Machine Learning Analytic-Based Two-Staged Data Management Framework for Internet of Things
Abstract
:1. Introduction
- Analyze and classify IoT data at device and edge levels;
- Create data management framework for IoT edge-cloud architecture for resource-constrained IoT applications;
- Design and implement machine learning approach for resource optimization;
- Compare the proposed work with the existing approaches.
2. Background and Related Work
3. Materials and Methods
3.1. Machine Learning Analytics-Based Data Classification Framework for IoT (MLADCF): Stage 1
3.2. Proposed Device Level Data Mangement
Algorithm 1: Device Level Algorithm | |
Input: Data Packets sensed by the IoT sensors Output: Value of determinant of | |
| |
| |
| |
| |
|
3.3. Scenarios I, II & III
3.4. Building a Regression Model
3.5. Training Data for the Model
3.6. Hybrid Resource Constrained K-Nearest Neighbour Classifier (HRCKNN): Stage 2
3.7. Proposed Cluster Head Data Management
Algorithm 2: Cluster Head Algorithm |
3.8. Feature Extraction
3.9. System Model
- Device layer nodes have the capability of processing the data;
- Nodes that cannot process the data;
- Nodes used as routers/repeaters.
3.10. Proposed Edge Level Storage
Algorithm 3: Edge Level Algorithm |
3.11. Stages in MLADCF
3.12. Experimantal Setup
- An ethernet port or USB should connect the gateway and computer;
- The gateway should be attached to the IoT motes;
- The programming. Next should be done while keeping the motes in power-off mode.
Datasets
4. Results
4.1. Observations
4.2. Metrics for Evaluation of Model Performance
4.3. Performance Comparison of the Proposed Model
4.4. Simulation Parameters
4.5. MLADCF Results for Energy Optimization of the Network
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- Accuracy
- Precision
- Sensitivity/TPR/Recall
- F1
- Score
Performance Evaluation
- Round
- Energy
- Storage
References
- Liu, Y.; Peng, M.; Shou, G.; Chen, Y.; Chen, S. Toward Edge Intelligence: Multiaccess Edge Computing for 5G and Internet of Things. IEEE Internet Things J. 2020, 7, 6722–6747. [Google Scholar] [CrossRef]
- Donno, D.M.; Tange, K.; Dragoni, N. Foundations and Evolution of Modern Computing Paradigms: Cloud, IoT, Edge, and Fog. IEEE Access 2019, 7, 150936–150948. [Google Scholar] [CrossRef]
- Khan, W.; Arshad, Q.; Hakak, S.; Khan, M.; Rehman, S.U. Trust Management in Social Internet of Things: Architectures, Recent Advancements, and Future Challenges. IEEE Internet Things J. 2021, 8, 7768–7788. [Google Scholar] [CrossRef]
- Sinha, B.; Dhanalakshmi, R. Recent advancements and challenges of Internet of Things in smart agriculture: A survey. Future Gener. Comput. Syst. 2022, 126, 169–184. [Google Scholar] [CrossRef]
- Wei, D.; Ning, H.; Shi, F.; Wan, Y.; Xu, J.; Yang, S.; Zhu, L. Dataflow Management in the Internet of Things: Sensing, Control, and Security. Tsinghua Sci. Technol. 2021, 26, 918–930. [Google Scholar] [CrossRef]
- Wang, S.; Ding, C.; Zhang, N.; Liu, X.; Zhou, A.; Cao, J.; Shen, X. A Cloud-Guided Feature Extraction Approach for Image Retrieval in Mobile Edge Computing. IEEE Trans. Mob. Comput. 2021, 20, 292–305. [Google Scholar] [CrossRef]
- Li, B.; He, Q.; Chen, F.; Jin, H.; Xiang, Y.; Yang, Y. Auditing Cache Data Integrity in the Edge Computing Environment. IEEE Trans. Parallel Distrib. Syst. 2021, 32, 1210–1223. [Google Scholar] [CrossRef]
- Montori, F.; Bedogni, L.; Bononi, L. A Collaborative Internet of Things Architecture for Smart Cities and Environmental Monitoring. IEEE Internet Things J. (IoT) 2018, 5, 592–605. [Google Scholar] [CrossRef]
