Repeatability and Temporal Consistency of Lower Limb Biomechanical Variables Expressing Interlimb Coordination during the Double-Support Phase in People with and without Stroke Sequelae
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Participants
2.3. Instruments
2.3.1. Sample Selection and Characterisation
2.3.2. Kinematic Data
2.3.3. Kinetic Data
2.3.4. Electromyographic Data
2.4. Procedures
2.4.1. Task
2.4.2. Data Processing
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. Intra-Session
4.2. Inter-Session
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Feigin, V.L.; Stark, B.A.; Johnson, C.O.; Roth, G.A.; Bisignano, C.; Abady, G.G.; Abbasifard, M.; Abbasi-Kangevari, M.; Abd-Allah, F.; Abedi, V.; et al. Global, regional, and national burden of stroke and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021, 20, 795–820. [Google Scholar] [CrossRef]
- Rajsic, S.; Gothe, H.; Borba, H.H.; Sroczynski, G.; Vujicic, J.; Toell, T.; Siebert, U. Economic burden of stroke: A systematic review on post-stroke care. Eur. J. Health Econ. 2019, 20, 107–134. [Google Scholar] [CrossRef] [PubMed]
- Duncan, P.W.; Zorowitz, R.; Bates, B.; Choi, J.Y.; Glasberg, J.J.; Graham, G.D.; Katz, R.C.; Lamberty, K.; Reker, D. Management of Adult Stroke Rehabilitation Care: A clinical practice guideline. Stroke 2005, 36, e100–e143. [Google Scholar] [CrossRef]
- Newman, A.B.; Simonsick, E.M.; Naydeck, B.L.; Boudreau, R.M.; Kritchevsky, S.B.; Nevitt, M.C.; Pahor, M.; Satterfield, S.; Brach, J.S.; Studenski, S.A.; et al. Association of Long-Distance Corridor Walk Performance with Mortality, Cardiovascular Disease, Mobility Limitation, and Disability. JAMA 2006, 295, 2018–2026. [Google Scholar] [CrossRef]
- Bohannon, R.W.; Horton, M.G.; Wikholm, J.B. Importance of four variables of walking to patients with stroke. Int. J. Rehabil. Res. 1991, 14, 246–250. [Google Scholar] [CrossRef] [PubMed]
- Sousa, A.S.P.; Silva, A.; Santos, R.; Sousa, F.; Tavares, J.M.R.S. Interlimb coordination during the stance phase of gait in subjects with stroke. Arch. Phys. Med. Rehabil. 2013, 94, 2515–2522. [Google Scholar] [CrossRef] [PubMed]
- Belda-Lois, J.M.; Mena-del Horno, S.; Bermejo-Bosch, I.; Moreno, J.C.; Pons, J.L.; Farina, D.; Iosa, M.; Molinari, M.; Tamburella, F.; Ramos, A.; et al. Rehabilitation of gait after stroke: A review towards a top-down approach. J. Neuroeng. Rehabil. 2011, 8, 66–84. [Google Scholar] [CrossRef] [PubMed]
- Arya, K.N.; Pandian, S. Interlimb neural coupling: Implications for poststroke hemiparesis. Ann. Phys. Rehabil. Med. 2014, 57, 696–713. [Google Scholar] [CrossRef] [PubMed]
- Sousa, A.S.P.; Tavares, J.M.R.S. Interlimb coordination during step-to-step transition and gait performance. J. Mot. Behav. 2015, 47, 563–574. [Google Scholar] [CrossRef]
- Olney, S.J.; Richards, C. Hemiparetic gait following stroke. Part I: Characteristics. Gait Posture 1996, 4, 136–148. [Google Scholar] [CrossRef]
- Olney, S.J.; Griffin, M.P.; McBride, I.D. Temporal, kinematic, and kinetic variables related to gait speed in subjects with hemiplegia: A regression approach. Phys. Ther. 1994, 74, 872–885. [Google Scholar] [CrossRef]
- Olney, S.J.; Griffin, M.P.; Monga, T.N.; Mcbride, I.D. Work and Power in Gait of Stroke Patients. Arch. Phys. Med. Rehabil. 1991, 72, 309–314. [Google Scholar]
