Small Sample Hyperspectral Image Classification Based on the Random Patches Network and Recursive Filtering
Abstract
:1. Introduction
- (1)
- RPNet is combined with RF to generate RPNet–RF features for HSI classification, which have more discrimination power than RPNet and RF features.
- (2)
- A method is proposed, which uses RPNet–RF features for SVM classification of HSIs. The proposed method is not time-consuming, because RPNet does not require any training, and RF can be implemented in real-time.
- (3)
- Using experiments with three widely known datasets and small training samples for each class, it is shown that the proposed RPNet–RF method gives good classification results and outperforms other advanced HSI classification methods (including few-shot learning methods) in terms of overall accuracy and Kappa coefficient.
2. Method
2.1. RPNet Feature Extraction
2.2. RPNet–RF Feature Extraction
2.3. SVM Classification by Spectral and RPNet–RF Features
Algorithm 1 HSI classification via the proposed RPNet–RF method. |
Input: the HSI data H; the number of PCs p; the network depth L; the number of random patches k; the size of random patches w; the spatial and range standard deviations δs and δr. |
Output: Predicted class label. |
For layer l = 1:L
|
3. Experiments
3.1. Dataset Description
3.2. Experimental Setup and Evaluation Metrics
3.3. Effect of Parameter Values on Classification Performance
3.4. Classification Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hycza, T.; Stereńczak, K.; Bałazy, R. Potential Use of Hyperspectral Data to Classify Forest Tree Species. N. Z. J. For. Sci. 2018, 48, 18. [Google Scholar] [CrossRef]
- Zhang, B.; Zhao, L.; Zhang, X. Three-Dimensional Convolutional Neural Network Model for Tree Species Classification Using Airborne Hyperspectral Images. Remote Sens. Environ. 2020, 247, 111938. [Google Scholar] [CrossRef]
- Teke, M.; Deveci, H.S.; Haliloglu, O.; Gurbuz, S.Z.; Sakarya, U. A Short Survey of Hyperspectral Remote Sensing Applications in Agriculture. In Proceedings of the 2013 6th International Conference on Recent Advances in Space Technologies (RAST), Istanbul, Turkey, 12–14 June 2013; IEEE: Istanbul, Turkey, 2013; pp. 171–176. [Google Scholar]
- Vaidya, R.; Nalawade, D.; Kale, K. Hyperspectral Imagery for Crop Yield Estimation in Precision Agriculture Using Machine Learning Approaches: A Review. Int. J. Creat. Res. Thoughts 2022, 9, a777–a789. [Google Scholar]
- Suriguga; Bao, Y.; Bao, Y.; Jin, E. Application of Hyperspectral Remote Sensing in the Detection of Marine Oil Spill. Nat. Inn. Asia 2019, 4, 93–99. [Google Scholar] [CrossRef]
- Kang, X.; Wang, Z.; Duan, P.; Wei, X. The Potential of Hyperspectral Image Classification for Oil Spill Mapping. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–15. [Google Scholar] [CrossRef]
- Li, S.; Song, W.; Fang, L.; Chen, Y.; Ghamisi, P.; Benediktsson, J.A. Deep Learning for Hyperspectral Imagery Classification: An Overview. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6690–6709. [Google Scholar] [CrossRef] [Green Version]