- Zhang, H.; Fu, Z.; Shu, K. Recognizing Ping-Pong Motions Using Inertial Data Based on Machine Learning Classification Algorithms. IEEE Access 2019, 7, 167055–167064. [Google Scholar] [CrossRef]
- Rozo, J.D.; Bielza, C.; Larrañaga, P. Clustering of Data Streams with Dynamic Gaussian Mixture Models: An IoT Application in Industrial Processes. IEEE Internet Things J. (IoT) 2018, 5, 3533–3547. [Google Scholar] [CrossRef] [Green Version]
- Mydhili, S.K.; Periyanayagi, S.; Baskar, S.; Shakeel, P.M.; Hariharan, P.R. Machine learning based multi scale parallel K-means++ clustering for cloud assisted internet of things. Peer Peer Netw. Appl. 2020, 13, 2023–2035. [Google Scholar] [CrossRef]
- Jin, H. Data processing model and performance analysis of cognitive computing based on machine learning in Internet environment. Soft Comput. 2019, 23, 9141–9151. [Google Scholar] [CrossRef]
- Ibrahim, A.; Eltawil, A.; Na, Y.; Tawil, S.E. A Machine Learning Approach for Structural Health Monitoring Using Noisy Data Sets. IEEE Trans. Autom. Sci. Eng. 2020, 17, 900–908. [Google Scholar] [CrossRef]
- Dass, J.; Sarin, V.; Mahapatra, R.N. Fast and Communication-Efficient Algorithm for Distributed Support Vector Machine Training. IEEE Trans. Parallel Distrib. Syst. 2019, 30, 1065–1076. [Google Scholar] [CrossRef]
- Aljumah, A.; Kaur, A.; Bhatia, M.; Ahanger, T.A. Internet of things-fog computing-based framework for smart disaster management. Trans. Emerg. Telecommun. Technol. 2020, 32, 4078. [Google Scholar] [CrossRef]
- Li, J.; Tao, H.; Shuhong, L.; Salih, S.; Zain, J.M.; Yankun, L.; Vevekananda, G.N.; Thanjaivadal, M. Internet of things assisted condition-based support for smart manufacturing industry using learning technique. Comput. Intell. 2020, 36, 1737–1754. [Google Scholar] [CrossRef]
- Sharmila, P.; Baskaran, J.; Nayanatara, C.; Maheswari, R. A hybrid technique of machine learning and data analytics for optimized distribution of renewable energy resources targeting smart energy management. Procedia Comput. Sci. 2019, 165, 278–284. [Google Scholar] [CrossRef]
- Alfian, G.; Syafrudin, M.; Farooq, U.; Maarif, M.; Alex, M.; Fitriyani, N.L.; Lee, J.; Rhee, J. Improving efficiency of RFID-based traceability system for perishable food by utilizing IoT sensors and machine learning model. Food Control 2020, 110, 107016. [Google Scholar] [CrossRef]
- Rezk, N.G.; Hemdan, E.E.D.; Attia, A.F.; Sayed, A.E.; Rashidy, M.A.E. An efficient IoT based smart farming system using machine learning algorithms. Multimed. Tools Appl. 2021, 80, 773–797. [Google Scholar] [CrossRef]
- Cui, H.; Chang, C. Deep Learning Based Advanced Spatio-Temporal Extraction Model in Medical Sports Rehabilitation for Motion Analysis and Data Processing. IEEE Access 2020, 8, 115848–115856. [Google Scholar] [CrossRef]
- ElHalawany, B.M.; Wu, K.; Zaky, A.B. Deep learning-based resources allocation for internet-of-things deployment underlaying cellular networks. Mob. Netw. Appl. 2020, 25, 1833–1841. [Google Scholar] [CrossRef]
- Pacheco, F.; Exposito, E.; Gineste, M. A framework to classify heterogeneous Internet traffic with Machine Learning and Deep Learning techniques for satellite communications. Comput. Netw. 2020, 173, 107213. [Google Scholar] [CrossRef]
- Naeem, H.; Ullah, F.; Naeem, M.; Khalid, S.; Vasan, D.; Jabbar, S.; Saeed, S. Malware detection in industrial internet of things based on hybrid image visualization and deep learning model. Ad. Hoc. Networks 2020, 105, 102154. [Google Scholar] [CrossRef]
