Motor Overflow during Reaching in Infancy: Quantification of Limb Movement Using Inertial Motion Units
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Layout
2.3. Equipment
2.4. Manual Annotation of Movement
2.5. Data Pre-Processing
2.6. Data Analysis
Granger Causality
3. Results
3.1. Reaching Descriptives
3.2. Overflow Quantification
4. Discussion
4.1. Sensors’ Usability
4.2. Limitations and Further Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IMUs | Inertial Motion Units |
IPF | Iterative Proportional Fitting |
DCRQA | Diagonal Cross-Recurrence Quantification Analysis |
AIC | Akaike Information Criterion |
IQR | Interquartile Range |
M | Mean |
Md | Median |
SD | Standard Deviation |
References
- Thelen, E. Motor development as foundation and future of developmental psychology. Int. J. Behav. Dev. 2000, 24, 385–397. [Google Scholar] [CrossRef]
- Rachwani, J.; Santamaria, V.; Saavedra, S.L.; Woollacott, M.H. The development of trunk control and its relation to reaching in infancy: A longitudinal study. Front. Hum. Neurosci. 2015, 9, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rovee, C.K.; Rovee, D.T. Conjugate reinforcement of infant exploratory behavior. J. Exp. Child Psychol. 1969, 8, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, H.; Taga, G. General to specific development of movement patterns and memory for contingency between actions and events in young infants. Infant Behav. Dev. 2006, 29, 402–422. [Google Scholar] [CrossRef]
- Goodway, J.; Ozmun, J.; Gallahue, D. Understanding Motor Development: Infants, Children, Adolescents, Adults, 8th ed.; Jones & Bartlett Learning: Burlington, MA, USA, 2019; pp. 111–148. [Google Scholar]
- van der Fits, I. Postural adjustments during spontaneous and goal-directed arm movements in the first half year of life. Behav. Brain Res. 1999, 106, 75–90. [Google Scholar] [CrossRef]
- Hadders-Algra, M. Development of Postural Control During the First 18 Months of Life. Neural Plast. 2005, 12, 99–108. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Smith, B.A. Infant Reaching in the First Year of Life: A Scoping Review of Typical Development and Examples of Atypical Development. Phys. Occup. Ther. Pediatr. 2022, 42, 80–98. [Google Scholar] [CrossRef]
- Thelen, E.; Spencer, J.P. Postural Control During Reaching in Young Infants: A Dynamic Systems Approach. Neurosci. Biobehav. Rev. 1998, 22, 507–514. [Google Scholar] [CrossRef]
- Addamo, P.K.; Farrow, M.; Hoy, K.E.; Bradshaw, J.L.; Georgiou-Karistianis, N. The effects of age and attention on motor overflow production—A review. Brain Res. Rev. 2007, 54, 189–204. [Google Scholar] [CrossRef]
- Soska, K.C.; Galeon, M.A.; Adolph, K.E. On the other hand: Overflow movements of infants’ hands and legs during unimanual object exploration. Dev. Psychobiol. 2012, 54, 372–382. [Google Scholar] [CrossRef] [Green Version]
- D’Souza, H.; Cowie, D.; Karmiloff-Smith, A.; Bremner, A.J. Specialization of the motor system in infancy: From broad tuning to selectively specialized purposeful actions. Dev. Sci. 2017, 20, e12409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoy, K.E.; Fitzgerald, P.B.; Bradshaw, J.L.; Armatas, C.A.; Georgiou-Karistianis, N. Investigating the cortical origins of motor overflow. Brain Res. Rev. 2004, 46, 315–327. [Google Scholar] [CrossRef] [PubMed]
- Koerte, I.; Eftimov, L.; Laubender, R.P.; Esslinger, O.; Schroeder, A.S.; Ertl-Wagner, B.; Wanllaender-Danek, U.; Heinen, F.; Danek, A. Mirror movements in healthy humans across the lifespan: Effects of development and ageing. Dev. Med. Child Neurol. 2010, 52, 1106–1112. [Google Scholar] [CrossRef] [PubMed]