- Rasti, B.; Hong, D.; Hang, R.; Ghamisi, P.; Kang, X.; Chanussot, J.; Benediktsson, J.A. Feature Extraction for Hyperspectral Imagery: The Evolution From Shallow to Deep: Overview and Toolbox. IEEE Geosci. Remote Sens. Mag. 2020, 8, 60–88. [Google Scholar] [CrossRef]
- Li, Y.; Tang, H.; Xie, W.; Luo, W. Multidimensional Local Binary Pattern for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [Google Scholar] [CrossRef]
- Li, W.; Chen, C.; Su, H.; Du, Q. Local Binary Patterns and Extreme Learning Machine for Hyperspectral Imagery Classification. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3681–3693. [Google Scholar] [CrossRef]
- Fauvel, M.; Chanussot, J.; Benediktsson, J.; Sveinsson, J. Spectral and Spatial Classification of Hyperspectral Data Using SVMs and Morphological Profiles. In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–27 July 2007; Volume 46, pp. 4834–4837. [Google Scholar] [CrossRef] [Green Version]
- Dalla Mura, M.; Atli Benediktsson, J.; Waske, B.; Bruzzone, L. Extended Profiles with Morphological Attribute Filters for the Analysis of Hyperspectral Data. Int. J. Remote Sens. 2010, 31, 5975–5991. [Google Scholar] [CrossRef]
- Uchaev, D.V.; Uchaev, D.V.; Malinnikov, V.A. Spectral-Spatial Classification of Hyperspectral Images Based on Multifractal Features. In Proceedings of the Image and Signal Processing for Remote Sensing XXVI, Rome, Italy, 26–30 September 1994; Volume 11533, p. 115330T. [Google Scholar]
- Beirami, B.A.; Mokhtarzade, M. Spatial-Spectral Classification of Hyperspectral Images Based on Multiple Fractal-Based Features. Geocarto Int. 2022, 37, 231–245. [Google Scholar] [CrossRef]
- Yue, J.; Zhao, W.; Mao, S.; Liu, H. Spectral-Spatial Classification of Hyperspectral Images Using Deep Convolutional Neural Networks. Remote Sens. Lett. 2015, 6, 468–477. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Shen, Q. Spectral-Spatial Classification of Hyperspectral Imagery with 3D Convolutional Neural Network. Remote Sens. 2017, 9, 67. [Google Scholar] [CrossRef] [Green Version]
- He, M.; Li, B.; Chen, H. Multi-Scale 3D Deep Convolutional Neural Network for Hyperspectral Image Classification. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 3904–3908. [Google Scholar]
- Zhong, Z.; Li, J.; Luo, Z.; Chapman, M. Spectral-Spatial Residual Network for Hyperspectral Image Classification: A 3–D Deep Learning Framework. IEEE Trans. Geosci. Remote Sens. 2017, 56, 847–858. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Y.; Zhang, Y.; Shen, Q. Spectral-Spatial Classification of Hyperspectral Imagery Using a Dual-Channel Convolutional Neural Network. Remote Sens. Lett. 2017, 8, 438–447. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Li, Z.; Li, W.; Du, Q.; Liu, C.; Fang, Z.; Zhai, L. Dual-Channel Residual Network for Hyperspectral Image Classification With Noisy Labels. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–11. [Google Scholar] [CrossRef]
- Roy, S.K.; Krishna, G.; Dubey, S.R.; Chaudhuri, B.B. HybridSN: Exploring 3D–2D CNN Feature Hierarchy for Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2020, 17, 277–281. [Google Scholar] [CrossRef] [Green Version]