- Rahman, M.W.; Islam, R.; Hasan, A.; Bithi, N.I.; Hasan, M.M.; Rehman, M.M. Intelligent waste management system using deep learning with IoT. Comput. Inf. Sci. 2020, 34, 2072–2087. [Google Scholar] [CrossRef]
- Shen, Z.; Shehzad, A.; Chen, S.; Sun, H.; Liu, J. Machine Learning Based Approach on Food Recognition and Nutrition Estimation. Procedia Comput. Sci. 2020, 174, 448–453. [Google Scholar] [CrossRef]
- Lin, S.; Chen, C.; Lee, T. A Multi-Label Classification with Hybrid Label-Based Meta-Learning Method in Internet of Things. IEEE Access 2020, 8, 42261–42269. [Google Scholar] [CrossRef]
- Yao, H.; Gao, P.; Wang, J.; Zhang, P.; Jiang, C.; Han, Z. Capsule Network Assisted IoT Traffic Classification Mechanism for Smart Cities. IEEE Internet Things J. (IoT) 2019, 6, 7515–7525. [Google Scholar] [CrossRef]
- Huang, J.; Zhu, L.; Liang, Q.; Fan, B.; Li, S. Efficient Classification of Distribution-Based Data for Internet of Things. IEEE Access 2018, 6, 69279–69287. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, Q. Optimized data storage algorithm of IoT based on cloud computing in distributed system. Comput. Commun. 2020, 157, 124–131. [Google Scholar] [CrossRef]
- Alimjan, G.; Sun, T.; Jumahun, H.; Guan, Y.; Zhou, W.; Sun, H. A hybrid classification approach based on support vector machine and K-nearest neighbor for Remote Sensing Data. Int. J. Pattern Recognit. Artif. Intell. 2017, 31, 1750034. [Google Scholar] [CrossRef]
- Din, M.S.U.; Rehman, M.A.U.; Ullah, R.; Park, C.W.; Kim, D.H.; Kim, B.S. Improving resource-constrained IOT device lifetimes by mitigating redundant transmissions across heterogeneous wireless multimedia of things. Digit. Commun. Netw. 2021, 8, 778–790. [Google Scholar]
- Sheng, T.J.; Islam, M.S.; Misran, N.; Baharuddin, M.H.; Arshad, H.; Islam, M.R.; Chodhury, M.E.H.; Rmili, H.; Islam, M.T. An internet of things based Smart Waste Management System using Lora and tensorflow deep learning model. IEEE Access 2020, 8, 148793–148811. [Google Scholar] [CrossRef]
- Jiang, L.; Wu, C. A Massive Multi-Modal Perception Data Classification Method Using Deep Learning Based on Internet of Things. Int. J. Wireless Inf. Netw. 2020, 27, 226–233. [Google Scholar] [CrossRef]
- Chen, F.; Fu, Z.; Yang, Z. Wind power generation fault diagnosis based on deep learning model in internet of things (IoT) with clusters. Clust. Comput. 2019, 22, 14013–14025. [Google Scholar] [CrossRef]
- Alqahtani, F.; Makhadmeh, Z.A.; Tolba, A.; Said, W. Internet of things-based urban waste management system for smart cities using a Cuckoo Search Algorithm. Clust. Comput. 2020, 23, 1769–1780. [Google Scholar] [CrossRef]
- Siryani, J.; Tanju, B.; Eveleigh, T.J. A Machine Learning Decision-Support System Improves the Internet of Things Smart Meter Operations. IEEE Internet Things J. 2017, 4, 1056–1066. [Google Scholar] [CrossRef]
- Zhao, R.; Wang, X.; Xia, J.; Fan, L. Deep reinforcement learning based mobile edge computing for intelligent Internet of Things. Phys. Commun. 2020, 43, 101184. [Google Scholar] [CrossRef]
- Mo, C.; Sun, W. Point-by-point feature extraction of artificial intelligence images based on the Internet of Things. Comput. Commun. 2020, 159, 1–8. [Google Scholar] [CrossRef]
- Mastalerz, M.; Malinowski, A.; Kwiatkowski, S.; Śniegula, A.; Wieczorek, B. Passenger BIBO detection with IoT support and machine learning techniques for intelligent transport systems. Procedia Comput. Sci. 2020, 176, 3780–3793. [Google Scholar] [CrossRef]
