Readout IC Architectures and Strategies for Uncooled Micro-Bolometers Infrared Focal Plane Arrays: A Review
Abstract
:1. Introduction
2. Micro-Bolometers: Device Structure and Operation Principle
3. Parameters of Interest
3.1. Temperature Coefficient of Resistance (TCR)
3.2. Responsivity ()
3.3. Noise
- The Johnson noise () arises due to the random thermal motion of charge carriers in the micro-bolometer’s sensing material, and it increases as the temperature of the device rises; its Power Spectral Density (PSD) can be expressed as
- The noise () is caused by various factors, such as impurities in the materials used to fabricate the micro-bolometer or by defects in the device itself, and it is characterized by a PSD that decreases with increasing frequency according to
- The temperature fluctuation noise (), instead, is caused by small changes in the temperature of the micro-bolometer detector that occurs due to changes in the environment or by power fluctuations in the device itself. Its PSD can be expressed as
- The background noise () refers to any unwanted signal falling on the detector and can be caused by various factors such as ElectroMagnetic Interference (EMI) from other devices or by the detector’s own ROIC (it is also called radiation noise). Its PSD can be expressed as
3.4. Noise at Equivalent Temperature Difference (NETD)
3.5. Noise at Equivalent Power (NEP)
3.6. Detectivity ()
4. ROIC Architectures
4.1. Biasing Circuit
4.2. Analog Front End (AFE)
4.3. Multiplexing Strategies
- Pixel-wise readout: as shown in Figure 8, in correspondence of each pixel (or set of pixels, for instance 2 × 2), a copy of the readout chain is placed. This type of architecture allows the use of the full to read the information from each pixel (or set), which results in a long integration time, reducing the noise bandwidth. However, integrating the whole necessary circuitry within the area of a single pixel, which is typically between 17 and 40 µm2, is not always possible. To alleviate this restriction, one single readout chain can be used for more than one pixel (usually four pixels in a 2 × 2 pattern, as shown in Figure 8) to match the area requirement [42,43,44,45].
- Column-wise readout: as shown in Figure 9, each column of pixels shares the AFE and, with the use of some switches, all the pixels in a single row are read at the same time (rolling shutter mode); in this way all the rows are sequentially read to form the frame. With this approach, the bulk of the readout circuitry is heavily parallelized, and the device area and power consumption are reduced. The main disadvantages of this type of technique are derived from the reduced amount of time available for each pixel; as discussed before, this directly translates in a lower , which increases the noise bandwidth [2,5,14,28].
- Serial readout: according to this readout structure, a single readout chain is exploited. Each pixel is connected to it and is read in a serial fashion. Nevertheless, this type of structure is no longer adopted since the trend in the IR sensors framework is to increase the number of pixels, keeping the frame rate constant; accordingly, the serial approach features a very small time interval dedicated to each pixel, making the requirement on the ROIC extremely stringent.
4.4. Analog-to-Digital Converter (ADC)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AFE | Analog Front End |
a-Si | amorphous-Silicon |
ADC | Analog-to-Digital Converter |
BEQ | Bias EQualization |
CCD | Charge-Coupled Device |
CDS | Correlated Double Sampling |
CNT | Carbon NanoTube |
CMOS | Complementary Metal-Oxide-Semiconductor |