- Beyaert, C.; Vasa, R.; Frykberg, G.E. Gait post-stroke: Pathophysiology and rehabilitation strategies. Neurophysiol. Clin. 2015, 45, 335–355. [Google Scholar] [CrossRef]
- Kwakkel, G.; Lannin, N.A.; Borschmann, K.; English, C.; Ali, M.; Churilov, L.; Saposnik, G.; Winstein, C.; van Wegen, E.E.H.; Wolf, S.L.; et al. Standardized measurement of sensorimotor recovery in stroke trials: Consensus-based core recommendations from the Stroke Recovery and Rehabilitation Roundtable. Int. J. Stroke 2017, 12, 451–461. [Google Scholar] [CrossRef]
- Oken, O.; Yavuzer, G. Spatio-temporal and kinematic asymmetry ratio in subgroups of patients with stroke. Eur. J. Phys. Rehabil. Med. 2008, 44, 127–132. [Google Scholar]
- Chen, G.; Patten, C.; Kothari, D.H.; Zajac, F.E. Gait differences between individuals with post-stroke hemiparesis and non-disabled controls at matched speeds. Gait Posture 2005, 22, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Balaban, B.; Tok, F. Gait disturbances in patients with stroke. PMR 2014, 6, 635–642. [Google Scholar] [CrossRef]
- Kim, C.M.; Eng, J.J. Magnitude and pattern of 3D kinematic and kinetic gait profiles in persons with stroke: Relationship to walking speed. Gait Posture 2004, 20, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Nadeau, S.; Betschart, M.; Bethoux, F. Gait analysis for poststroke rehabilitation: The relevance of biomechanical analysis and the impact of gait speed. Phys. Med. Rehabil. Clin. N. Am. 2013, 24, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Woolley, S.M. Characteristics of gait in hemiplegia. Top. Stroke Rehabil. 2001, 7, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Bensoussan, L.; Mesure, S.; Viton, J.M.; Delarque, A. Kinematic and kinetic asymmetries in hemiplegic patients’ gait initiation patterns. J. Rehabil. Med. 2006, 38, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Moseley, A.; Wales, A.; Herbert, R.; Schurr, K.; Moore, S. Observation and analysis of hemiplegic gait: Stance phase. Aust. J. Physiother. 1993, 39, 259–267. [Google Scholar] [CrossRef]
- Daly, J.J.; Roenigk, K.; Cheng, R.; Ruff, R.L. Abnormal leg muscle latencies and relationship to dyscoordination and walking disability after stroke. Rehabil. Res. Pract. 2011, 2011, 313980. [Google Scholar] [CrossRef]
- Den Otter, A.R.; Geurts, A.C.; Mulder, T.; Duysens, J. Abnormalities in the temporal patterning of lower extremity muscle activity in hemiparetic gait. Gait Posture 2007, 25, 342–352. [Google Scholar] [CrossRef] [PubMed]
- Lamontagne, A.; Richards, C.L.; Malouin, F. Coactivation during gait as an adaptive behavior after stroke. J. Electromyogr. Kines. 2000, 10, 407–415. [Google Scholar] [CrossRef]
- Lamontagne, A.; Malouin, F.; Richards, C.L.; Dumas, F. Mechanisms of disturbed motor control in ankle weakness during gait after stroke. Gait Posture 2002, 15, 244–255. [Google Scholar] [CrossRef]
- Bernhardt, J.; Hayward, K.S.; Kwakkel, G.; Ward, N.S.; Wolf, S.L.; Borschmann, K.; Krakauer, J.W.; Boyd, L.A.; Carmichael, S.T.; Corbett, D.; et al. Agreed Definitions and a Shared Vision for New Standards in Stroke Recovery Research: The Stroke Recovery and Rehabilitation Roundtable Taskforce. Neurorehabilit. Neural Repair 2017, 31, 793–799. [Google Scholar] [CrossRef] [PubMed]