- Miranda, C.; Meneses, V.M.C. Internet of things for smart farming and frost intelligent control in greenhouses. Comput. Electron. Agric. 2020, 176, 105614. [Google Scholar] [CrossRef]
- Alarifi, A.; Tolba, A.A. Optimizing the network energy of cloud assisted internet of things by using the adaptive neural learning approach in wireless sensor networks. Comput. Ind. 2019, 106, 133–141. [Google Scholar] [CrossRef]
- Alghanmi, N.; Alotaibi, R.; Buhari, S.M. HLMCC: A Hybrid Learning Anomaly Detection Model for Unlabeled Data in Internet of Things. IEEE Access 2019, 7, 179492–179504. [Google Scholar] [CrossRef]
- Lakshmanaprabu, S.K.; Shankar, K.; Khanna, A.; Gupta, D.; Rodrigues, J.J.P.C.; Pinheiro, P.R.; Albuquerque, V.C.H.C. Effective Features to Classify Big Data Using Social Internet of Things. IEEE Access 2018, 6, 24196–24204. [Google Scholar] [CrossRef]
- Casolla, G.; Cuomo, S.; Cola, V.S.D.; Piccialli, F. Exploring Unsupervised Learning Techniques for the Internet of Things. IEEE Trans. Ind. Inform. 2020, 16, 2621–2628. [Google Scholar] [CrossRef]
- Ribeiro, F.C.; Carvalho, R.T.S.; Cortez, P.C.; Albuquerque, V.H.C.; Filho, P.P.R. Binary Neural Networks for Classification of Voice Commands from Throat Microphone. IEEE Access 2018, 6, 70130–70144. [Google Scholar] [CrossRef]
- Mulahuwaish, A.; Gyorick, K.; Ghafoor, K.Z.; Maghdid, H.S.; Rawat, D.B. Efficient classification model of web news documents using machine learning algorithms for accurate information. Comput. Secur. 2020, 98, 102006. [Google Scholar] [CrossRef]
- Raikar, M.; Mulla, M.; Meena, M.S.; Shetti, S.; Karanandi, M. Data Traffic Classification in Software Defined Networks (SDN) using supervised-learning. Procedia Comput. Sci. 2020, 171, 2750–2759. [Google Scholar] [CrossRef]
- Hou, R.; Kong, Y.; Cai, B.; Liu, H. Unstructured big data analysis algorithm and simulation of Internet of Things based on machine learning. Neural Comput. Appl. 2020, 32, 5399–5407. [Google Scholar] [CrossRef]
- Singh, A.; Aujla, G.S.; Garg, S.; Kaddoum, G.; Singh, G. Deep-Learning-Based SDN Model for Internet of Things: An Incremental Tensor Train Approach. IEEE Internet Things J. 2020, 7, 6302–6311. [Google Scholar] [CrossRef]
- Hsu, I.C.; Chang, C. Integrating machine learning and open data into social Chatbot for filtering information rumor. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 1023–1037. [Google Scholar] [CrossRef]
- Ferreira, D.; Souza, R.; Carvalho, C. Qa-kNN: Indoor localization based on quartile analysis and the knn classifier for wireless networks. Sensors 2020, 20, 4714. [Google Scholar] [CrossRef]
- Hou, X.; Ren, Z.; Wang, J.; Cheng, W.; Ren, Y.; Chen, C.K.; Zhang, H. Reliable computation offloading for edge-computing-enabled software-defined IoV. IEEE Internet Things J. 2020, 7, 7097–7111. [Google Scholar] [CrossRef]
- He, Q.; Cui, G.; Zhang, X.; Chen, F.; Deng, S.; Jin, H.; Li, Y.; Yang, Y. A game-theoretical approach for user allocation in edge computing environment. IEEE Trans. Parallel Distrib. Syst. 2020, 31, 515–529. [Google Scholar] [CrossRef]
- Zhang, Y.; Lan, X.; Ren, J.; Cai, L. Efficient Computing Resource Sharing for mobile edge-cloud computing networks. IEEE/ACM Trans. Netw. 2020, 28, 1227–1240. [Google Scholar] [CrossRef]
- Xia, X.; Chen, F.; He, Q.; Grundy, J.C.; Abdelrazek, M.; Abdelrazek, M.; Jin, H. Cost-Effective App Data Distribution in Edge Computing. IEEE Trans. Parallel Distrib. Syst. 2021, 32, 31–44. [Google Scholar] [CrossRef]
- Shi, W.; Zhang, J.; Zhang, R. Share-Based Edge Computing Paradigm With Mobile-to-Wired Offloading Computing. IEEE Commun. Lett. 2019, 23, 1953–1957. [Google Scholar] [CrossRef]