- Tinazzi, M.; Zanette, G. Modulation of ipsilateral motor cortex in man during unimanual finger movements of different complexities. Neurosci. Lett. 1998, 244, 121–124. [Google Scholar] [CrossRef]
- Lazarus, J.A.; Whitall, J. Motor overflow and children’s tracking performance: Is there a link? Dev. Psychobiol. 1999, 35, 178–187. [Google Scholar] [CrossRef]
- Bodwell, J.A.; Mahurin, R.K.; Waddle, S.; Price, R.; Cramer, S.C. Age and Features of Movement Influence Motor Overflow. J. Am. Geriatr. Soc. 2003, 51, 1735–1739. [Google Scholar] [CrossRef]
- Addamo, P.K.; Farrow, M.; Hoy, K.E.; Bradshaw, J.L.; Georgiou-Karistianis, N. Short Article: The influence of task characteristics on younger and older adult motor overflow. Q. J. Exp. Psychol. 2009, 62, 239–247. [Google Scholar] [CrossRef]
- Ghazi, M.A.; Ding, L.; Fagg, A.H.; Kolobe, T.H.; Miller, D.P. Vision-based motion capture system for tracking crawling motions of infants. In Proceedings of the 2017 IEEE International Conference on Mechatronics and Automation (ICMA), Takamatsu, Japan, 6–9 August 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1549–1555. [Google Scholar] [CrossRef]
- Freedland, R.L.; Bertenthal, B.I. Developmental Changes in Interlimb Coordination: Transition to Hands-and-Knees Crawling. Psychol. Sci. 1994, 5, 26–32. [Google Scholar] [CrossRef]
- Jeng, S.F.; Chen, L.C.; Yau, K.I.T. Kinematic Analysis of Kicking Movements in Preterm Infants With Very Low Birth Weight and Full-Term Infants. Phys. Ther. 2002, 82, 148–159. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Liang, S.; Dolph, S.; Ragonesi, C.B.; Galloway, J.C.; Agrawal, S.K. Design of a Novel Mobility Interface for Infants on a Mobile Robot by Kicking. J. Med. Devices 2010, 4. [Google Scholar] [CrossRef] [Green Version]
- Mazzarella, J.; McNally, M.; Richie, D.; Chaudhari, A.M.W.; Buford, J.A.; Pan, X.; Heathcock, J.C. 3D Motion Capture May Detect Spatiotemporal Changes in Pre-Reaching Upper Extremity Movements with and without a Real-Time Constraint Condition in Infants with Perinatal Stroke and Cerebral Palsy: A Longitudinal Case Series. Sensors 2020, 20, 7312. [Google Scholar] [CrossRef] [PubMed]
- Olsen, M.D.; Herskind, A.; Nielsen, J.B.; Paulsen, R.R. Body Part Tracking of Infants. In Proceedings of the 2014 22nd International Conference on Pattern Recognition, Stockholm, Sweden, 24–28 August 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 2167–2172. [Google Scholar] [CrossRef]
- Abney, D.H.; Warlaumont, A.S.; Haussman, A.; Ross, J.M.; Wallot, S. Using nonlinear methods to quantify changes in infant limb movements and vocalizations. Front. Psychol. 2014, 5. [Google Scholar] [CrossRef] [Green Version]
- Smith, B.; Trujillo-Priego, I.; Lane, C.; Finley, J.; Horak, F. Daily Quantity of Infant Leg Movement: Wearable Sensor Algorithm and Relationship to Walking Onset. Sensors 2015, 15, 19006–19020. [Google Scholar] [CrossRef] [Green Version]
- Trujillo-Priego, I.A.; Smith, B.A. Kinematic characteristics of infant leg movements produced across a full day. J. Rehabil. Assist. Technol. Eng. 2017, 4, 205566831771746. [Google Scholar] [CrossRef] [PubMed]
- Laudańska, Z.; López Pérez, D.; Radkowska, A.; Babis, K.; Malinowska-Korczak, A.; Wallot, S.; Tomalski, P. Changes in the Complexity of Limb Movements during the First Year of Life across Different Tasks. Entropy 2022, 24, 552. [Google Scholar] [CrossRef]