- Aptoula, E.; Ozdemir, M.C.; Yanikoglu, B. Deep Learning With Attribute Profiles for Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1970–1974. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, Z.; Ghamisi, P.; Jia, X.; Li, G.; Tang, L. Hyperspectral Images Classification With Gabor Filtering and Convolutional Neural Network. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2355–2359. [Google Scholar] [CrossRef]
- Zhao, W.; Li, S.; Li, A.; Zhang, B.; Li, Y. Hyperspectral Images Classification with Convolutional Neural Network and Textural Feature Using Limited Training Samples. Remote Sens. Lett. 2019, 10, 449–458. [Google Scholar] [CrossRef]
- Zhu, L.; Chen, Y.; Ghamisi, P.; Benediktsson, J.A. Generative Adversarial Networks for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5046–5063. [Google Scholar] [CrossRef]
- He, Z.; Liu, H.; Wang, Y.; Hu, J. Generative Adversarial Networks-Based Semi-Supervised Learning for Hyperspectral Image Classification. Remote Sens. 2017, 9, 1042. [Google Scholar] [CrossRef] [Green Version]
- Zhan, Y.; Hu, D.; Wang, Y.; Yu, X. Semisupervised Hyperspectral Image Classification Based on Generative Adversarial Networks. IEEE Geosci. Remote Sens. Lett. 2017, 15, 212–216. [Google Scholar] [CrossRef]
- Gao, H.; Yao, D.; Wang, M.; Li, C.; Liu, H.; Hua, Z.; Wang, J. A Hyperspectral Image Classification Method Based on Multi-Discriminator Generative Adversarial Networks. Sensors 2019, 19, 3269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, Z.; Li, J.; Clausi, D.A.; Wong, A. Generative Adversarial Networks and Conditional Random Fields for Hyperspectral Image Classification. IEEE Trans. Cybern. 2020, 50, 3318–3329. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.; Feng, X.; Chen, J.; Cao, X.; Zhang, X.; Jiao, L.; Yu, T. Generative Adversarial Networks Based on Collaborative Learning and Attention Mechanism for Hyperspectral Image Classification. Remote Sens. 2020, 12, 1149. [Google Scholar] [CrossRef] [Green Version]
- Sawant, S.S.; Prabukumar, M. A Review on Graph-Based Semi-Supervised Learning Methods for Hyperspectral Image Classification. Egypt. J. Remote Sens. Space Sci. 2020, 23, 243–248. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, G.; Li, X.; Wang, B.; Fu, P. Active Semi-Supervised Random Forest for Hyperspectral Image Classification. Remote Sens. 2019, 11, 2974. [Google Scholar] [CrossRef] [Green Version]
- Uchaev, D.V.; Uchaev, D.V. Feature Profiles for Semisupervised Hyperspectral Image Classification with Limited Labeled Training Samples. In Proceedings of the Image and Signal Processing for Remote Sensing XXVII, Online, 13–17 September 2021; Volume 11862, p. 118620W. [Google Scholar]
- Wang, Q.; Chen, M.; Zhang, J.; Kang, S.; Wang, Y. Improved Active Deep Learning for Semi-Supervised Classification of Hyperspectral Image. Remote Sens. 2022, 14, 171. [Google Scholar] [CrossRef]
- Hu, L.; Luo, X.; Wei, Y. Hyperspectral Image Classification of Convolutional Neural Network Combined with Valuable Samples. J. Phys. Conf. Ser. 2020, 1549, 052011. [Google Scholar] [CrossRef]
- Liu, S.; Shi, Q.; Zhang, L. Few-Shot Hyperspectral Image Classification With Unknown Classes Using Multitask Deep Learning. IEEE Trans. Geosci. Remote Sens. 2021, 59, 5085–5102. [Google Scholar] [CrossRef]