- Bhuiyan, M.N.; Rahman, M.M.; Billah, M.M.; Saha, D. Internet of Things (IoT): A Review of Its Enabling Technologies in Healthcare Applications, Standards Protocols, Security, and Market Opportunities. IEEE Internet Things J. 2021, 8, 10474–10498. [Google Scholar] [CrossRef]
- Han, G.; Wang, H.; Guan, H.; Guizani, M. A Mobile Charging Algorithm Based on Multicharger Cooperation in Internet of Things. IEEE Internet Things J. 2021, 8, 684–694. [Google Scholar] [CrossRef]
- Song, Z.; Hao, Y.; Liu, Y.; Sun, X. Energy-Efficient Multiaccess Edge Computing for Terrestrial-Satellite Internet of Things. IEEE Internet Things J. 2021, 8, 14202–14218. [Google Scholar] [CrossRef]
- Zhang, X.; Qi, H.; Zhang, X.; Han, L. Energy-Efficient Resource Allocation and Data Transmission of Cell-Free Internet of Things. IEEE Internet Things J. 2021, 8, 15107–15116. [Google Scholar] [CrossRef]
- Shi, Z.; Xie, X.; Lu, H.; Yang, H.; Kadoch, M.; Cheriet, M. Deep-Reinforcement-Learning-Based Spectrum Resource Management for Industrial Internet of Things. IEEE Internet Things J. 2021, 8, 3476–3489. [Google Scholar] [CrossRef]
- He, Y.; Wang, Y.; Qiu, C.; Lin, Q.; Li, J.; Ming, Z. Blockchain-Based Edge Computing Resource Allocation in IoT: A Deep Reinforcement Learning Approach. IEEE Internet Things J. 2021, 8, 2226–2237. [Google Scholar] [CrossRef]
- Farooq, O.; Singh, P. Data Analytics and Modeling in IoT-Fog Environment for Resource-Constrained IoT-Applications: A Review. Recent Adv. Comput. Sci. Commun. 2022, 5, 977–1000. [Google Scholar]
- Stergiou, C.L.; Psannis, K.E.; Gupta, B.B. IoT-Based Big Data Secure Management in the Fog Over a 6G Wireless Network. IEEE Internet Things J. 2021, 8, 5164–5171. [Google Scholar] [CrossRef]
- Yang, F.; Wu, Q.; Hu, X.; Ye, Y.; Yang, Y. Internet-of-things-enabled data fusion method for Sleep Healthcare Applications. IEEE Internet Things J. 2021, 8, 15892–15905. [Google Scholar] [CrossRef]
- Zaman, S.K.; Jehangiri, A.I.; Maqsood, T.; Haq, N.H.; Umar, A.I.; Shuja, J.; Ahmad, Z.; Dhaou, I.B.; Alsharekh, M.F. LiMPO: Lightweight mobility prediction and offloading framework using machine learning for mobile edge computing. Clust. Comput. 2022. [CrossRef]
- Zaman, S.K.; Jehangiri, A.I.; Maqsood, T.; Umar, I.A.; Khan, M.A.; Jhanjhi, N.Z.; Shorfuzzaman, M.; Masud, M. COME-UP: Computation Offloading in Mobile Edge Computing with LSTM Based User Direction Prediction. Appl. Sci. 2022, 12, 3312. [Google Scholar] [CrossRef]
- Boulila, W.; Farah, I.R.; Saheb Ettabaa, K.; Solaiman, B.; Ben Ghézala, H. Spatio-Temporal Modeling for Knowledge Discovery in Satellite Image Databases. In Proceedings of the CORIA, Sousse, Tunisia, 18–20 March 2010; pp. 35–49. [Google Scholar]
- Magnetostrictive Linear Position Sensors. Available online: https://www.temposonics.com/Portals/MTS_Sensors/documents/AN/AN_Telehandler_EN.pdf (accessed on 28 January 2023).
- Digi XBee®Zigbee. Available online: https://www.digi.com/products/embedded-systems/digi-xbee/rf-modules/2-4-ghz-rf-modules/xbee-zigbee (accessed on 28 January 2023).
- Wireless NDE Sensor System for Continuous Monitoring. Available online: https://www.researchgate.net/publication/252547270_Wireless_NDE_Sensor_System_for_Continuous_Monitoring (accessed on 28 January 2023).
- Crossbow Technology MIB520. Available online: http://sine.ni.com/apps/utf8/niid_web_display.model_page?p_model_id=10088 (accessed on 28 January 2023).
- X-Mesh for IoT. Available online: https://minnovation.com.au/x-mesh-for-iot-automation (accessed on 28 January 2023).
