A Hardware-Friendlyand High-Efficiency H.265/HEVC Encoder for Visual Sensor Networks
Abstract
:1. Introduction
- A hardware-friendly and high-efficiency H.265/HEVC encoder for intra frames is proposed. The proposed method also can be parallelized because it only uses information from the current CU. The proposed method significantly reduces computation complexity while achieving a high compression rate, satisfying the requirements for VSN video transmission.
- Four projection directions are used in the proposed method to predict the depth range of the current CTU and eliminate impossible intra prediction modes. Moreover, to reduce the effects of noise, we normalized the average intensity of each CU to generate a generalized threshold.
- The proposed method achieves high-efficiency encoding; it has more consistent encoding time savings for all test sequences and a slight increase in the Bjontegaard delta bit rate (BDBR) compared to the HEVC test model.
2. Related Work
3. Proposed Method
3.1. Encoding Process in HEVC
3.2. A Hardware-Friendly and High-Efficiency H.265/HEVC Encoder for Visual Sensor Networks
3.2.1. Edge Feature Extraction
Algorithm 1 Projection of each pixel. |
Input: Original image A; Output: for each in image A
|
3.2.2. Projected Gradient Normalization
3.2.3. Fast CU Partition and Mode Decision
4. Experimental Results
4.1. Experimental Environment and Conditions
4.2. Experimental Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Winkler, T.; Rinner, B. Security and privacy protection in visual sensor networks: A survey. ACM Comput. Surv. (CSUR) 2014, 47, 1–42. [Google Scholar] [CrossRef]
- Peixoto, J.; Costa, D. Wireless visual sensor networks for smart city applications:A relevance-based approach for multiple sinks mobility. Future Gener. Comput. Syst. 2017, 76, 51–62. [Google Scholar] [CrossRef]
- Soro, S.; Heinzelman, W. A survey of visual sensor networks. Adv. Multimed. 2009, 2009, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Charfi, Y.; Wakamiya, N.; Murata, M. Challenging issues in visual sensor networks. IEEE Wirel. Commun. 2009, 16, 44–49. [Google Scholar] [CrossRef]
- Costa, D.G.; Silva, I.; Guedes, L.A.; Vasques, F.; Portugal, P. Availability Issues in Wireless Visual Sensor Networks. Sensors 2014, 14, 2795–2821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, Y.; Lee, S.; Jeon, T.; Park, D. Fast Video Encryption Using the H.264 Error Propagation Property for Smart Mobile Devices. Sensors 2015, 15, 7953–7968. [Google Scholar] [CrossRef] [Green Version]
- Costa, D.G.; Guedes, L.A. A survey on multimedia-based cross-layer optimization in visual sensor networks. Sensors 2011, 11, 5439–5468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mammeri, A.; Hadjou, B.; Khoumsi, A. A survey of image compression algorithms for visual sensor networks. Int. Sch. Res. Not. 2012, 2012, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Yap, F.G.H.; Yen, H.H. A Survey on Sensor Coverage and Visual Data Capturing/Processing/Transmission in Wireless Visual Sensor Networks. Sensors 2014, 14, 3506–3527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sullivan, G.J.; Ohm, J.R.; Han, W.J.; Wiegand, T. Overview of the high efficiency video coding (HEVC) standard. IEEE Trans. Circuits Syst. Video Technol. 2012, 22, 1649–1668. [Google Scholar] [CrossRef]