- Levin, M.F.; Kleim, J.A.; Wolf, S.L. What do motor “recovery” and “compensation” mean in patients following stroke? Neurorehabilit. Neural Repair 2009, 23, 313–319. [Google Scholar] [CrossRef]
- Kwakkel, G.; van Wegen, E.E.H.; Burridge, J.H.; Winstein, C.; van Dokkum, L.E.H.; Alt Murphy, M.; Levin, M.F.; Krakauer, J.W.; Lang, C.I.; Keller, T.; et al. Standardized Measurement of Quality of Upper Limb Movement after Stroke: Consensus-Based Core Recommendations From the Second Stroke Recovery and Rehabilitation Roundtable. Neurorehabilit. Neural Repair 2019, 33, 951–958. [Google Scholar] [CrossRef]
- Frykberg, G.E.; Grip, H.; Murphy, M.A. How Many Trials Are Needed to Reach Performance Stability in Kinematic Measures of a Reach-to-Grasp Task? Int. J. Stroke 2021, 16, 100. [Google Scholar]
- Couto, A.G.B.; Vaz, M.A.P.; Pinho, L.; Felix, J.; Silva, S.; Silva, A.; Sousa, A.S.P. Methodological Considerations in Assessing Interlimb Coordination on Poststroke Gait: A Scoping Review of Biomechanical Approaches and Outcomes. Sensors 2022, 22, 2010. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Sousa, A.S.P.; Santos, R.; Oliveira, F.P.M.; Carvalho, P.; Tavares, J.M.R.S. Analysis of ground reaction force and electromyographic activity of the gastrocnemius muscle during double support. Proc. Inst. Mech. Eng. Part H 2012, 226, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Sousa, A.S.; Silva, A.; Tavares, J.M. Interlimb relation during the double support phase of gait: An electromyographic, mechanical and energy-based analysis. Proc. Inst. Mech. Eng. Part H 2013, 227, 327–333. [Google Scholar] [CrossRef]
- Thompson, P.D. Health appraisal and risk assessment. In ACSM’s Guidelines for Exercise Testing and Prescription, 9th ed.; Pescatello, L.S., Arena, R., Riebe, D., Thompson, P.D., Eds.; Wolters Kluwer/Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2014; pp. 1–18. [Google Scholar]
- Cruz, J.; Jacome, C.; Oliveira, A.; Paixao, C.; Rebelo, P.; Flora, S.; Januario, F.; Valente, C.; Andrade, L.; Marques, A. Construct validity of the brief physical activity assessment tool for clinical use in COPD. Clin. Respir. J. 2021, 15, 530–539. [Google Scholar] [CrossRef] [PubMed]
- Marshall, A.L.; Smith, B.J.; Bauman, A.E.; Kaur, S. Reliability and validity of a brief physical activity assessment for use by family doctors. Br. J. Sport. Med. 2005, 39, 294–297, discussion 294–297. [Google Scholar] [CrossRef] [PubMed]
- Folstein, M.F.; Folstein, S.E.; Mchugh, P.R. Mini-Mental State—Practical Method for Grading Cognitive State of Patients for Clinician. J. Psychiat. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Guerreiro, M.S.; Botelho, M.; Leitão, O.; Castro-Caldas, A.; Garcia, C. Adaptação à população portuguesa da tradução do Mini Mental State Examination. Rev. Port. Neurol. 1994, 1, 1–9. [Google Scholar]
- Guerreiro, M. Contributo da Neuropsicologia para o Estudo das Demências; Faculdade de Medicina de Lisboa: Lisboa, Portugal, 1998. [Google Scholar]
- Fugl-Meyer, A.R.; Jaasko, L.; Leyman, I.; Olsson, S.; Steglind, S. The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand. J. Rehabil. Med. 1975, 7, 13–31. [Google Scholar]