- Rehman, M.U.; Shafique, A.; Ghadi, Y.Y.; Boulila, W.; Jan, S.U.; Gadekallu, T.R.; Driss, M.; Ahmad, J. A Novel Chaos-Based Privacy-Preserving Deep Learning Model for Cancer Diagnosis. IEEE Trans. Netw. Sci. Eng. 2022, 9, 4322–4337. [Google Scholar] [CrossRef]
- Boulila, W.; Khlifi, M.K.; Ammar, A.; Koubaa, A.; Benjdira, B.; Farah, I.R. A Hybrid Privacy-Preserving Deep Learning Approach for Object Classification in Very High-Resolution Satellite Images. Remote Sens. 2022, 14, 4631. [Google Scholar] [CrossRef]
- Boulila, W.; Ayadi, Z.; Farah, I.R. Sensitivity analysis approach to model epistemic and aleatory imperfection: Application to Land Cover Change prediction model. J. Comput. Sci. 2017, 23, 58–70. [Google Scholar] [CrossRef]
- Ferchichi, A.; Boulila, W.; Farah, I.R. Propagating aleatory and epistemic uncertainty in land cover change prediction process. Ecol. Inform. 2017, 37, 24–37. [Google Scholar] [CrossRef] [Green Version]
Ref. No. | Technique | Focused Area | Application | Evaluation Parameters | Data Set/Exp. Setup |
---|---|---|---|---|---|
[32] | Deep Learning, Tensorflow | Waste Management | Smart City | Precision, Inference Time, Validation Error, and Total Error. | Waste images dataset/Real-Time Serial Capture Program. |
[33] | Deep Learning | Data Classification, Data Quality | IoT | False alarm rate/2.2%. | Perceptual datasets/Inter. i5-2600 CPU@ 3.40 GHz, 8.00 GB memory and 64-bit Windows 8.1 |
[21] | Deep Learning, Convolution Neural Networks-Long Short-Term Memory (CNN-LSTM) | Resource Optimization, Cellular Networks | Wireless Communication | Accuracy, Epoch, Throughput gain, access rate. | Training dataset obtained using the conventional Hungarian algorithm/MATLAB simulation. |
[34] | Deep Learning | Fault Diagnosis | Renewable Energy | Power coefficient Cp, Tip speed ratio k | - |
[35] | Long short-term recurrent neural network. | Waste Management | Smart City | Error Rate Vs. Smart Bins, Processing Time. Precision, Recall, Accuracy. | Images in TrashNet waste dataset. |
[36] | Decision Tree, Random Forest, Naive Bayes. | Cost Saving, Communication Quality | IoT Ecosystem | Precision, Accuracy, Error Rate. | “Communication Quality” dataset, 41,098 data records. |
[37] | Deep Neural Network | Offloading in Mobile Edge Computing | Resource Optimization | Bandwidth, System Cost, MAC Capability, Weight Factor. | - |
[38] | Artificial Neural Network | Feature Extraction | IoT | Time Cost, Performance, Stability Test. | CPU 6200M main frequency 3.4 Hz, memory DDR3. 1600 4G, system windows 7 64-bit flagship version. |
[39] | Artificial Neural Network | Public Transport | Smart City | Precision, Recall, F1-Score. | 2400 test samples/BadApp4. |
[40] | Artificial Neural Network | Smart Farming | Disaster Management | Standard Error, t-Value, Mean Square, F Value, and precision. | Temperature Dataset. |
[41] | Reinforcement Learning | Energy Optimization | Wireless Networks | No. of Alive Nodes vs. Time, Delay, Residual Energy. | Simulation of more than 200 nodes. |
[19] | Random Forest, LR, KNN, ANN, NB. | Decision Support System | Smart Farming | Precision, Recall, F1-Score, and Accuracy. | 5 Agriculture Data Sets downloaded from Govt. Website. |
[9] | KNN, SVM, NB, LR, DT, RF and CNN | Ping Pong Motion Recognition | Sports | Accuracy, Precision, Recall, and F1 Score. | Data of Smart watches used by ping pong Players |
[42] | Decision Trees | Anomaly Detection | IoT | FPR, Recall, Precision, AUCPR, and F-Score. | LWSNDR Data Set, Landsat Satellite Dataset. |