CTIA | Capacitive TransImpedence Amplifier |
DAC | Digital-to-Analog-Converter |
EMI | ElectroMagnetic Interference |
FPN | Fixed Pattern Noise |
IC | Integrated Circuit |
IR | InfraRed |
IRFPA | InfraRed Focal Plane Array |
MD-CDS | Multiple Digital Correlated Double Sampling |
MEMS | Micro-Electro-Mechanical System |
NEP | Noise at Equivalent Power |
NETD | Noise at Equivalent Temperature Difference |
PSD | Power Spectral Density |
PVT | Process Voltage Temperature |
ROIC | ReadOut Integrated Circuit |
SAR | Successive Approximation Register |
TCR | Temperature Coefficient of Resistance |
TiOx | Titanium Oxide |
VOx | Vanadium Oxide |
ZTC | Zero-Temperature-Coefficient |
References
- Mosavi, A.; Moezzi, M. A mismatch compensated readout IC for an uncooled microbolometer infrared FPA. AEU-Int. J. Electron. Commun. 2020, 123, 153263. [Google Scholar] [CrossRef]
- Perenzoni, M.; Mosconi, D.; Stoppa, D. A 160 × 120-pixel uncooled IR-FPA readout integrated circuit with on-chip non-uniformity compensation. In Proceedings of the 2010 Proceedings of ESSCIRC, Seville, Spain, 14–16 September 2010; pp. 122–125. [Google Scholar]
- Abbasi, S.; Shafique, A.; Ceylan, O.; Gurbuz, Y. A Digital Readout IC for Microbolometer Imagers Offering Low Power and Improved Self-Heating Compensation. IEEE Sens. J. 2020, 20, 909–917. [Google Scholar] [CrossRef]
- Meng, X.; Zhang, Y.; Liu, S.; Chen, M.; Lu, W.; Chen, Z. Low power readout circuit for 384×288 uncooled IRFPA with novel readout stage. In Proceedings of the 2012 IEEE International Conference on Electron Devices and Solid State Circuit (EDSSC), Bangkok, Thailand, 3–5 December 2012; pp. 1–3. [Google Scholar]
- Svärd, D.; Jansson, C.; Alvandpour, A. A readout IC for an uncooled microbolometer infrared FPA with on-chip self-heating compensation in 0.35 μm CMOS. Analog. Integr. Circuits Signal Process. 2013, 77, 29–44. [Google Scholar] [CrossRef]
- Seo, J.; Kim, G.; Lim, K.; Seok, C.; Kim, H.; Im, S.; Kim, J.H.; Kim, C.Y.; Ko, H. An analog front-end IC with regulated R-I amplifier and CDS CTIA for microbolometer. In Proceedings of the 2013 13th International Conference on Control, Automation and Systems (ICCAS 2013), Gwangju, Republic of Korea, 20–23 October 2013; pp. 1312–1315. [Google Scholar]
- Kunnatharayil, C.N.; Abbasi, S.; Ceylan, O.; Gurbuz, Y. A Low-Noise 320 × 240 Digital ROIC for SiGe Microbolometers with a Fast Converging Offset Calibration Technique. In Proceedings of the 2021 IEEE International Symposium on Circuits and Systems (ISCAS), Daegu, Republic of Korea, 22–28 May 2021; pp. 1–5. [Google Scholar]
- Belenky, A.; Fish, A.; Hamami, S.; Milrud, V.; Yadid-Pecht, O. Widening the dynamic range of the readout integration circuit for uncooled microbolometer infrared sensors. In Proceedings of the 2004 IEEE International Symposium on Circuits and Systems, Vancouver, BC, Canada, 23–26 May 2004; Volume 5, pp. V-600–V-603. [Google Scholar]
- Park, Y.; Yun, J.; Park, D.; Kim, S.; Kim, S. An Uncooled Microbolometer Infrared Imager With a Shutter-Based Successive-Approximation Calibration Loop. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2018, 26, 122–132. [Google Scholar] [CrossRef]
- Svärd, D.; Jansson, C.; Alvandpour, A. A readout circuit for an uncooled IR camera with mismatch and self-heating compensation. In Proceedings of the NORCHIP 2012, Copenhagen, Denmark, 12–13 November 2012; pp. 1–4. [Google Scholar]
- Abbasi, S.; Shafique, A.; Ceylan, O.; Kaynak, C.B.; Kaynak, M.; Gurbuz, Y. A Test Platform for the Noise Characterization of SiGe Microbolometer ROICs. IEEE Sens. J. 2018, 18, 6217–6223. [Google Scholar] [CrossRef]