- Sanford, J.; Moreland, J.; Swanson, L.R.; Stratford, P.W.; Gowland, C. Reliability of the Fugl-Meyer assessment for testing motor performance in patients following stroke. Phys. Ther. 1993, 73, 447–454. [Google Scholar] [CrossRef]
- Costa, S.V. Adaptação e Validação Cultural e Linguística do Fugl-Meyer Assessment of Sensorimotor Recovery after Stroke; Escola Superior de Tecnologia da Saúde de Coimbra: Coimbra, Portugal, 2003. [Google Scholar]
- Santos, A.P.; Ramos, N.C.; Estêvão, P.C.; Lopes, A.M.F.; Pascoalinho, J.P. Instrumentos de medida úteis no contexto da avaliação em fisioterapia. Rev. ESSA 2005, 1, 131–156. [Google Scholar]
- Kuo, A.D.; Donelan, J.M.; Ruina, A. Energetic consequences of walking like an inverted pendulum: Step-to-step transitions. Exerc. Sport Sci. Rev. 2005, 33, 88–97. [Google Scholar] [CrossRef]
- Cappozzo, A.; Catani, F.; Della Croce, U.; Leardini, A. Position and Orientation in-Space of Bones during Movement—Anatomical Frame Definition and Determination. Clin. Biomech. 1995, 10, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kines. 2000, 10, 361–374. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.H.; Lee, H.J.; Lee, W.H. Test-retest reliability of the GAITRite walkway system for the spatio-temporal gait parameters while dual-tasking in post-stroke patients. Disabil. Rehabil. 2015, 37, 512–516. [Google Scholar] [CrossRef]
- Fotiadou, S.; Aggeloussis, N.; Gourgoulis, V.; Malliou, P.; Papanas, N.; Giannakou, E.; Iliopoulos, I.; Vadikolias, K.; Terzoudi, A.; Piperidou, H. Reproducibility of gait kinematics and kinetics in chronic stroke patients. Neurorehabilitation 2018, 42, 53–61. [Google Scholar] [CrossRef]
- Geiger, M.; Supiot, A.; Pradon, D.; Do, M.C.; Zory, R.; Roche, N. Minimal detectable change of kinematic and spatiotemporal parameters in patients with chronic stroke across three sessions of gait analysis. Hum. Mov. Sci. 2019, 64, 101–107. [Google Scholar] [CrossRef]
- Banks, J.J.; Chang, W.R.; Xu, X.; Chang, C.C. Using horizontal heel displacement to identify heel strike instants in normal gait. Gait Posture 2015, 42, 101–103. [Google Scholar] [CrossRef]
- French, M.A.; Koller, C.; Arch, E.S. Comparison of three kinematic gait event detection methods during overground and treadmill walking for individuals post stroke. J. Biomech. 2020, 99, 109481. [Google Scholar] [CrossRef]
- Zeni, J.A.; Richards, J.G.; Higginson, J.S. Two simple methods for determining gait events during treadmill and overground walking using kinematic data. Gait Posture 2008, 27, 710–714. [Google Scholar] [CrossRef]
- Donelan, J.M.; Kram, R.; Kuo, A.D. Simultaneous positive and negative external mechanical work in human walking. J. Biomech. 2002, 35, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Sousa, A.S.P.; Tavares, J.M. Effect of gait speed on muscle activity patterns and magnitude during stance. Mot. Control 2012, 16, 480–492. [Google Scholar] [CrossRef] [PubMed]
- Kellis, E.; Arabatzi, F.; Papadopoulos, C. Muscle co-activation around the knee in drop jumping using the co-contraction index. J. Electromyogr. Kines 2003, 13, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Marôco, J. Análise Estatística com o SPSS Statistics, 7th ed.; ReportNumber, Lda: Pêro Pinheiro, Portugal, 2018. [Google Scholar]
- Arifin, W.N. Sample Size Calculator. Available online: http://wnarifin.github.io (accessed on 4 February 2023).