- Laudanska, Z.; López Pérez, D.; Kozioł, A.; Radkowska, A.; Babis, K.; Malinowska-Korczak, A.; Tomalski, P. Longitudinal changes in infants’ rhythmic arm movements during rattle-shaking play with mothers. Front. Psychol. 2022, 13, 896319. [Google Scholar] [CrossRef] [PubMed]
- Rihar, A.; Mihelj, M.; Pašič, J.; Sgandurra, G.; Cecchi, F.; Cioni, G.; Dario, P.; Munih, M. Infant posture and movement analysis using a sensor-supported gym with toys. Med. Biol. Eng. Comput. 2019, 57, 427–439. [Google Scholar] [CrossRef]
- Sloetjes, H.; Wittenburg, P. Annotation by category-ELAN and ISO DCR. In Proceedings of the European Language Resources Association (ELRA), Marrakech, Morocco, 26 May 2008. [Google Scholar]
- McCarty, M.E.; Clifton, R.K.; Ashmead, D.H.; Lee, P.; Goubet, N. How Infants Use Vision for Grasping Objects. Child Dev. 2001, 72, 973–987. [Google Scholar] [CrossRef]
- von Hofsten, C. Predictive reaching for moving objects by human infants. J. Exp. Child Psychol. 1980, 30, 369–382. [Google Scholar] [CrossRef]
- Clifton, R.K.; Rochat, P.; Robin, D.J.; Bertheir, N.E. Multimodal perception in the control of infant reaching. J. Exp. Psychol. Hum. Percept. Perform. 1994, 20, 876–886. [Google Scholar] [CrossRef]
- Fienberg, S.E.; Wasserman, S. An Exponential Family of Probability Distributions for Directed Graphs: Comment. J. Am. Stat. Assoc. 1981, 76, 54. [Google Scholar] [CrossRef]
- Gisev, N.; Bell, J.S.; Chen, T.F. Interrater agreement and interrater reliability: Key concepts, approaches, and applications. Res. Soc. Adm. Pharm. 2013, 9, 330–338. [Google Scholar] [CrossRef] [PubMed]
- McKinney, W. Data structures for statistical computing in python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010; Volume 445, pp. 51–56. [Google Scholar]
- Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [Green Version]
- Hromic, H.; Le Phuoc, D.; Serrano, M.; Antonic, A.; Zarko, I.P.; Hayes, C.; Decker, S. Real time analysis of sensor data for the Internet of Things by means of clustering and event processing. In Proceedings of the 2015 IEEE International Conference on Communications (ICC), London, UK, 8–12 June 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 685–691. [Google Scholar] [CrossRef]
- Geerse, D.; Coolen, B.; Kolijn, D.; Roerdink, M. Validation of Foot Placement Locations from Ankle Data of a Kinect v2 Sensor. Sensors 2017, 17, 2301. [Google Scholar] [CrossRef] [Green Version]
- Sinclair, J.; Taylor, P.J.; Hobbs, S.J. Digital Filtering of Three-Dimensional Lower Extremity Kinematics: An Assessment. J. Hum. Kinet. 2013, 39, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Yu, M.; Liu, J.; Ning, J. Butterworth Low-Pass Filter for Processing Inertial Navigation System Raw Data. J. Surv. Eng. 2004, 130, 175–178. [Google Scholar] [CrossRef]
- Richardson, D.C.; Dale, R. Looking To Understand: The Coupling Between Speakers’ and Listeners’ Eye Movements and Its Relationship to Discourse Comprehension. Cogn. Sci. 2005, 29, 1045–1060. [Google Scholar] [CrossRef] [Green Version]
- Van Rossum, G. Python Reference Manual; Technical Report; Centrum voor Wiskunde en Informatica: Amsterdam, The Netherlands, 1995. [Google Scholar]
- Granger, C.W.J. Investigating Causal Relations by Econometric Models and Cross-spectral Methods. Econometrica 1969, 37, 424. [Google Scholar] [CrossRef]
- Seabold, S.; Perktold, J. Statsmodels: Econometric and Statistical Modeling with Python; Technical Report; 2010; Available online: https://www.statsmodels.org/stable/index.html (accessed on 23 January 2023).