[43] | Big Data, Lk-SVM Classifier. | Classification | Social Internet of Things | Accuracy, Sensitivity, Throughput, Data size, Energy Consumption, and Specificity. | UCI machine Learning Repository Dataset. |
[44] | Clustering | Supervised Techniques | IoT | F1-Score | Dataset of 9700 unique user’s behavior. |
[45] | Binary Neural Networks | Classification of voice command | Voice Recognition | Success Rate, Amplitude, Accuracy, Average hit rates. | Voice Commands of 150 people. |
[46] | SVM, DT, LSTM, KNN | Classification of web documents | Genuine News Information | True Positive Rate, False Positive Rate, Tree Confusion Matrix, | Dataset provided by “Center for Machine Learning and Intelligent Systems. |
[47] | SVM, NB, Gaussian NB | Traffic Data Classification | Smart City | Precision, Recall, F1-Score, Accuracy. | Simulator Mininet. |
[48] | OTA Algorithm, HDFS | Big Data | Storage Technology | Transport Node, Analysis. | - |
[49] | Deep Learning | Deep Boltzmann machine-based classification | IoT | Delay, throughput, storage space, and accuracy. | OpenDaylight (ODL), POX controller, Raspberry Pi. |
[50] | DT, SVM, LR | Social Media Messages | Social Network | Data Size, Time Cost, AUC. | Six sets of food safety-related OGD and news data from Taiwan. |
[51] | KNN Classifier | Localization | Wireless Networks | Mean Error, Received Power vs. Distance. | Dataset created by positioning WSTA manually in the RP. |
[52] | Decision Tree, Neural Network, | Smart Microgrid | Renewable energy systems | Normalized PI, Battery Size, Diesel Generation, | - |
[53] | Edge computing | EUA problem | Gaming | System Cost vs. no. of app Users, decision iterations. | Intel Core i5 processor (4 CPUs, 2.4GHz) and 8GB RAM. |
[54] | Edge Computing | Quality of Services | Resource Optimization | Social welfare maximization, profit maximization. | - |
[55] | Edge Computing | Data Distribution | Resource Optimization | Edge Density, Cost, No. of edge Servers, Computational Overhead. | EUA dataset/Core i7 8665U processor (4 CPUs, 1.90 GHz) and 8 GB RAM. |
[56] | Edge Computing | Task Offloading | Wireless Networks | Low fail ratio | - |
[57] | RFID, Edge Computing, Big Data, Augmented Reality. | Functional Frameworks | Healthcare | IoThNet framework | A Review. |
[58] | Multi-charger cooperative charging task scheduling | Device Charging | IoT | Charging Time, Charging Requests, Average waiting Time, Charging Efficiency, Throughput. | MATLAB |
[59] | LEO satellites, Lagrangian dual decomposition method | Terrestrial- Satellite | IoT | Energy, Consumption, latency of space segment, first-order optimality. | - |
[60] | Cell-free IoT | Resource Optimization | IoT | Energy Efficiency, Circuit Power, Noise Power, Throughput. | - |
[61] | Deep Learning | Resource Management | IoT | Loss, Reward, Slotted Aloha, Random Allocation, AoR, DQN, MDQN, Success Ratio. Channel Utilization. | - |
[62] | Deep Learning | Resource Management | IoT | Arrival Rate, Reward, Delay, Task drop rate, Processing Speed. | - |
[63] | Mathematical Model | Data Classification | IoT | Delay, Processing Power, Memory, Bandwidth, Storage. | A Review |
[64] | Big Data | 6G Wireless Network | Data Security | Watt, CC, EC, BD. | MapReduce n simulations. |
[65] | Neural Network, Data Fusion | Sleep Event Detection | Healthcare | Battery Percentage, Power Consuming Speed, RSSI curves. | 798 audio files with 200 batch size. |
[66] | Long Short-Term Memory (LSTM) | Offloading | Energy Optimization | Error Range, Energy Consumption, Average Latency, Resource Utilization. | Lust DataSet/MobFogSim Simulator. |
[67] | Artificial Neural Network | Pervasive Computing | Resource/Energy Optimization | Time complexity, Latency, Energy Consumption, Mean Square Error. | - |