- Bross, B.; Wang, Y.K.; Ye, Y.; Liu, S.; Chen, J.; Sullivan, G.J.; Ohm, J.R. Overview of the versatile video coding (VVC) standard and its applications. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 3736–3764. [Google Scholar] [CrossRef]
- Wiegand, T.; Sullivan, G.; Bjontegaard, G.; Luthra, A. Overview of the H.264/AVC video coding standard. IEEE Trans. Circuits Syst. Video Technol. 2003, 13, 560–576. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Kwong, S.; Zhang, G.; Pan, Z.; Yuan, H.; Jiang, G. Low Complexity HEVC INTRA Coding for High-Quality Mobile Video Communication. IEEE Trans. Ind. Informatics 2015, 11, 1492–1504. [Google Scholar] [CrossRef]
- Nguyen Thi Huong, T.; Phi Cong, H.; HoangVan, X.; Huu, T.V. A Practical High Efficiency Video Coding Solution for Visual Sensor Network using Raspberry Pi Platform. In Proceedings of the 2018 IEEE 12th International Symposium on Embedded Multicore/Many-Core Systems-on-Chip (MCSoC), Hanoi, Vietnam, 12–14 September 2018; pp. 64–68. [Google Scholar]
- Bjontegaard, G. Calculation of average PSNR differences between RD-curves. In Proceedings of the 13th VCEG Meeting, Austin, TX, USA, 2–4 April 2001. [Google Scholar]
- Min, B.; Cheung, R.C.C. A Fast CU Size Decision Algorithm for the HEVC Intra Encoder. IEEE Trans. Circuits Syst. Video Technol. 2015, 25, 892–896. [Google Scholar] [CrossRef]
- Shen, L.; Zhang, Z.; Liu, Z. Effective CU Size Decision for HEVC Intracoding. IEEE Trans. Image Process. 2014, 23, 4232–4241. [Google Scholar] [CrossRef]
- Le Dinh Trang, D.; Kim, K.R.; Chang, I.J.; Kim, J. Texture characteristic based fast algorithm for CU size decision in HEVC intra coding. In Proceedings of the 2017 7th International Conference on Integrated Circuits, Design, and Verification (ICDV), Hanoi, Vietnam, 5–6 October 2017; pp. 88–93. [Google Scholar] [CrossRef]
- Lu, J.; Li, Y. Fast Algorithm for CU Partitioning and Mode Selection in HEVC Intra Prediction. In Proceedings of the 2019 12th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Suzhou, China, 19–21 October 2019; pp. 1–5. [Google Scholar]
- Fengwei, G.; Yong, C.; Shuai, X. Fast Algorithm Design of HEVC Intra Prediction. In Proceedings of the 2022 International Conference on Innovations and Development of Information Technologies and Robotics (IDITR), Chengdu, China, 27–29 May 2022; pp. 38–42. [Google Scholar]
- Liu, X.; Li, Y.; Liu, D.; Wang, P.; Yang, L.T. An Adaptive CU Size Decision Algorithm for HEVC Intra Prediction Based on Complexity Classification Using Machine Learning. IEEE Trans. Circuits Syst. Video Technol. 2019, 29, 144–155. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, Z.; Li, N.; Wang, X.; Jiang, G.; Kwong, S. Effective Data Driven Coding Unit Size Decision Approaches for HEVC INTRA Coding. IEEE Trans. Circuits Syst. Video Technol. 2018, 28, 3208–3222. [Google Scholar] [CrossRef]