- Yadav, P.K.; Yadav, I.; Ajitha, B.; Rajasekar, A.; Gupta, S.; Reddy, Y.A.K. Advancements of Uncooled Infrared Microbolometer Materials: A Review. Sens. Actuators A Phys. 2022, 342, 113611. [Google Scholar] [CrossRef]
- Oloomi, H.M.; Alam, M.S.; Rana, M.M. Noise Performance Evaluation of Uncooled Infrared Detectors (June 2009). IEEE Sens. J. 2011, 11, 971–987. [Google Scholar] [CrossRef]
- Que, L.; Wei, L.; Lv, J.; Jiang, Y. A digital output readout circuit with substrate temperature and bias heating compensation for uncooled micro-bolometer infrared focal plane arrays. Infrared Phys. Technol. 2015, 71, 252–262. [Google Scholar] [CrossRef]
- Liu, S.L.; Zhang, Y.C.; Meng, X.Y.; Lu, W.G.; Chen, Z.J. A design of readout circuit for 384 × 288 uncooled microbolometer infrared focal plane array. In Proceedings of the 2012 IEEE 11th International Conference on Solid-State and Integrated Circuit Technology, Xi’an, China, 29 October–1 November 2012; pp. 1–3. [Google Scholar]
- Lv, J.; Zhou, Y.; Liao, B.; Jiang, Y. Novel high uniformity readout circuit allowing microbolometers to operate with low noise. In Proceedings of the 2011 9th IEEE International Conference on ASIC, Xiamen, China, 25–28 October 2011; pp. 621–624. [Google Scholar]
- Lv, J.; Que, L.; Wei, L.; Zhou, Y.; Liao, B.; Jiang, Y. Uncooled Microbolometer Infrared Focal Plane Array Without Substrate Temperature Stabilization. IEEE Sens. J. 2014, 14, 1533–1544. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, W.; Niu, Y.; Liu, D.; Zhang, Y.; Chen, Z. A 14-bit 8-column shared SAR ADC for 640 × 512 IRFPA. In Proceedings of the 2016 13th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Hangzhou, China, 25–28 October 2016; pp. 716–718. [Google Scholar]
- Kim, S.; Lee, J.; Kwen, H.; Park, J.H.; Lee, K.I.; Shin, J.K. Pixel Dark Current Calibration Method to Reduce Dark Fixed Pattern Noise in Amophous Silicon Bolometer-type Uncooled Infrared Image Sensor. Sens. Mater. 2020, 32, 3261–3272. [Google Scholar]
- Alzaben, H.; Fraser, R.; Swanton, C. The Role of Engineering Thermodynamics in Explaining the Inverse Correlation between Surface Temperature and Supplied Nitrogen Rate in Corn Plants: A Greenhouse Case Study. Agriculture 2021, 11, 101. [Google Scholar] [CrossRef]
- Robert, P.; Curis, C.; Gravot, V. A Thermalized Bias Circuit for Wider Operating Temperature Range in Bolometric Infrared Imagers. IEEE Solid-State Circuits Lett. 2020, 3, 542–545. [Google Scholar] [CrossRef]
- Liu, D.; Lu, W.; Lei, S.; Chen, Z. Low-noise readout circuit for thermo-electrical cooler-less uncooled microbolometer infrared imager. Electron. Lett. 2016, 52, 705–706. [Google Scholar] [CrossRef]
- Niklaus, F.; Vieider, C.; Jakobsen, H. MEMS-based uncooled infrared bolometer arrays: A review. MEMS/MOEMS Technol. Appl. III 2008, 6836, 125–139. [Google Scholar]
- Willardson, R.K.; Weber, E.R.; Skatrud, D.D.; Kruse, P.W. Uncooled Infrared Imaging Arrays and Systems; Academic Press: Cambridge, MA, USA, 1997; pp. 43–122. [Google Scholar]
- Kruse, P.W. Uncooled Thermal Imaging: Arrays, Systems, and Applications; SPIE Press: Bellingham, WA, USA, 2001; Volume 51, pp. 27–29, 42–44. [Google Scholar]
- Balandin, A.; Wang, K.; Svizhenko, A.; Bandyopadhyay, S. The fundamental 1/f noise and the Hooge parameter in semiconductor quantum wires. IEEE Trans. Electron Devices 1999, 46, 1240–1244. [Google Scholar] [CrossRef]
- Hwang, S.J.; Shin, A.; Shin, H.H.; Sung, M.Y. A CMOS Readout IC Design for Uncooled Infrared Bolometer Image Sensor Application. In Proceedings of the 2006 IEEE International Symposium on Industrial Electronics, Montreal, QC, Canada, 9–13 July 2006; Volume 4, pp. 2788–2791. [Google Scholar]