- Walter, S.D.; Eliasziw, M.; Donner, A. Sample size and optimal designs for reliability studies. Stat. Med. 1998, 17, 101–110. [Google Scholar] [CrossRef]
- Bonett, D.G. Sample size requirements for estimating intraclass correlations with desired precision. Stat. Med. 2002, 21, 1331–1335. [Google Scholar] [CrossRef]
- Jones, T.A. Motor compensation and its effects on neural reorganization after stroke. Nat. Rev. Neurosci. 2017, 18, 267–280. [Google Scholar] [CrossRef]
- Perry, J.; Garrett, M.; Gronley, J.K.; Mulroy, S.J. Classification of walking handicap in the stroke population. Stroke 1995, 26, 982–989. [Google Scholar] [CrossRef]
- Monaghan, K.; Delahunt, E.; Caulfield, B. Increasing the number of gait trial recordings maximises intra-rater reliability of the CODA motion analysis system. Gait Posture 2007, 25, 303–315. [Google Scholar] [CrossRef]
- Kadaba, M.P.; Ramakrishnan, H.K.; Wootten, M.E.; Gainey, J.; Gorton, G.; Cochran, G.V.B. Repeatability of Kinematic, Kinetic, and Electromyographic Data in Normal Adult Gait. J. Orthopaed. Res. 1989, 7, 849–860. [Google Scholar] [CrossRef]
- Yavuzer, G.; Oken, O.; Elhan, A.; Stam, H.J. Repeatability of lower limb three-dimensional kinematics in patients with stroke. Gait Posture 2008, 27, 31–35. [Google Scholar] [CrossRef]
- Carson, H.J.; Collins, D.; Richards, J. Intra-individual movement variability during skill transitions: A useful marker? Eur. J. Sport Sci. 2014, 14, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Krasovsky, T.; Levin, M.F. Review: Toward a better understanding of coordination in healthy and poststroke gait. Neurorehabilit. Neural Repair 2010, 24, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, M.H.; Trost, J.P.; Wervey, R.A. Measurement and management of errors in quantitative gait data. Gait Posture 2004, 20, 196–203. [Google Scholar] [CrossRef]
- Terrier, P.; Turner, V.; Schutz, Y. GPS analysis of human locomotion: Further evidence for long-range correlations in stride-to-stride fluctuations of gait parameters. Hum. Mov. Sci. 2005, 24, 97–115. [Google Scholar] [CrossRef]
- Caty, G.D.; Detrembleur, C.; Bleyenheuft, C.; Lejeune, T.M. Reliability of Lower Limb Kinematics, Mechanics and Energetics during Gait in Patients after Stroke. J. Rehabil. Med. 2009, 41, 588–590. [Google Scholar] [CrossRef] [PubMed]
- Neumann, D.A. Kinesiology of the Musculoskeletal System: Foundations for Rehabilitation, 3rd ed.; Mosby: Maryland Heights, MI, USA, 2017. [Google Scholar]
- Taborri, J.; Palermo, E.; Del Prete, Z.; Rossi, S. On the Reliability and Repeatability of Surface Electromyography Factorization by Muscle Synergies in Daily Life Activities. Appl. Bionics Biomech. 2018, 2018, 5852307. [Google Scholar] [CrossRef]
- Rutherford, D.J.; Moyer, R.; Baker, M.; Saleh, S. High day-to-day repeatability of lower extremity muscle activation patterns and joint biomechanics of dual-belt treadmill gait: A reliability study in healthy young adults. J. Electromyogr. Kines 2020, 51, 102401. [Google Scholar] [CrossRef]
- Ivanenko, Y.P.; Poppele, R.E.; Lacquaniti, F. Five basic muscle activation patterns account for muscle activity during human locomotion. J. Physiol. 2004, 556, 267–282. [Google Scholar] [CrossRef]
- Grasso, R.; Bianchi, L.; Lacquaniti, F. Motor patterns for human gait: Backward versus forward locomotion. J. Neurophysiol. 1998, 80, 1868–1885. [Google Scholar] [CrossRef]
