T. Fiber-Optic Water Pressure Sensor Fabricated by a 3D Printing Technique. In Proceedings of the Advanced Sensor Systems and Applications IX, Hangzhou, China, 21–22 October 2019; SPIE: Paris, France, 2019; pp. 86–91. [Google Scholar]
- Lin, Y.-K.; Hsieh, T.-S.; Tsai, L.; Wang, S.-H.; Chiang, C.-C. Using three-dimensional printing technology to produce a novel optical fiber Bragg grating pressure sensor. Sensors Mater. 2016, 28, 389–394. [Google Scholar]
- Sajid, M.; Gul, J.Z.; Kim, S.W.; Kim, H.B.; Na, K.H.; Choi, K.H. Development of 3D-printed embedded temperature sensor for both terrestrial and aquatic environmental monitoring robots. 3D Print. Addit. Manuf. 2018, 5, 160–169. [Google Scholar] [CrossRef]
- Bae, E.-J.; Jeong, I.-D.; Kim, W.-C.; Kim, J.-H. A comparative study of additive and subtractive manufacturing for dental restorations. J. Prosthet. Dent. 2017, 118, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Cuiffo, M.A.; Snyder, J.; Elliott, A.M.; Romero, N.; Kannan, S.; Halada, G.P. Impact of the fused deposition (FDM) printing process on polylactic acid (PLA) chemistry and structure. Appl. Sci. 2017, 7, 579. [Google Scholar] [CrossRef] [Green Version]
- Moretti, C.; Hamelin, L.; Jakobsen, L.G.; Junginger, M.H.; Steingrimsdottir, M.M.; Høibye, L.; Shen, L. Cradle-to-grave life cycle assessment of single-use cups made from PLA, PP and PET. Resour. Conserv. Recycl. 2021, 169, 105508. [Google Scholar] [CrossRef]
- Li, D.; Sheerin, E.D.; Shi, Y.; Xiao, L.; Yang, L.; Boland, J.J.; Wang, J.J. Alcohol pretreatment to eliminate the interference of micro additive particles in the identification of microplastics using Raman spectroscopy. Environ. Sci. Technol. 2022, 56, 12158–12168. [Google Scholar] [CrossRef]
- Fauvelle, V.; Garel, M.; Tamburini, C.; Nerini, D.; Castro-Jiménez, J.; Schmidt, N.; Paluselli, A.; Fahs, A.; Papillon, L.; Booth, A.M. Organic additive release from plastic to seawater is lower under deep-sea conditions. Nat. Commun. 2021, 12, 4426. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Li, D.; Xiao, L.; Mullarkey, D.; Kehoe, D.K.; Sheerin, E.D.; Barwich, S.; Yang, L.; Gun’ko, Y.K.; Shvets, I.V.; et al. Real-world natural passivation phenomena can limit microplastic generation in water. Chem. Eng. J. 2022, 428, 132466. [Google Scholar] [CrossRef]
- Li, D.; Yang, L.; Kavanagh, R.; Xiao, L.; Shi, Y.; Kehoe, D.K.; Sheerin, E.D.; Gun’ko, Y.K.; Boland, J.J.; Wang, J.J. Sampling, Identification and Characterization of Microplastics Release from Polypropylene Baby Feeding Bottle during Daily Use. JoVE 2021, 173, e62545. [Google Scholar]
- Rochman, C.M. Microplastics research—from sink to source. Science 2018, 360, 28–29. [Google Scholar] [CrossRef]
- Shi, Y.; Li, D.; Xiao, L.; Sheerin, E.D.; Mullarkey, D.; Yang, L.; Bai, X.; Shvets, I.V.; Boland, J.J.; Wang, J.J. The influence of drinking water constituents on the level of microplastic release from plastic kettles. J. Hazard. Mater. 2021, 425, 127997. [Google Scholar] [CrossRef]
- Vethaak, A.D.; Legler, J. Microplastics and human health. Science 2021, 371, 672–674. [Google Scholar] [CrossRef]