- Li, Z.; Liu, M.; Chen, Y.; Xu, Y.; Li, W.; Du, Q. Deep Cross-Domain Few-Shot Learning for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–18. [Google Scholar] [CrossRef]
- Cao, X.; Ge, Y.; Li, R.; Zhao, J.; Jiao, L. Hyperspectral Imagery Classification with Deep Metric Learning. Neurocomputing 2019, 356, 217–227. [Google Scholar] [CrossRef]
- Deng, B.; Jia, S.; Shi, D. Deep Metric Learning-Based Feature Embedding for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2020, 58, 1422–1435. [Google Scholar] [CrossRef]
- Dong, Y.; Yang, C.; Zhang, Y. Deep Metric Learning with Online Hard Mining for Hyperspectral Classification. Remote Sens. 2021, 13, 1368. [Google Scholar] [CrossRef]
- He, X.; Chen, Y.; Lin, Z. Spatial-Spectral Transformer for Hyperspectral Image Classification. Remote Sens. 2021, 13, 498. [Google Scholar] [CrossRef]
- Bai, J.; Lu, J.; Xiao, Z.; Chen, Z.; Jiao, L. Generative Adversarial Networks Based on Transformer Encoder and Convolution Block for Hyperspectral Image Classification. Remote Sens. 2022, 14, 3426. [Google Scholar] [CrossRef]
- Liu, B.; Yu, A.; Gao, K.; Tan, X.; Sun, Y.; Yu, X. DSS-TRM: Deep Spatial-Spectral Transformer for Hyperspectral Image Classification. Eur. J. Remote Sens. 2022, 55, 103–114. [Google Scholar] [CrossRef]
- Yang, L.; Yang, Y.; Yang, J.; Zhao, N.; Wu, L.; Wang, L.; Wang, T. FusionNet: A Convolution-Transformer Fusion Network for Hyperspectral Image Classification. Remote Sens. 2022, 14, 4066. [Google Scholar] [CrossRef]
- Sun, L.; Zhao, G.; Zheng, Y.; Wu, Z. Spectral-Spatial Feature Tokenization Transformer for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Gulati, A.; Qin, J.; Chiu, C.–C.; Parmar, N.; Zhang, Y.; Yu, J.; Han, W.; Wang, S.; Zhang, Z.; Wu, Y.; et al. Conformer: Convolution-Augmented Transformer for Speech Recognition. arXiv 2020, arXiv:2005.08100. [Google Scholar] [CrossRef]
- Xu, Y.; Du, B.; Zhang, F.; Zhang, L. Hyperspectral Image Classification via a Random Patches Network. ISPRS J. Photogramm. Remote Sens. 2018, 142, 344–357. [Google Scholar] [CrossRef]
- Wei, Y.; Zhou, Y. Spatial-Aware Network for Hyperspectral Image Classification. Remote Sens. 2021, 13, 3232. [Google Scholar] [CrossRef]
- Gastal, E.S.L.; Oliveira, M.M. Domain Transform for Edge-Aware Image and Video Processing. ACM Trans. Graph. 2011, 30, 69:1–69:12. [Google Scholar] [CrossRef]
- Caywood, M.S.; Willmore, B.; Tolhurst, D.J. Independent Components of Color Natural Scenes Resemble V1 Neurons in Their Spatial and Color Tuning. J. Neurophysiol. 2004, 91, 2859–2873. [Google Scholar] [CrossRef] [Green Version]
- Kang, X.; Li, S.; Benediktsson, J.A. Feature Extraction of Hyperspectral Images With Image Fusion and Recursive Filtering. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3742–3752. [Google Scholar] [CrossRef]
- Gualtieri, J.A.; Chettri, S. Support Vector Machines for Classification of Hyperspectral Data. In Proceedings of the IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120), Honolulu, HI, USA, 24–28 July 2000; Volume 2, pp. 813–8152. [Google Scholar]
- Melgani, F.; Bruzzone, L. Classification of Hyperspectral Remote Sensing Images with Support Vector Machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778–1790. [Google Scholar] [CrossRef] [Green Version]
