CORDIC-Based General Multiple Fading Generator for Wireless Channel Digital Twin
Abstract
:1. Introduction
2. General Fading Channel Model
3. Channel Fading Generation and Implementation
3.1. Overview of Hardware Generation Architecture
3.2. CORDIC-Based Trigonometric Operation
3.3. CORDIC-Based Exponential and Natural Logarithm Operation
3.4. Correlated Multiple Gaussian Sequence Generation
4. Measurement Results and Validation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hofer, M.; Xu, Z.N.; Vlastaras, D.; Schrenk, B.; Loschenbrand, D.; Tufvesson, F.; Zemen, T. Real-Time Geometry-Based Wireless Channel Emulation. IEEE Trans. Veh. Technol. 2019, 68, 1631–1645. [Google Scholar] [CrossRef]
- Shitharth, S.; Yonbawi, S.; Manoharan, H.; Alahmari, S.; Yafoz, A.; Mujlid, H. Physical Stint Virtual Representation of Biomedical Signals With Wireless Sensors Using Swarm Intelligence Optimization Algorithm. IEEE Sens. J. 2023, 23, 3870–3877. [Google Scholar] [CrossRef]
- Mihai, S.; Yaqoob, M.V.; Hung, D.; Davis, W.; Tokakel, P.; Raza, M. Digital Twins. A Survey on Enabling Technologies, Challenges, Trends and Future Prospects. IEEE Commun. Surv. Tutor. 2022, 24, 2255–2291. [Google Scholar] [CrossRef]
- Wu, J.; Yang, Y.; Cheng, X.; Zuo, H.; Cheng, Z. The Development of Digital Twin Technology Review. In Proceedings of the 2020 Chinese Automation Congress, Shanghai, China, 6–8 November 2020; pp. 4901–4906. [Google Scholar]
- Dakić, A.; Hofer, M.; Rainer, B.; Zelenbaba, S.; Bernadó, L.; Zemen, T. Real-Time Vehicular Wireless System-Level Simulation. IEEE Access 2021, 9, 23202–23217. [Google Scholar] [CrossRef]
- Zelenbaba, S.; Rainer, B.; Hofer, M.; Zemen, T. Wireless Digital Twin for Assessing the Reliability of Vehicular Communication Links. In Proceedings of the 2022 IEEE Globecom Workshops, Rio de Janeiro, Brazil, 4–8 December 2022; pp. 1034–1039. [Google Scholar]
- Yang, Y.; Zhu, Q.; Feng, R.; Fang, C.; Duan, F. High-Efficient Ray-based Hardware Emulator for UAV Channel Digital Twin. In Proceedings of the IEEE 21st International Conference on Communication Technology, Tianjin, China, 13–16 October 2021; pp. 1486–1490. [Google Scholar]
- Das, S.; Bhattacharya, A. Application of the Mixture of Lognormal Distribution to Represent the First-Order Statistics of Wireless Channels. IEEE Syst. J. 2020, 14, 4394–4401. [Google Scholar] [CrossRef]
- Alimohammad, A.; Fard, S.F.; Cockburn, B.F. Hardware implementation of Nakagami and Weibull variate generators. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2012, 20, 1276–1284. [Google Scholar] [CrossRef]
- Gutiérrez, C.A.; Gutiérrez-Mena, J.T.; Luna-Rivera, J.M.; Campos-Delgado, D.U.; Velázquez, R.; Pätzold, M. Geometry-Based Statistical Modeling of Non-WSSUS Mobile-to-Mobile Rayleigh Fading Channels. IEEE Trans. Veh. Technol. 2018, 67, 362–377. [Google Scholar] [CrossRef] [Green Version]
- Wadkar, S.S.; Das, B.P.; Meher, P.K. Low latency scaling-free pipeline CORDIC architecture using augmented Taylor series. In Proceedings of the 2019 IEEE International Symposium on Smart Electronic Systems, Rourkela, India, 16–18 December 2019; pp. 312–315. [Google Scholar]
- Silveira Santos Filho, J.C.; Yacoub, M.D. On the simulation and correlation properties of phase-envelope nakagami fading processes. IEEE Trans. Commun. 2009, 57, 906–909. [Google Scholar] [CrossRef]
- Zhu, B.C. Asymptotic Performance of Composite Lognormal-X Fading Channels. IEEE Trans. Commun. 2018, 66, 6570–6585. [Google Scholar] [CrossRef]
- Huang, P.D.; Rajan, D.; Camp, J. Weibull and Suzuki fading channel generator design to reduce hardware resources. In Proceedings of the 2013 IEEE Wireless Communications and Networking Conference, Shanghai, China, 7–10 April 2013; pp. 3443–3448. [Google Scholar]
- Li, B.; Wang, W.; Wang, Y.; Hu, X. Interference analysis of the integrated satellite-terrestrial networks in the composite fading channel. In Proceedings of the 2017 9th International Conference on Advanced Infocomm Technology, Chengdu, China, 22–24 November 2017; pp. 275–278. [Google Scholar]