- Werda, I.; Maraoui, A.; Sayadi, F.E.; Masmoudi, N. Fast CU partition and intra mode prediction method for HEVC. In Proceedings of the 2022 IEEE 9th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT), Hammamet, Tunisia, 28–30 May 2022; pp. 562–566. [Google Scholar]
- Sulochana, V.; Shanthini, B.; Harinath, K. Fast Intraprediction Algorithm for HEVC Based on Machine Learning Classification Technique. In Proceedings of the 2022 IEEE International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE), Ballari, India, 23–24 April 2022; pp. 1–8. [Google Scholar]
- Amna, M.; Imen, W.; Nacir, O.; Ezahra, S.F. SVM-Based method to reduce HEVC CU partition complexity. In Proceedings of the 2022 19th International Multi-Conference on Systems, Signals & Devices (SSD), Sétif, Algeria, 6–10 May 2022; pp. 480–484. [Google Scholar]
- Yingmin, Y.; Zhaoyang, Z.; Yiwei, Y.; Xianghong, X.; Yuxing, L. Fast Intra Mode Decision Algorithm of HEVC Based on Convolutional Neural Network. In Proceedings of the 2022 2nd Asia-Pacific Conference on Communications Technology and Computer Science (ACCTCS), Shenyang, China, 25–27 February 2022; pp. 76–79. [Google Scholar]
- Hari, P.; Jadhav, V.; Rao, B.S. CTU Partition for Intra-Mode HEVC using Convolutional Neural Network. In Proceedings of the 2022 IEEE International Symposium on Smart Electronic Systems (iSES), Warangal, India, 18–22 December 2022; pp. 548–551. [Google Scholar]
- Pan, Z.; Chen, L.; Sun, X. Low Complexity HEVC Encoder for Visual Sensor Networks. Sensors 2015, 15, 30115–30125. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Feng, J.; Song, T.; Katayama, T. Low-Complexity and Hardware-Friendly H.265/HEVC Encoder for Vehicular Ad-Hoc Networks. Sensors 2019, 19. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, G.; Wiegand, T. Rate-distortion optimization for video compression. IEEE Signal Process. Mag. 1998, 15, 74–90. [Google Scholar] [CrossRef] [Green Version]
- Nausheen, N.; Seal, A.; Khanna, P.; Halder, S. A FPGA based implementation of Sobel edge detection. Microprocess. Microsyst. 2018, 56, 84–91. [Google Scholar] [CrossRef]
- Jamali, M.; Coulombe, S.; Caron, F. Fast HEVC intra mode decision based on edge detection and SATD costs classification. In Proceedings of the 2015 Data Compression Conference, Snowbird, UT, USA, 7–9 April 2015; pp. 43–52. [Google Scholar]
- Bossen, F. Common Test Conditions and Software Reference Configurations, Document JCTVC-L1100; JCT-VC: San Jose, CA, USA, 2012. [Google Scholar]
- Jamali, M.; Coulombe, S. Fast HEVC Intra Mode Decision Based on RDO Cost Prediction. IEEE Trans. Broadcast. 2019, 65, 109–122. [Google Scholar] [CrossRef]
- Yin, J.; Yang, X.; Lin, J.; Chen, Y.; Fang, R. A Fast Block Partitioning Algorithm Based on SVM for HEVC Intra Coding. In Proceedings of the 2018 2nd International Conference on Video and Image Processing, Hong Kong, China, 29–31 December 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 176–181. [Google Scholar]