- Foody, G.M. Status of Land Cover Classification Accuracy Assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
Class No. | Class Name | Labeled Samples |
---|---|---|
1 | Asphalt | 6631 |
2 | Meadows | 18,649 |
3 | Gravel | 2099 |
4 | Trees | 3064 |
5 | Painted metal sheets | 1345 |
6 | Bare Soil | 5029 |
7 | Bitumen | 1330 |
8 | Self-Blocking Bricks | 3682 |
9 | Shadows | 947 |
Class No. | Class Name | Labeled Samples |
---|---|---|
1 | Alfalfa | 46 |
2 | Corn-notill | 1428 |
3 | Corn-mintill | 830 |
4 | Corn | 237 |
5 | Grass-pasture | 483 |
6 | Grass-trees | 730 |
7 | Grass-pasture-mowed | 28 |
8 | Hay-windrowed | 478 |
9 | Oats | 20 |
10 | Soybean-notill | 972 |
11 | Soybean-mintill | 2455 |
12 | Soybean-clean | 593 |
13 | Wheat | 205 |
14 | Woods | 1265 |
15 | Buildings-Grass-Trees-Drives | 386 |
16 | Stone-Steel-Towers | 93 |
Class No. | Class Name | Labeled Samples |
---|---|---|
1 | Scrub | 761 |
2 | Willow swamp | 243 |
3 | CP hammock | 256 |
4 | CP/oak | 252 |
5 | Slash pine | 161 |
6 | Oak/broadleaf | 229 |
7 | Hardwood swamp | 105 |
8 | Graminoid marsh | 431 |
9 | Spartina marsh | 520 |
10 | Cattail marsh | 404 |
11 | Salt marsh | 419 |
12 | Mud flats | 503 |
13 | Water | 927 |
Parameter | Description | Value |
---|---|---|
p | Number of PCs | 4 |
L | Network depth | 4 |
k | Number of patches | 50 |
w | Size of patches | 15 |
Spatial standard deviation | 50 | |
Range standard deviation | 0.5 |
Class No. | IFRF | 3D-CNN | RPNet | CA-GAN | DCFSL | 3D VS-CNN | S-DMM | TC-GAN | RPNet– RF |
---|---|---|---|---|---|---|---|---|---|
1 | 95.42 | 70.41 | 91.70 | 60.16 | 74.55 | 83.27 | 96.97 | 89.07 | 97.37 |
2 | 97.78 | 73.10 | 95.44 | 72.83 | 97.20 | 76.96 | 81.15 | 97.57 | 99.37 |
3 | 74.73 | 73.80 | 62.90 | 98.03 | 80.57 | 81.91 | 92.69 | 67.08 | 98.19 |
4 | 86.70 | 89.37 | 97.05 | 89.44 | 94.62 | 86.86 | 97.50 | 88.03 | 79.86 |
5 | 99.08 | 96.39 | 99.74 | 99.70 | 100.0 | 99.55 | 100.0 | 100.0 | 98.85 |
6 | 75.34 | 69.68 | 64.15 | 79.94 | 90.37 | 82.81 | 84.73 | 93.80 | 99.92 |
7 | 64.12 | 86.46 | 58.31 | 90.04 | 92.47 | 77.94 | 97.71 | 99.47 | 94.82 |
8 | 81.23 | 77.09 | 80.30 | 81.95 | 81.62 | 93.58 | 93.23 | 93.07 | 86.67 |
9 | 99.52 | 86.05 | 99.72 | 97.32 | 100.0 | 71.84 | 99.89 | 96.67 | 99.58 |
OA (%) | 88.38 | 75.24 | 84.92 | 76.81 | 90.71 | 81.63 | 88.30 | 93.20 | 95.60 |
AA (%) | 85.99 | 80.26 | 83.26 | 76.94 | 90.20 | 83.86 | 93.76 | 91.60 | 94.96 |
Kappa (%) | 84.97 | 68.43 | 80.52 | 71.02 | 87.73 | 76.46 | 84.90 | 91.00 | 94.27 |
Class No. | IFRF | 3D-CNN | RPNet | CA-GAN | DCFSL | 3D VS-CNN | S-DMM | TC-GAN | RPNet– RF |
---|---|---|---|---|---|---|---|---|---|
1 | 77.71 | 83.87 | 94.16 | 100.0 | 100.0 | 90.32 | 91.67 | 100.0 | 93.48 |
2 | 62.91 | 38.08 | 72.19 | 61.78 | 60.79 | 75.94 | 47.18 | 78.77 | 81.30 |
3 | 50.08 | 41.84 | 57.05 | 68.22 | 78.77 | 85.03 | 44.88 | 92.15 | 85.66 |
4 | 39.36 | 52.70 | 54.84 | 92.34 | 94.59 | 95.95 | 33.04 | 99.10 | 83.31 |
5 | 73.57 | 74.79 | 73.30 | 82.69 | 85.68 | 91.03 | 78.44 | 95.30 | 94.14 |
6 | 93.29 | 87.27 | 92.58 | 89.51 | 96.64 | 97.34 | 92.50 | 95.94 | 95.15 |
7 | 42.82 | 100.0 | 53.39 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 43.98 |