- Li, Z.; Wang, C.X.; Huang, J. A non-stationary GBSM for 6G LEO satellite communication systems. In Proceedings of the 2021 IEEE/CIC International Conference on Communications in China, Xiamen, China, 28–30 July 2021; pp. 493–498. [Google Scholar]
- Liu, T.; Sun, B.W.; Li, Z.G.; Dou, Z. Analysis of channel characteristics and channel model for satellite communication system. In Proceedings of the 2016 IEEE International Conference on Electronic Information and Communication Technology, Harbin, China, 20–22 August 2016; pp. 166–169. [Google Scholar]
- Miao, M.K.; Li, X.F. Parameter Estimation of the Lognormal-Rician Channel Model Using Saddlepoint Approximation. IEEE Access 2020, 8, 152924–152931. [Google Scholar] [CrossRef]
- Rafiq, G.; Pätzold, M. On the statistical properties of the capacity of OSTBC Nakagami-lognormal MIMO channels. In Proceedings of the 2010 4th International Conference on Signal Processing and Communication Systems, Gold Coast, QLD, Australia, 13–15 December 2010; pp. 1–5. [Google Scholar]
- Zhu, Q.M.; Li, H.; Fu, Y.; Wang, C.X.; Tian, Y.; Chen, X.M.; Wu, Q.H. A novel 3D non-stationary wireless MIMO channel simulator and hardware emulator. IEEE Trans. Commun. 2018, 66, 3865–3878. [Google Scholar] [CrossRef]
- Zhao, Z.K.; Zhu, Q.M.; Mao, K.; Liu, W.Q.; Li, N.; Yan, S.Y.; Huang, W. An Efficient Hardware Generator for Massive Non-Stationary Fading Channels. In Proceedings of the 2020 IEEE Globecom Workshops, Taipei, Taiwan, 7–11 December 2020; pp. 1–6. [Google Scholar]
- Alimohammad, A.; Fard, S.F. A Compact Architecture for Simulation of Spatio-Temporally Correlated MIMO Fading Channels. IEEE Trans. Circuits Syst. I Regul. Pap. 2014, 61, 1280–1288. [Google Scholar] [CrossRef]
- V’azquez, J.; Vela-Garcia, L.; Guti’errez, C.A.; Parra-Michel, R. A reconfigurable hardware architecture for the simulation of Rayleigh fading channels under arbitrary scattering conditions. AEU-Int. J. Electron. Commun. 2015, 69, 1–13. [Google Scholar] [CrossRef]
- Kumar, P.A. FPGA implementation of the trigonometric functions using the CORDIC algorithm. In Proceedings of the 2010 4th International Conference on Signal Processing and Communication Systems, Coimbatore, India, 15–16 June 2019; pp. 894–900. [Google Scholar]
- Zhu, B.Z.; Lei, Y.W.; Peng, Y.X.; He, T.T. Low Latency and Low Error Floating Point Sine/Cosine Function Based TCORDIC Algorithm. IEEE Trans. Circuits Syst. I Reg. Pap. 2017, 64, 892–905. [Google Scholar] [CrossRef]
- Changela, A.; Zaveri, M.; Lakhlani, A. FPGA implementation of asynchronous mousetrap pipelined radix-2 CORDIC algorithm. In Proceedings of the 2018 International Conference on Current Trends towards Converging Technologies, Coimbatore, India, 1–3 March 2018; pp. 252–258. [Google Scholar]
- Alimohammad, A.; Fard, S.F.; Cockburn, B.F. Hardware implementation of Rayleigh and Ricean variate generators. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2011, 19, 1495–1499. [Google Scholar] [CrossRef]
- Beaulieu, N.C.; Xie, J. A Novel Fading Model for Channels With Multiple Dominant Specular Components. IEEE Wirel. Commun. Lett. 2015, 4, 54–57. [Google Scholar] [CrossRef]
- Entezari, A.; Tadaion, A. Performance Analysis of Cellular Networks Under Nakagami-Lognormal Composite Fading Channel Utilizing Interference Management Technique. In Proceedings of the Electrical Engineering, Mashhad, Iran, 8–10 May 2018; pp. 679–683. [Google Scholar]
- Kumari, D.L.; Giri Prasad, M.N.; Shakeer, S.M. Performance of MIMO systems using Maximal Ratio Combining over Weibull Fading Channel. In Proceedings of the 2018 International Conference on Recent Innovations in Electrical, Electronics and Communication Engineering, Bhubaneswar, India, 27–28 July 2018; pp. 1981–1986. [Google Scholar]