- Tang, G.; Jing, M.; Zeng, X.; Fan, Y. Adaptive CU Split Decision with Pooling-variable CNN for VVC Intra Encoding. In Proceedings of the 2019 IEEE Visual Communications and Image Processing (VCIP), Sydney, Australia, 1–4 December 2019; pp. 1–4. [Google Scholar]
- Fan, Y.; Chen, J.; Sun, H.; Katto, J.; Jing, M. A Fast QTMT Partition Decision Strategy for VVC Intra Prediction. IEEE Access 2020, 8, 107900–107911. [Google Scholar] [CrossRef]
- Cao, J.; Jia, Y.; Liang, F.; Wang, J. Encounter CU Again: History-Based Complexity Reduction Strategy for VVC Intra-Frame Encoder. In Proceedings of the 2021 IEEE 23rd International Workshop on Multimedia Signal Processing (MMSP), Tampere, Finland, 6–8 October 2021; pp. 1–6. [Google Scholar]
Direction | ||||
---|---|---|---|---|
Magnitude | 35,423.4 | 37,402.9 | 31,843.2 | 37,967.3 |
Main Direction | 45 | |||
---|---|---|---|---|
Prediction mode | 6∼14 | 30∼34, 2∼6 | 22∼30 | 14∼22 |
Main Direction | and | and | and | and | and | and |
---|---|---|---|---|---|---|
Prediction mode | 2∼10 | 26∼34, 2 | 18∼26 | 10∼18 | 8∼12, 24∼28 | 32∼34, 2∼4, 16∼20 |
Test Sequence | With Normalize | Without Normalize | ||
---|---|---|---|---|
BD-Rate (%) | TS (%) | BD-Rate (%) | TS (%) | |
Flowervase | 1.23 | 38.1 | 1.51 | 45.1 |
BlowingBubbles | 1.11 | 40.7 | 1.11 | 41.0 |
Mobisode2 | 0.45 | 62.2 | 9.37 | 78.1 |
Keiba | 0.46 | 61.4 | 1.62 | 62.2 |
Johnny | 1.20 | 53.6 | 1.81 | 61.4 |
Test Sequence | CU Partition | CU Partition + Intra Mode | ||
---|---|---|---|---|
BD-Rate (%) | TS (%) | BD-Rate (%) | TS (%) | |
BlowingBubbles | 0.89 | 35.6 | 1.11 | 40.7 |
BasketballDrill | 0.71 | 35.7 | 0.72 | 41.0 |
RaceHorses | 0.59 | 36.8 | 0.70 | 44.1 |
Johnny | 1.05 | 41.2 | 1.20 | 53.6 |
FourPeople | 1.08 | 42.1 | 1.17 | 51.0 |
BasketballDrive | 0.72 | 39.1 | 0.87 | 51.3 |
ParkScene | 0.84 | 36.2 | 0.94 | 43.0 |
Traffic | 0.82 | 37.4 | 0.91 | 44.6 |
Class | Test Sequence | Proposed | [22] | [24] | [25] | [34] | [35] |
---|---|---|---|---|---|---|---|
TS (%) | TS (%) | TS (%) | TS (%) | TS (%) | TS (%) | ||
2560 × 1600 Class A | Traffic | 44.6 | 45.6 | 32.2 | - | 48.8 | - |
PeopleOnStreet | 44.2 | 44.8 | - | - | 49.4 | - | |
1920 × 1080 Class B | BasketballDrive | 51.3 | 61.0 | 30.2 | 53.6 | 49.1 | 39.6 |
BQTerrace | 43.4 | 51.0 | - | 46.1 | 46.7 | 25.4 | |
Cactus | 44.0 | 45.5 | - | 45.8 | 47.7 | 29.0 | |
Kimono | 44.2 | 80.5 | - | 69.3 | 49.5 | 38.1 | |
ParkScene | 43.0 | 40.0 | 33.2 | 39.7 | 47.4 | 31.6 | |
1280 × 720 Class E | FourPeople | 51.0 | 51.7 | 32.2 | 42.3 | 48.9 | 29.8 |
Johnny | 53.6 | 67.9 | - | 57.2 | 49.9 | 46.7 | |
KristenAndSara | 62.7 | 63.5 | - | 55.5 | 49.5 | 43.7 | |
832 × 480 Class C | BasketballDrill | 41.0 | 39.7 | - | 48.2 | 48.7 | 31.0 |
BQMall | 44.0 | 38.3 | - | 43.3 | 47.0 | - | |
PartyScene | 40.7 | 28.8 | 33.4 | 49.4 | 41.1 | - | |
RaceHorses | 44.1 | - | 32.4 | 46.1 | 44.6 | 31.0 | |
416 × 240 Class D | BasketballPass | 40.5 | 45.9 | 29.4 | 47.0 | 46.8 | 31.0 |
BlowingBubbles | 40.7 | 36.2 | 32.2 | 41.3 | 44.2 | - | |
BQSquare | 41.0 | 27.9 | - | 47.1 | 41.0 | 14.5 | |