Symbol | Description |
---|---|
VoE | Value of effectiveness |
Vector from the matrix A | |
Any element of vector | |
Data Chunks | |
Data Packets | |
Any element of Vector | |
Capability of an IoT device in terms of Processing Power | |
Value of effectiveness | |
Value of effectiveness in terms of Processing Power | |
Value of effectiveness in terms of energy/battery | |
Energy/Battery of the IoT device | |
Value of effectiveness in terms of storage | |
Storage capacity of an IoT device | |
The final Value of effectiveness | |
Z/Y/// | Constant values in the equations |
VoE in terms of Processing Power and Storage | |
VoE in terms of Processing Power and Energy | |
Φ | Euclidean distance |
λ | Size of the neighborhood |
v | Query Vector |
F | Training Vector |
X | Set of labels |
Φ((v), v) | Local hyperplane distance |
Algorithm | Execution Time (Sec) | Precision (%) | Recall (%) | F1 Score (%) | Accuracy (avg) (%) |
---|---|---|---|---|---|
KNN | 0.005 | 83 | 83 | 83 | 80 |
SVM | 9.9 | 80 | 80 | 80 | 85 |
RF | 0.72 | 88 | 88 | 88 | 79 |
DT | 0.067 | 80 | 79 | 79 | 76 |
NB | 0.003 | 54 | 51 | 48 | 53 |
LR | 0.68 | 63 | 62 | 62 | 63 |
HRCKNN | 0.036 | 87 | 87 | 87 | 85 |
Algorithm | Execution Time (Sec) | Precision (%) | Recall (%) | F1-Score (%) | Accuracy (avg) (%) |
---|---|---|---|---|---|
KNN | 0.07 | 98 | 98 | 98 | 98 |
SVM | 2.6 | 96 | 98 | 97 | 97 |
RF | 1.1 | 98 | 98 | 98 | 98 |
DT | 0.06 | 97 | 97 | 97 | 98 |
NB | 0.005 | 78 | 78 | 78 | 83 |
LR | 0.85 | 79 | 85 | 81 | 84 |
HRCKNN | 0.004 | 97 | 97 | 97 | 98 |
Algorithm | Execution Time (Sec) | Precision (%) | Recall (%) | F1-Score (%) | Accuracy (avg) (%) |
---|---|---|---|---|---|
KNN | 3.24 | 84 | 80 | 82 | 92 |
SVM | 9.9 | 30 | 30 | 30 | 48 |
RF | 12.1 | 85 | 79 | 81 | 92 |
DT | 4.8 | 83 | 78 | 80 | 91 |
NB | 0.30 | 31 | 41 | 29 | 60 |
LR | 17.11 | 23 | 22 | 17 | 51 |
HRCKNN | 0.40 | 82 | 84 | 84 | 92 |
Algorithm | Execution Time (Sec) | Precision (%) | Recall (%) | F1-Score (%) | Accuracy (avg) (%) |
---|---|---|---|---|---|
KNN | 0.009 | 67 | 69 | 68 | 66 |
SVM | 18.12 | 63 | 69 | 65 | 67 |
RF | 1.03 | 70 | 71 | 70 | 72 |
DT | 0.07 | 70 | 71 | 71 | 70 |
NB | 0.005 | 21 | 23 | 11 | 14 |
LR | 3.04 | 25 | 28 | 26 | 40 |
HRCKNN | 1.2 | 77 | 76 | 76 | 76 |
S. No. | Parameters | Values |
---|---|---|
1 | No. of Service Nodes | 100 |
2 | No. of SRC Nodes | 100 |
3 | No. of Edge Nodes | 10 |
4 | Initial energy of an IoT Service Node | 300 mAh |
5 | Initial energy of Source IoT Node | 300 mAh |
6 | Transmission Range of Service IoT node | 40 mtr |
7 | Transmission Range of Source IoT Node | 40 mtr |
8 | Block Size | 256 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farooq, O.; Singh, P.; Hedabou, M.; Boulila, W.; Benjdira, B. Machine Learning Analytic-Based Two-Staged Data Management Framework for Internet of Things. Sensors 2023, 23, 2427. https://doi.org/10.3390/s23052427
Farooq O, Singh P, Hedabou M, Boulila W, Benjdira B. Machine Learning Analytic-Based Two-Staged Data Management Framework for Internet of Things. Sensors. 2023; 23(5):2427. https://doi.org/10.3390/s23052427
Chicago/Turabian StyleFarooq, Omar, Parminder Singh, Mustapha Hedabou, Wadii Boulila, and Bilel Benjdira. 2023. "Machine Learning Analytic-Based Two-Staged Data Management Framework for Internet of Things" Sensors 23, no. 5: 2427. https://doi.org/10.3390/s23052427
APA StyleFarooq, O., Singh, P., Hedabou, M., Boulila, W., & Benjdira, B. (2023). Machine Learning Analytic-Based Two-Staged Data Management Framework for Internet of Things. Sensors, 23(5), 2427. https://doi.org/10.3390/s23052427