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Rosoł, M.; Młyńczak, M.; Cybulski, G. Granger causality test with nonlinear neural-network-based methods: Python package and simulation study. Comput. Methods Programs Biomed. 2022, 216, 106669. [Google Scholar] [CrossRef]
- Aviles-Cruz, C.; Rodriguez-Martinez, E.; Villegas-Cortez, J.; Ferreyra-Ramirez, A. Granger-causality: An efficient single user movement recognition using a smartphone accelerometer sensor. Pattern Recognit. Lett. 2019, 125, 576–583. [Google Scholar] [CrossRef]
- Hoch, J.E.; Ossmy, O.; Cole, W.G.; Hasan, S.; Adolph, K.E. “Dancing” Together: Infant–Mother Locomotor Synchrony. Child Dev. 2021, 92, 1337–1353. [Google Scholar] [CrossRef] [PubMed]
- Lopez, L.; Weber, S. Testing for Granger causality in panel data. Stata J. 2017, 17, 972–984. [Google Scholar] [CrossRef] [Green Version]
- Barnett, L.; Seth, A.K. The MVGC multivariate Granger causality toolbox: A new approach to Granger-causal inference. J. Neurosci. Methods 2014, 223, 50–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheung, Y.W.; Lai, K.S. Lag Order and Critical Values of the Augmented Dickey-Fuller Test. J. Bus. Econ. Stat. 1995, 13, 277. [Google Scholar] [CrossRef]
- Cavanaugh, J.E.; Neath, A.A. The Akaike information criterion: Background, derivation, properties, application, interpretation, and refinements. WIREs Comput. Stat. 2019, 11, e1460. [Google Scholar] [CrossRef]
- Jones, J.D. A comparison of lag–length selection techniques in tests of Granger causality between money growth and inflation: Evidence for the US, 1959–86. Appl. Econ. 1989, 21, 809–822. [Google Scholar] [CrossRef]
- Lütkepohl, H. Vector Autoregressive Models. In International Encyclopedia of Statistical Science; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1645–1647. [Google Scholar] [CrossRef]
- Fallang, B.; Saugstad, O.D.; Hadders-Algra, M. Goal directed reaching and postural control in supine position in healthy infants. Behav. Brain Res. 2000, 115, 9–18. [Google Scholar] [CrossRef]
- Savelsbergh, G.J.; van der Kamp, J. The Effect of Body Orientation to Gravity on Early Infant Reaching. J. Exp. Child Psychol. 1994, 58, 510–528. [Google Scholar] [CrossRef]
- Rochat, P. Self-Sitting and Reaching in 5- to 8-Month-Old Infants: The Impact of Posture and Its Development on Early Eye-Hand Coordination. J. Mot. Behav. 1992, 24, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Trujillo-Priego, I.A.; Smith, B.A. How Many Days Are Necessary to Represent an Infant’s Typical Daily Leg Movement Behavior Using Wearable Sensors? Phys. Ther. 2019, 99, 730–738. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.; Shi, Y.; Hajiaghajani, F.; Biswas, S.; Lee, M.H. A novel two-body sensor system to study spontaneous movements in infants during caregiver physical contact. Infant Behav. Dev. 2019, 57, 101383. [Google Scholar] [CrossRef] [PubMed]
- Franchak, J.M.; Scott, V.; Luo, C. A Contactless Method for Measuring Full-Day, Naturalistic Motor Behavior Using Wearable Inertial Sensors. Front. Psychol. 2021, 12. [Google Scholar] [CrossRef] [PubMed]
- Airaksinen, M.; Gallen, A.; Kivi, A.; Vijayakrishnan, P.; Häyrinen, T.; Ilén, E.; Räsänen, O.; Haataja, L.M.; Vanhatalo, S. Intelligent wearable allows out-of-the-lab tracking of developing motor abilities in infants. Commun. Med. 2022, 2, 69. [Google Scholar] [CrossRef]
- Perez, D.; Laudanska, Z.; Radkowska, A.; Babis, K.; Koziol, A.; Tomalski, P. Do we need expensive equipment to quantify infants’ movement? A cross-validation study between computer vision methods and sensor data. In Proceedings of the IEEE International Conference on Development and Learning, ICDL 2021, Beijing, China, 23–26 August 2021. [Google Scholar] [CrossRef]
- Mathis, A.; Mamidanna, P.; Cury, K.M.; Abe, T.; Murthy, V.N.; Mathis, M.W.; Bethge, M. DeepLabCut: Markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 2018, 21, 1281–1289. [Google Scholar] [CrossRef]
- Zhu, Z.; Liu, T.; Li, G.; Li, T.; Inoue, Y. Wearable Sensor Systems for Infants. Sensors 2015, 15, 3721–3749. [Google Scholar] [CrossRef] [Green Version]