3D-Printed Component | 3D Printing Technology | Materials | Main Functions of 3D-Printed Component | Detection Object | Reference |
---|---|---|---|---|---|
Platform | FFF/FDM | ABS * | Structural component | Water hardness | [16] |
FFF/FDM | PLA * | Structural component | Nitrate | [42] | |
FFF/FDM | - | Platform | 1,3-DCP | [43] | |
FFF/FDM | - | Platform | Sulfide | [44] | |
FFF/FDM | - | Platform | Phosphate | [45] | |
FFF/FDM | PLA * | Platform | Atrazine and acetochlor | [46] | |
FFF/FDM | PLA * | Platform | Nitrite | [47] | |
SLA | Clear resin | Flow manifold | Potassium, sodium, calcium and chloride | [13] | |
FFF/FDM | Acrylonitrile styrene acrylate | Floating platform | Turbidity, total dissolved solids, and water temperature | [48] | |
SLA | Clear resin | Floating platform | Potential water pollution, such as crude oil leakage | [15] | |
Cell | SLA | Clear resin | Flow cell | Heavy metal ions | [18] |
FFF/FDM | ABS * | Conduit | Water quality | [11] | |
SLA | Resin Clear Type 02 | Microfluidic lab-on-a-chip | Heavy metal ions | [49] | |
FFF/FDM | Copolyester | Microfluidic channel | Organic matters | [50] | |
FFF/FDM | PC/ABS * | Sensor cell; glue all components; seal sensor | Chemical oxygen demand; cadmium | [51] | |
Electrode | Screen printing | - | Microfluidic with electrode | Heavy metal ions | [17] |
FFF/FDM | Carbon-loaded PLA * | Electrode | Chlorophenols and nitrophenols | [52] | |
FFF/FDM | Carbon-loaded PLA * | Electrode | OPs | [53] | |
3D printing pen | Carbon-loaded PLA * | Working electrode | Lead and copper | [54] | |
All-3D-printed sensors | FFF/FDM | Carbon-loaded PLA * | Electrochemical cell | Hg(II) | [55] |
FFF/FDM | Carbon-loaded PLA * | Embedded electrochemical detector | Nitrate | [56] | |
FFF/FDM | Carbon-loaded PLA * | Miniaturized electrochemical sensor | Nitrite | [57] | |
Inject and FFF/FDM | Ag and carbon-loaded ABS * | Electrochemical cell | Nitrate | [58] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Li, D.; Shi, Y.; Wang, Z.; Okeke, S.I.; Yang, L.; Zhang, W.; Zhang, Z.; Shi, Y.; Xiao, L. Application of 3D Printing Technology in Sensor Development for Water Quality Monitoring. Sensors 2023, 23, 2366. https://doi.org/10.3390/s23052366
Sun Y, Li D, Shi Y, Wang Z, Okeke SI, Yang L, Zhang W, Zhang Z, Shi Y, Xiao L. Application of 3D Printing Technology in Sensor Development for Water Quality Monitoring. Sensors. 2023; 23(5):2366. https://doi.org/10.3390/s23052366
Chicago/Turabian StyleSun, Yifan, Dunzhu Li, Yunhong Shi, Zeena Wang, Saviour I. Okeke, Luming Yang, Wen Zhang, Zihan Zhang, Yanqi Shi, and Liwen Xiao. 2023. "Application of 3D Printing Technology in Sensor Development for Water Quality Monitoring" Sensors 23, no. 5: 2366. https://doi.org/10.3390/s23052366
APA StyleSun, Y., Li, D., Shi, Y., Wang, Z., Okeke, S. I., Yang, L., Zhang, W., Zhang, Z., Shi, Y., & Xiao, L. (2023). Application of 3D Printing Technology in Sensor Development for Water Quality Monitoring. Sensors, 23(5), 2366. https://doi.org/10.3390/s23052366