- Meher, P.K.; Valls, J.; Juang, T.; Sridharan, K.; Maharatna, K. 50 Years of CORDIC: Algorithms, Architectures, and Applications. IEEE Trans. Circuits Syst. I Regul. Pap. 2009, 56, 1893–1907. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Q.M.; Huang, W.; Mao, K.; Zhong, W.Z.; Hua, B.Y.; Chen, X.M.; Zhao, Z.K. A Flexible FPGA-Based Channel Emulator for Non-Stationary MIMO Fading Channels. Appl. Sci. 2020, 10, 4161. [Google Scholar] [CrossRef]
- Zhu, Q.; Mao, K.; Song, M.; Chen, X.; Hua, B.; Zhong, W. Map-based channel modeling and generation for U2V mmwave communication. IEEE Trans. Veh. Technol. 2022, 71, 8004–8015. [Google Scholar] [CrossRef]
- Mao, K.; Zhu, Q.; Song, M.; Li, H.; Ning, B.; Pedersen, G.F. Machine learning-based 3D channel modeling for U2V mmwave communications. IEEE Internet Things J. 2022, 9, 17592–17607. [Google Scholar] [CrossRef]
- Zhu, Q.M.; Zhao, Z.K.; Mao, K.; Chen, X.M.; Liu, W.Q.; Wu, Q.H. A Real-Time Hardware Emulator for 3D Non-Stationary U2V Channels. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 3951–3964. [Google Scholar] [CrossRef]
- Zhou, S.; Zhu, Q.; Dai, X.; Liu, X.; Chen, X. Analysis and simulation for temporal correlated composite fading channels. In Proceedings of the 2014 3rd Asia-Pacific Conference on Antennas and Propagation, Harbin, China, 26–29 July 2014; pp. 690–693. [Google Scholar]
- Zhu, Q.; Zhao, Y.; Huang, Y.; Lin, Z.; Wang, L.H.; Bai, Y. Demo abstract: An UAV-based 3D spectrum real-time mapping system. Proceedings of 2022 IEEE INFOCOM 2022-IEEE Conference on Computer Communications Workshops, New York, NY, USA, 2–5 May 2022; pp. 1–2. [Google Scholar]
- Li, H.; Chen, X.; Mao, K.; Zhu, Q.; Qiu, Y.; Ye, X. Air-to-ground path loss prediction using ray tracing and measurement data jointly driven DNN. Comput. Commun. 2022, 196, 268–276. [Google Scholar] [CrossRef]
- Zhu, Q.M.; Lv, W.H.; Xu, D.Z.; Chen, X.M.; Xu, Y.H. A novel simulator for correlated generalized-K composite fading channels. In Proceedings of the ISAPE2012, Xi’an, China, 22–26 October 2012; pp. 475–477. [Google Scholar]
i | Channel Fading | Communication Scenario | References |
---|---|---|---|
RL | Rayleigh | Tall buildings | |
R | Rice | Suburban, country | [8,10,12,13,27] |
Na | Nakagami | Tall buildings, suburban, country | |
Log | Lognormal | Buildings, mountains, other obstacles | |
S | Suzuki | Urban | [9,14] |
W | Weibull | Urban | |
Loo | Loo | Country, suburban | |
Co | Corazza | Highway, urban, suburban, rural | [17,18] |
NLN | NLN | Mobile satellite | [19] |
Proposed | [14] | [35] | [25] | ||
---|---|---|---|---|---|
Method | LUT | CORDIC | CORDIC | CORDIC | CORDIC |
Fading number | 1 | 10 | 2 | 1 | —– |
System clock | 100 MHz | 100 MHz | 100 MHz | 256 MHz | —– |
Slice LUTs | 14,672 | 17,685 | 17,920 | —– | —– |
Registers | 13,195 | 17,034 | 19,940 | ||
Block RAMs | 84.5 | 18.5 | 18.5 | ||
DSPs | 59 | 66 | 50 | ||
Utilization | 9.14% | 6.21% | 5.95% | ||
Average iterations | —– | 5.5 | 16 | 5.5 | 8 |
Critical latency | —– | 6Tclk | 16Tclk | 6Tclk | 8Tclk |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, C.; Mao, K.; Fang, S.; Zhao, Z.; Hua, B.; Liu, T.; Zhu, Q. CORDIC-Based General Multiple Fading Generator for Wireless Channel Digital Twin. Sensors 2023, 23, 2712. https://doi.org/10.3390/s23052712
Fang C, Mao K, Fang S, Zhao Z, Hua B, Liu T, Zhu Q. CORDIC-Based General Multiple Fading Generator for Wireless Channel Digital Twin. Sensors. 2023; 23(5):2712. https://doi.org/10.3390/s23052712
Chicago/Turabian StyleFang, Chen, Kai Mao, Sheng Fang, Zikun Zhao, Boyu Hua, Tao Liu, and Qiuming Zhu. 2023. "CORDIC-Based General Multiple Fading Generator for Wireless Channel Digital Twin" Sensors 23, no. 5: 2712. https://doi.org/10.3390/s23052712
APA StyleFang, C., Mao, K., Fang, S., Zhao, Z., Hua, B., Liu, T., & Zhu, Q. (2023). CORDIC-Based General Multiple Fading Generator for Wireless Channel Digital Twin. Sensors, 23(5), 2712. https://doi.org/10.3390/s23052712