- Wilson, R.B.; Vangala, S.; Elashoff, D.; Safari, T.; Smith, B.A. Using Wearable Sensor Technology to Measure Motion Complexity in Infants at High Familial Risk for Autism Spectrum Disorder. Sensors 2021, 21, 616. [Google Scholar] [CrossRef]
- Abrishami, M.S.; Nocera, L.; Mert, M.; Trujillo-Priego, I.A.; Purushotham, S.; Shahabi, C.; Smith, B.A. Identification of Developmental Delay in Infants Using Wearable Sensors: Full-Day Leg Movement Statistical Feature Analysis. IEEE J. Transl. Eng. Health Med. 2019, 7, 1–7. [Google Scholar] [CrossRef]
- Ihlen, E.A.F.; Støen, R.; Boswell, L.; de Regnier, R.A.; Fjørtoft, T.; Gaebler-Spira, D.; Labori, C.; Loennecken, M.C.; Msall, M.E.; Möinichen, U.I.; et al. Machine Learning of Infant Spontaneous Movements for the Early Prediction of Cerebral Palsy: A Multi-Site Cohort Study. J. Clin. Med. 2019, 9, 5. [Google Scholar] [CrossRef] [Green Version]
- Airaksinen, M.; Räsänen, O.; Ilén, E.; Häyrinen, T.; Kivi, A.; Marchi, V.; Gallen, A.; Blom, S.; Varhe, A.; Kaartinen, N.; et al. Automatic Posture and Movement Tracking of Infants with Wearable Movement Sensors. Sci. Rep. 2020, 10, 169. [Google Scholar] [CrossRef] [Green Version]
- Sacrey, L.A.R.; Zwaigenbaum, L.; Bryson, S.; Brian, J.; Smith, I.M. The reach-to-grasp movement in infants later diagnosed with autism spectrum disorder: A high-risk sibling cohort study. J. Neurodev. Disord. 2018, 10, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Movement Name | Definition |
---|---|
Grasp | An infant’s hand moves toward the toy, touches it and tightens the hand around it, while the remaining limbs are not involved in any other purposeful action. |
Touch | An infant’s hand moves toward the toy, touches it and lets go without any further contact. |
Unsuccessful reach | An infant moves the hand toward the toy and misses it but arrests the hand in midair, with the arm stretched out and gaze focused on the toy in a visible attempt to try to touch the object. |
Non-Acting Arm Leading the Acting Arm | |||
---|---|---|---|
Reaching Type | No. of Reaches | F-Statistic | Cohen’sd |
All | 184 | 6.88 * | 1.22 |
Grasp | 89 | 2.03 | 0.97 |
Touch | 61 | 1.54 | 0.64 |
Unsuccessful reach | 34 | 2.02 | 0.70 |
Acting Arm Leading the Non-Acting Arm | |||
Reaching Type | No. of Reaches | F-Statistic | Cohen’sd |
All | 184 | 0.65 | 1.22 |
Grasp | 89 | 0.08 | 0.97 |
Touch | 61 | 0.74 | 0.64 |
Unsuccessful reach | 34 | 0.24 | 0.70 |
Legs Leading the Acting Arm | |||
---|---|---|---|
Reaching Type | No. of Reaches | F-Statistic | Cohen’sd |
All | 184 | 0.08 | 1.93 |
Grasp | 89 | 0.46 | 1.56 |
Touch | 61 | 1.73 | 1.30 |
Unsuccessful | 34 | 0.14 | 0.82 |
Acting Arm Leading the Legs | |||
Reaching Type | No. of Reaches | F-Statistic | Cohen’s d |
All | 184 | 19.57 *** | 1.93 |
Grasp | 89 | 1.88 | 1.56 |
Touch | 61 | 0.30 | 1.30 |
Unsuccessful | 34 | 7.74 * | 0.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozioł, A.; López Pérez, D.; Laudańska, Z.; Malinowska-Korczak, A.; Babis, K.; Mykhailova, O.; D’Souza, H.; Tomalski, P. Motor Overflow during Reaching in Infancy: Quantification of Limb Movement Using Inertial Motion Units. Sensors 2023, 23, 2653. https://doi.org/10.3390/s23052653
Kozioł A, López Pérez D, Laudańska Z, Malinowska-Korczak A, Babis K, Mykhailova O, D’Souza H, Tomalski P. Motor Overflow during Reaching in Infancy: Quantification of Limb Movement Using Inertial Motion Units. Sensors. 2023; 23(5):2653. https://doi.org/10.3390/s23052653
Chicago/Turabian StyleKozioł, Agata, David López Pérez, Zuzanna Laudańska, Anna Malinowska-Korczak, Karolina Babis, Oleksandra Mykhailova, Hana D’Souza, and Przemysław Tomalski. 2023. "Motor Overflow during Reaching in Infancy: Quantification of Limb Movement Using Inertial Motion Units" Sensors 23, no. 5: 2653. https://doi.org/10.3390/s23052653
APA StyleKozioł, A., López Pérez, D., Laudańska, Z., Malinowska-Korczak, A., Babis, K., Mykhailova, O., D’Souza, H., & Tomalski, P. (2023). Motor Overflow during Reaching in Infancy: Quantification of Limb Movement Using Inertial Motion Units. Sensors, 23(5), 2653. https://doi.org/10.3390/s23052653