8 | 97.73 | 94.38 | 99.83 | 99.78 | 92.22 | 97.84 | 85.26 | 100.0 | 97.76 |
9 | 15.46 | 100.0 | 39.15 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 63.83 |
10 | 57.32 | 64.26 | 67.94 | 76.28 | 71.89 | 80.88 | 66.74 | 86.00 | 83.07 |
11 | 74.93 | 41.43 | 91.75 | 64.22 | 65.66 | 73.32 | 70.39 | 81.39 | 94.44 |
12 | 50.50 | 41.70 | 65.53 | 78.72 | 73.18 | 88.41 | 40.82 | 73.18 | 82.96 |
13 | 87.94 | 99.47 | 93.40 | 99.47 | 100.0 | 98.95 | 99.49 | 100.0 | 99.10 |
14 | 94.64 | 84.24 | 96.64 | 82.32 | 93.28 | 84.24 | 81.35 | 97.28 | 99.77 |
15 | 76.78 | 70.89 | 78.08 | 92.99 | 87.87 | 86.52 | 68.35 | 83.83 | 98.45 |
16 | 86.35 | 97.44 | 95.71 | 92.31 | 100.0 | 98.72 | 98.80 | 100.0 | 97.60 |
OA (%) | 69.52 | 58.94 | 77.97 | 75.52 | 77.45 | 83.06 | 67.04 | 87.47 | 90.23 |
AA (%) | 67.59 | 73.27 | 76.60 | 81.21 | 87.54 | 90.28 | 74.93 | 92.68 | 87.12 |
Kappa (%) | 65.70 | 54.06 | 75.19 | 72.69 | 74.65 | 80.89 | 62.44 | 85.78 | 88.87 |
Class No. | IFRF | 3D-CNN | RPNet | CA-GAN | DCFSL | 3D VS-CNN | S-DMM | TC-GAN | RPNet– RF |
---|---|---|---|---|---|---|---|---|---|
1 | 98.16 | 89.41 | 99.12 | 88.20 | 96.92 | 97.15 | 96.01 | 99.87 | 99.46 |
2 | 93.54 | 86.40 | 83.79 | 85.53 | 86.40 | 91.28 | 88.84 | 100.0 | 96.20 |
3 | 94.38 | 85.06 | 94.94 | 95.02 | 98.76 | 80.09 | 99.19 | 96.68 | 97.54 |
4 | 86.12 | 54.01 | 88.47 | 90.72 | 82.28 | 42.29 | 54.96 | 86.08 | 98.32 |
5 | 79.89 | 83.56 | 84.79 | 90.41 | 91.78 | 58.09 | 80.79 | 93.84 | 95.90 |
6 | 83.66 | 76.64 | 92.38 | 94.39 | 97.66 | 70.59 | 96.35 | 100.0 | 91.53 |
7 | 85.99 | 100.0 | 98.16 | 100.0 | 100.0 | 70.00 | 100.0 | 97.78 | 100.0 |
8 | 93.97 | 92.55 | 94.28 | 86.78 | 100.0 | 62.81 | 99.29 | 96.63 | 98.14 |
9 | 96.72 | 60.59 | 97.28 | 86.73 | 100.0 | 74.55 | 100.0 | 99.60 | 98.52 |
10 | 94.11 | 93.32 | 94.28 | 86.12 | 99.74 | 61.48 | 100.0 | 99.49 | 99.06 |
11 | 99.75 | 93.07 | 100.0 | 92.57 | 100.0 | 78.68 | 100.0 | 100.0 | 99.80 |
12 | 98.49 | 93.85 | 99.73 | 88.52 | 99.18 | 78.24 | 98.99 | 97.95 | 99.16 |
13 | 99.51 | 100.0 | 99.85 | 100.0 | 100.0 | 99.89 | 100.0 | 100.0 | 99.95 |
OA (%) | 95.07 | 87.18 | 95.83 | 91.17 | 97.59 | 80.15 | 95.83 | 98.39 | 98.51 |
AA (%) | 92.64 | 85.27 | 94.39 | 84.64 | 96.36 | 74.24 | 93.42 | 97.53 | 97.97 |
Kappa (%) | 94.51 | 85.73 | 95.36 | 90.20 | 97.31 | 77.81 | 95.35 | 98.20 | 98.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uchaev, D.; Uchaev, D. Small Sample Hyperspectral Image Classification Based on the Random Patches Network and Recursive Filtering. Sensors 2023, 23, 2499. https://doi.org/10.3390/s23052499
Uchaev D, Uchaev D. Small Sample Hyperspectral Image Classification Based on the Random Patches Network and Recursive Filtering. Sensors. 2023; 23(5):2499. https://doi.org/10.3390/s23052499
Chicago/Turabian StyleUchaev, Denis, and Dmitry Uchaev. 2023. "Small Sample Hyperspectral Image Classification Based on the Random Patches Network and Recursive Filtering" Sensors 23, no. 5: 2499. https://doi.org/10.3390/s23052499
APA StyleUchaev, D., & Uchaev, D. (2023). Small Sample Hyperspectral Image Classification Based on the Random Patches Network and Recursive Filtering. Sensors, 23(5), 2499. https://doi.org/10.3390/s23052499