- Park, S.; Cho, T.; Kim, M.; Park, H.; Lee, K. A shutter-less micro-bolometer thermal imaging system using multiple digital correlated double sampling for mobile applications. In Proceedings of the 2017 Symposium on VLSI Technology, Kyoto, Japan, 5–8 June 2017; pp. C154–C155. [Google Scholar]
- Kim, K.D.; Park, S.; Lee, B.; Lee, H.M.; Cho, G.H. A 80 × 60 Microbolometer CMOS Thermal Imager Integrated With a Low-Noise 12-B DAC. IEEE Trans. Ind. Electron. 2022, 69, 8604–8608. [Google Scholar] [CrossRef]
- Dupont, B.; Dupret, A.; Becker, S.; Hamelin, A.; Guellec, F.; Imperinetti, P.; Rabaud, W. A [10 °C; 70 °C] 640 × 480 17 µm pixel pitch TEC-less IR bolometer imager with below 50 mK and below 4V power supply. In Proceedings of the 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, CA, USA, 17–21 February 2013; pp. 394–395. [Google Scholar]
- Aprile, A.; Bonizzoni, E.; Malcovati, P. Temperature-to-Digital Converters’ Evolution, Trends and Techniques across the Last Two Decades: A Review. Micromachines 2022, 13, 2025. [Google Scholar] [CrossRef]
- Jansson, C.; Ringh, U.; Liddiard, K.C. Theoretical analysis of pulse bias heating of resistance bolometer infrared detectors and effectiveness of bias compensation. In Proceedings of the Infrared Technology XXI, San Diego, CA, USA, 8 September 1995; Volume 2552, pp. 644–652. [Google Scholar]
- Yu, L.; Guo, Y.; Zhu, H.; Luo, M.; Han, P.; Ji, X. Low-Cost Microbolometer Type Infrared Detectors. Micromachines 2020, 11, 800. [Google Scholar] [CrossRef]
- Viarani, N.; Liberatore, N.; Syed, A.J.; Gottardi, M.; Massari, N.; Corsi, C.; Baschirotto, A. A 16-Cell 80dB Dynamic-Range Auto-Ranging Read-Out Array for Uncooled IR Micro-Bolometers. In Proceedings of the TRANSDUCERS 2007—2007 International Solid-State Sensors, Actuators and Microsystems Conference, Lyon, France, 10–14 June 2007; pp. 1361–1364. [Google Scholar]
- Dupont, B.; Dupret, A.; Belhaire, E.; Villard, P. FPN Sources in Bolometric Infrared Detectors. IEEE Sens. J. 2009, 9, 944–952. [Google Scholar] [CrossRef]
- Kim, S.H.; Choi, B.S.; Lee, J.; Oh, C.W.; Shin, J.K.; Park, J.H.; Lee, K.I. Reduction of fixed pattern noise in bolometer-type uncooled infrared image sensors using pixel current calibration technique. In Proceedings of the 2017 IEEE SENSORS, Glasgow, UK, 29 October–1 November 2017; pp. 1–3. [Google Scholar]
- Fraenkel, A.; Mizrahi, U.; Bykov, L.; Adin, A.; Malkinson, E.; Zabar, Y.; Seter, D.; Gebil, Y.; Kopolovich, Z. Advanced features of SCD’s uncooled detectors. Opto-Electron. Rev. 2006, 14, 46–53. [Google Scholar] [CrossRef]
- Parrish, W.J.; Woolaway, J.T., II. Improvements in uncooled systems using bias equalization. In Proceedings of the Infrared Technology and Applications XXV, Orlando, FL, USA, 26 July 1999; Volume 3698, pp. 748–755. [Google Scholar]
- Lv, J.; Que, L.; Wei, L.; Zhou, Y.; Jiang, Y. CMOS readout integrated circuit for uncooled microbolometers without substrate temperature stabilization. In Proceedings of the 2013 International Conference on Mechatronic Sciences, Electric Engineering and Computer (MEC), Shengyang, China, 20–22 December 2013; pp. 493–496. [Google Scholar]
- Li, C.C.; Han, C.J.; Skidmore, G.D. Overview of DRS uncooled VOx infrared detector development. Opt. Eng. 2011, 50, 10–17. [Google Scholar] [CrossRef]
- Seo, I.W.; Jung, E.S.; Sung, M.Y. An Analog Front-End IC Design for 320 × 240 Microbolometer Array Applications. IEEE Trans. Circuits Syst. II Express Briefs 2015, 62, 1048–1052. [Google Scholar]