- Aviles, M.; Sánchez-Reyes, L.-M.; Fuentes-Aguilar, R.Q.; Toledo-Pérez, D.C.; Rodríguez-Reséndiz, J. A Novel Methodology for Classifying EMG Movements Based on SVM and Genetic Algorithms. Micromachines 2022, 13, 2108. [Google Scholar] [CrossRef]
- Toledo-Pérez, D.C.; Martínez-Prado, M.A.; Gómez-Loenzo, R.A.; Paredes-García, W.J.; Rodríguez-Reséndiz, J. A Study of Movement Classification of the Lower Limb Based on up to 4-EMG Channels. Electronics 2019, 8, 259. [Google Scholar] [CrossRef]
- Davids, K.; Glazier, P.; Araujo, D.; Bartlett, R. Movement systems as dynamical systems: The functional role of variability and its implications for sports medicine. Sport. Med. 2003, 33, 245–260. [Google Scholar] [CrossRef]
- Silva, A.; Sousa, A.S.P.; Silva, C.C.; Santos, R.; Tavares, J.; Sousa, F. The role of the ipsilesional side in the rehabilitation of post-stroke subjects. Somatosens. Mot. Res. 2017, 34, 185–188. [Google Scholar] [CrossRef] [PubMed]
- Barria, P.; Aguilar, R.; Serrano Delgado, D.; Moris, A.; Andrade, A.; Azorin, J. Instrumented Gait Analysis of Stroke Patients after FES-Cycling Therapy; Research Square: Durham, NC, USA, 2020. [Google Scholar]
- Khan, M.A.; Kadry, S.; Parwekar, P.; Damaševičius, R.; Mehmood, A.; Khan, J.A.; Naqvi, S.R. Human gait analysis for osteoarthritis prediction: A framework of deep learning and kernel extreme learning machine. Complex Intell. Syst. 2021, 1–19. [Google Scholar] [CrossRef]
- Priya, S.J.; Rani, A.J.; Subathra, M.S.P.; Mohammed, M.A.; Damaševičius, R.; Ubendran, N. Local Pattern Transformation Based Feature Extraction for Recognition of Parkinson’s Disease Based on Gait Signals. Diagnostics 2021, 11, 1395. [Google Scholar] [CrossRef] [PubMed]
Stroke (n = 11) | Healthy (n = 13) | Between-Groups Comparison | ||
---|---|---|---|---|
Mean (SD) | Mean (SD) | p-Value | ||
Age (years) | 51.82 (12.92) | 49.92 (14.91) | 0.745 | |
Weight (kg) | 70.73 (11.15) | 77.69 (15.87) | 0.235 | |
Height (m) | 1.70 (0.13) | 1.71 (0.12) | 0.769 | |
BMI (kg/m2) | 24.58 (3.38) | 26.29 (3.79) | 0.261 | |
Double-support time (s) | ||||
Ipsilesional/dominant | 0.29 (0.31) | 0.20 (0.03) | 0.313 | |
Contralesional/non-dominant | 0.24 (0.10) | 0.19 (0.03) | 0.162 | |
Post-stroke time (months) | 52.18 (29.89) | --- | --- |
Muscle | Anatomical References |
---|---|
Tibialis anterior | On the third proximal of the line between the tip of the fibula and the tip of the medial malleolus |
Soleus | Two centimetres distal to the lower border of the gastrocnemius medialis muscle belly and two centimetres medial to the posterior midline of the leg |
Gastrocnemius medialis | Most prominent portion of the muscle belly |
Rectus femoris | Fifty percent on the line between the anterior superior iliac spine and the upper border of the patella |
Vastus medialis | Four centimetres above the superior chord of the patella and three centimetres measured medially and oriented 55 degrees from a reference line between the anterior superior iliac spine and the centre of the patella |
Biceps femoris | Fifty percent on the line between the ischial tuberosity and the lateral epicondyle of the tibia |
Gluteus maximus | Fifty percent on the line between the sacrum and the greater trochanter |
Intra-Session | Inter-Session | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Healthy | Stroke | Healthy | Stroke | |||||||
DOM | NDOM | IPSI | CONTRA | DOM | NDOM | IPSI | CONTRA | |||
Joint position | ||||||||||
TRAIL | ||||||||||