RaceHorses | 41.9 | - | - | - | 46.5 | - | |
All class | Average | 45.33 | 48.02 | 31.9 | 47.0 | 47.0 | 32.6 |
Class | Test Sequence | Proposed | [22] | [24] | [25] | [34] | [35] |
---|---|---|---|---|---|---|---|
BD-Rate (%) | BD-Rate (%) | BD-Rate (%) | BD-Rate (%) | BD-Rate (%) | BD-Rate (%) | ||
2560 × 1600 Class A | Traffic | 0.91 | 0.98 * | 0.54 | - | 1.46 | - |
PeopleOnStreet | 1.15 | 1.20 | - | - | 1.71 | - | |
1920 × 1080 Class B | BasketballDrive | 0.87 | 1.87 | 1.21 | 2.3 | 2.37 | 0.89 |
BQTerrace | 0.67 | 1.05 | - | 2.6 | 0.82 | 0.83 | |
Cactus | 1.00 | 1.02 | - | 2.9 | 1.46 | 0.91 | |
Kimono | 1.55 | 3.72 | - | 0.8 | 1.54 | 0.75 | |
ParkScene | 0.94 | 0.67 * | 0.87 | 0.5 | 1.02 | 1.07 | |
1280 × 720 Class E | FourPeople | 1.17 | 1.70 * | 1.45 | 2.7 | 1.78 | 1.23 |
Johnny | 1.20 | 3.01 | - | 1.5 | 2.22 | 0.96 | |
KristenAndSara | 1.55 | 2.39 | - | 1.1 | 2.21 | 0.79 | |
832 × 480 Class C | BasketballDrill | 0.72 | 0.99 * | - | 0.8 | 0.85 | 0.90 |
BQMall | 1.10 | 1.07 | - | 2.4 | 1.47 | - | |
PartyScene | 1.17 | 0.24 | 1.23 | 2.0 | 1.02 | - | |
RaceHorses | 0.70 | - | 0.94 | 1.0 | 0.65 | 0.91 | |
416 × 240 Class D | BasketballPass | 1.11 | 1.34 | 0.26 | 0.3 | 1.71 | 0.87 |
BlowingBubbles | 1.11 | 0.50 * | 0.21 | 0.4 | 1.03 | - | |
BQSquare | 1.40 | 0.48 | - | 1.0 | 1.29 | 0.34 | |
RaceHorses | 0.94 | - | - | - | 1.22 | - | |
All class | Average | 1.07 | 1.39 | 0.83 | 1.5 | 1.44 | 0.87 |
Class | Test Sequence | Proposed | [22] | [24] | [25] | [34] | [35] |
---|---|---|---|---|---|---|---|
All class | BDBR | 1.07 | 1.39 | 0.83 | 1.50 | 1.44 | 0.87 |
TS | 45.33 | 48.02 | 31.90 | 47.00 | 47.00 | 32.60 | |
TS/BDBR | 42.36 | 34.54 | 38.43 | 31.33 | 32.63 | 37.47 |
Video | Proposed | [22] | [34] | |||
---|---|---|---|---|---|---|
BD-Rate (%) | TS (%) | BD-Rate (%) | TS (%) | BD-Rate (%) | TS (%) | |
FourPeople | 1.17 | 51.0 | 1.70 * | 51.8 | 1.78 | 48.9 |
Johnny | 1.20 | 53.6 | 3.01 | 68.0 | 2.22 | 49.9 |
KristenAndSara | 1.55 | 62.7 | 2.39 | 63.6 | 2.21 | 49.5 |
Vidyo1 | 1.04 | 51.0 | 2.54 | 62.0 | 1.98 | 49.6 |
Vidyo3 | 0.77 | 51.6 | 3.15 | 64.3 | 1.49 | 50.2 |
Vidyo4 | 1.05 | 52.4 | 1.89 | 59.2 | 1.74 | 48.1 |
Average | 1.13 | 53.72 | 2.44 | 61.48 | 1.90 | 49.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni, C.-T.; Huang, Y.-C.; Chen, P.-Y. A Hardware-Friendlyand High-Efficiency H.265/HEVC Encoder for Visual Sensor Networks. Sensors 2023, 23, 2625. https://doi.org/10.3390/s23052625
Ni C-T, Huang Y-C, Chen P-Y. A Hardware-Friendlyand High-Efficiency H.265/HEVC Encoder for Visual Sensor Networks. Sensors. 2023; 23(5):2625. https://doi.org/10.3390/s23052625
Chicago/Turabian StyleNi, Chi-Ting, Ying-Chia Huang, and Pei-Yin Chen. 2023. "A Hardware-Friendlyand High-Efficiency H.265/HEVC Encoder for Visual Sensor Networks" Sensors 23, no. 5: 2625. https://doi.org/10.3390/s23052625
APA StyleNi, C. -T., Huang, Y. -C., & Chen, P. -Y. (2023). A Hardware-Friendlyand High-Efficiency H.265/HEVC Encoder for Visual Sensor Networks. Sensors, 23(5), 2625. https://doi.org/10.3390/s23052625