- Hwang, C.H.; Lee, H.C. Readout integrated circuits involving pixel-level ADC for microbolometers. In Proceedings of the 2008 International SoC Design Conference, Busan, Republic of Korea, 24–25 November 2008; Volume 03, pp. III-70–III-71. [Google Scholar]
- Hwang, C.H.; Lee, Y.S.; Lee, H.C. High-Performance Pixelwise Readout Integrated Circuits for Microbolometer. In Proceedings of the 2006 13th IEEE International Conference on Electronics, Circuits and Systems, Nice, France, 10–13 December 2006; pp. 1140–1143. [Google Scholar]
- Jo, Y.M.; Woo, D.H.; Lee, H.C. TEC-Less ROIC With Self-Bias Equalization for Microbolometer FPA. IEEE Sens. J. 2015, 15, 82–88. [Google Scholar]
- Hwang, C.; Kwon, I.; Lee, Y.; Lee, H.C. CMOS readout integrated circuit involving pixel-level ADC for microbolometer FPAs. In Proceedings of the Infrared Technology and Applications XXXIV, Orlando, FL, USA, 1 May 2008; Volume 6940, pp. 735–742. [Google Scholar]
- Jung, E.S.; Bae, Y.S.; Sung, M.Y. Design of Current-Type Readout Integrated Circuit for 160 × 120 Pixel Array Applications. J. Electr. Eng. Technol. 2012, 7, 221–224. [Google Scholar] [CrossRef]
- Kim, M.; Park, S.; Lee, K.; Yoo, H.J. Uncooled Infrared Micro-Bolometer FPA for Multiple Digital Correlated Double Sampling. IEEE Photonics Technol. Lett. 2018, 30, 517–520. [Google Scholar] [CrossRef]
- Ruan, A.; Shen, K.; Hu, B. Adjustable gain CTIA cell with variable integration time for IRFPA applications. In Proceedings of the 2009 International Conference on Communications, Circuits and Systems, Milpitas, CA, USA, 23–25 July 2009; pp. 1066–1069. [Google Scholar]
- Zhou, Y.; Lv, J. A Novel Readout Circuit Allowing Microbolometers to Operate without TEC. In Proceedings of the 2012 International Conference on Control Engineering and Communication Technology, Shenyang, China, 7–9 December 2012; pp. 382–385. [Google Scholar]
- Liu, D.; Lu, W.; Chen, Z.; Zhang, Y.; Lei, S.; Tan, G. A 14-bit differential-ramp single-slope column-level ADC for 640 × 512 uncooled infrared imager. In Proceedings of the 2016 IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, QC, Canada, 22–25 May 2016; pp. 1922–1925. [Google Scholar]
- Shafique, A.; Ceylan, Ö.; Yazici, M.; Kaynak, M.; Gurbuz, Y. A low-power CMOS readout IC with on-chip column-parallel SAR ADCs for microbolometer applications. In Proceedings of the Infrared Technology and Applications XLIV, Orlando, FL, USA, 25 May 2018; Volume 10624, p. 22. [Google Scholar]
- Perenzoni, M.; Borghetti, F.; Gonzo, L. A column readout channel for infrared and terahertz bolometers with direct analog to digital conversion. In Proceedings of the 2010 IEEE International Symposium on Circuits and Systems, Paris, France, 30 May–2 June 2010; pp. 1288–1291. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fusetto, S.; Aprile, A.; Malcovati, P.; Bonizzoni, E. Readout IC Architectures and Strategies for Uncooled Micro-Bolometers Infrared Focal Plane Arrays: A Review. Sensors 2023, 23, 2727. https://doi.org/10.3390/s23052727
Fusetto S, Aprile A, Malcovati P, Bonizzoni E. Readout IC Architectures and Strategies for Uncooled Micro-Bolometers Infrared Focal Plane Arrays: A Review. Sensors. 2023; 23(5):2727. https://doi.org/10.3390/s23052727
Chicago/Turabian StyleFusetto, Samuele, Antonio Aprile, Piero Malcovati, and Edoardo Bonizzoni. 2023. "Readout IC Architectures and Strategies for Uncooled Micro-Bolometers Infrared Focal Plane Arrays: A Review" Sensors 23, no. 5: 2727. https://doi.org/10.3390/s23052727
APA StyleFusetto, S., Aprile, A., Malcovati, P., & Bonizzoni, E. (2023). Readout IC Architectures and Strategies for Uncooled Micro-Bolometers Infrared Focal Plane Arrays: A Review. Sensors, 23(5), 2727. https://doi.org/10.3390/s23052727