Hip | 2 | 2 | 2 | 3 | >10 | >10 | 6 | >10 | ||
Knee | 2 | 2 | 2 | 2 | >10 | 5 | 2 | 3 | ||
Ankle | 2 | 2 | 3 | 2 | 1 | 2 | 4 | 2 | ||
LEAD | ||||||||||
Hip | 2 | 2 | 2 | 2 | 2 | 2 | >10 | >10 | ||
Knee | 2 | 2 | 2 | 3 | 2 | 1 | 2 | >10 | ||
Ankle | 2 | 4 | 2 | 2 | 5 | >10 | 2 | 2 | ||
Time | ||||||||||
Double support | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | ||
WCOM | ||||||||||
TRAIL | 2 | 2 | 2 | 7 | 2 | 2 | 3 | 1 | ||
LEAD | 3 | 2 | 2 | 2 | 9 | 2 | 2 | 2 |
Intra-Session | Inter-Session | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Healthy | Stroke | Healthy | Stroke | |||||||
DOM | NDOM | IPSI | CONTRA | DOM | NDOM | IPSI | CONTRA | |||
LEAD | ||||||||||
Ankle | ||||||||||
TA | >10 | >10 | 10 | 7 | >10 | >10 | >10 | 4 | ||
SOL | 8 | 7 | 7 | 2 | 2 | >10 | >10 | 5 | ||
GasM | 8 | 6 | 5 | 2 | 8 | 3 | >10 | >10 | ||
Ankle ratio | 7 | 4 | 7 | 2 | 5 | 2 | >10 | >10 | ||
Knee and hip | ||||||||||
RF | 10 | >10 | 7 | 7 | >10 | >10 | >10 | 2 | ||
VM | 5 | 6 | 7 | 2 | 3 | >10 | 5 | >10 | ||
BF | 5 | >10 | 4 | 8 | 6 | >10 | >10 | >10 | ||
GMax | 7 | >10 | >10 | 3 | >10 | >10 | >10 | 2 | ||
Hip ratio | 8 | 7 | 7 | 2 | >10 | >10 | >10 | 1 | ||
Knee ratio | 8 | >10 | 9 | 2 | 4 | >10 | >10 | >10 | ||
TRAIL | ||||||||||
Ankle | ||||||||||
TA | 7 | 3 | 10 | 5 | 1 | >10 | 4 | >10 | ||
SOL | 8 | >10 | 2 | 7 | 4 | >10 | >10 | 8 | ||
GasM | >10 | >10 | 2 | 2 | 10 | >10 | 1 | >10 | ||
Ankle ratio | 5 | 7 | 2 | >10 | >10 | 7 | >10 | >10 | ||
Knee and Hip | ||||||||||
RF | 9 | 7 | 2 | 8 | >10 | >10 | >10 | 2 | ||
VM | 6 | 10 | 6 | >10 | 2 | >10 | >10 | >10 | ||
BF | 7 | 8 | 2 | 7 | >10 | >10 | >10 | >10 | ||
GMax | 6 | 6 | >10 | 2 | 3 | 4 | >10 | 1 | ||
Hip ratio | 5 | 7 | 3 | 2 | >10 | >10 | >10 | 1 | ||
Knee ratio | 7 | 7 | 2 | 4 | >10 | >10 | >10 | >10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Couto, A.G.B.; Vaz, M.A.P.; Pinho, L.; Félix, J.; Moreira, J.; Pinho, F.; Mesquita, I.A.; Montes, A.M.; Crasto, C.; Sousa, A.S.P. Repeatability and Temporal Consistency of Lower Limb Biomechanical Variables Expressing Interlimb Coordination during the Double-Support Phase in People with and without Stroke Sequelae. Sensors 2023, 23, 2526. https://doi.org/10.3390/s23052526
Couto AGB, Vaz MAP, Pinho L, Félix J, Moreira J, Pinho F, Mesquita IA, Montes AM, Crasto C, Sousa ASP. Repeatability and Temporal Consistency of Lower Limb Biomechanical Variables Expressing Interlimb Coordination during the Double-Support Phase in People with and without Stroke Sequelae. Sensors. 2023; 23(5):2526. https://doi.org/10.3390/s23052526
Chicago/Turabian StyleCouto, Ana G. B., Mário A. P. Vaz, Liliana Pinho, José Félix, Juliana Moreira, Francisco Pinho, Inês Albuquerque Mesquita, António Mesquita Montes, Carlos Crasto, and Andreia S. P. Sousa. 2023. "Repeatability and Temporal Consistency of Lower Limb Biomechanical Variables Expressing Interlimb Coordination during the Double-Support Phase in People with and without Stroke Sequelae" Sensors 23, no. 5: 2526. https://doi.org/10.3390/s23052526
APA StyleCouto, A. G. B., Vaz, M. A. P., Pinho, L., Félix, J., Moreira, J., Pinho, F., Mesquita, I. A., Montes, A. M., Crasto, C., & Sousa, A. S. P. (2023). Repeatability and Temporal Consistency of Lower Limb Biomechanical Variables Expressing Interlimb Coordination during the Double-Support Phase in People with and without Stroke Sequelae. Sensors, 23(5), 2526. https://doi.org/10.3390/s23052526