Phase Unwrapping Error Correction Based on Multiple Linear Regression Analysis
Abstract
:1. Introduction
2. Theory
2.1. PUE and PUE Classification
2.1.1. PUE Caused by Wrapped Phase Error
2.1.2. PUE Caused by Fringe Order Error
2.2. PUE Correction Steps of the Proposed Method
2.2.1. Mark the Position of Thick PUE
2.2.2. Mark the Position of Random PUE
2.2.3. Correct the Marked PUE
- (1)
- Use Zhu’s method [28] to obtain the unwrapped phase matrix ;
- (2)
- Use MLRA to construct the regression matrix of ;
- (3)
- Mark the position of thick PUE in according to Equation (12);
- (4)
- Mark the position of random PUE in according to Equation (14);
- (5)
- Correct the marked PUE according to Equation (16).
3. Experiments
3.1. Effectiveness Verification
3.2. Robustness Test
3.3. Ability to Handle Dense Jump PUE
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Zhao, H.; Jiang, H.; Li, X.; Li, Y.; Xu, Y. Paraxial 3D shape measurement using parallel single-pixel imaging. Opt. Express 2021, 29, 30543–30557. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Kemao, Q. A comparative study on temporal phase unwrapping methods in high-speed fringe projection profilometry. Opt. Lasers Eng. 2021, 142, 106613. [Google Scholar] [CrossRef]
- Landmann, M.; Heist, S.; Dietrich, P.; Lutzke, P.; Gebhart, I.; Templin, J.; Kühmstedt, P.; Tünnermann, A.; Notni, G. High-speed 3D thermography. Opt. Lasers Eng. 2019, 121, 448–455. [Google Scholar] [CrossRef]
- Wu, Z.; Guo, W.; Zhang, Q. Two-frequency phase-shifting method vs. Gray-coded-based method in dynamic fringe projection profilometry: A comparative review. Opt. Lasers Eng. 2022, 153, 106995. [Google Scholar] [CrossRef]
- Chen, F.; Su, X.; Xiang, L. Analysis and identification of phase error in phase measuring profilometry. Opt. Express 2010, 18, 11300–11307. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Cao, Y.; An, H. Gray-code fringe order jump error self-correction based on shifted phase encoding for phase measuring profilometry. Opt. Commun. 2022, 524, 128763. [Google Scholar] [CrossRef]
- Lu, L.; Wu, Z.; Zhang, Q.; Chen, C.; Li, Y.; Li, F. High-efficiency dynamic three-dimensional shape measurement based on misaligned Gray-code light. Opt. Lasers Eng. 2022, 150, 106873. [Google Scholar] [CrossRef]
- Ding, Y.; Xi, J.; Yu, Y.; Chicharo, J. Recovering the absolute phase maps of two fringe patterns with selected frequencies. Opt. Lett. 2011, 36, 2518–2520. [Google Scholar] [CrossRef]
- Ding, Y.; Xi, J.; Yu, Y.; Deng, F. Absolute phase recovery of three fringe patterns with selected spatial frequencies. Opt. Lasers Eng. 2015, 70, 18–25. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Guan, J.; Du, H.; Xi, J. Error self-correction method for phase jump in multi-frequency phase-shifting structured light. Appl. Opt. 2021, 60, 949–958. [Google Scholar] [CrossRef]
- Song, L.; Chang, Y.; Li, Z.; Wang, P.; Xing, G.; Xi, J. Application of global phase filtering method in multi frequency measurement. Opt. Express 2014, 22, 13641–13647. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Peng, K.; Yu, M.; Lu, L.; Zhao, K. Fringe order correction for the absolute phase recovered by two selected spatial frequency fringe projections in fringe projection profilometry. Rev. Sci. Instrum. 2017, 88, 083104. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhao, H.; Zhang, L. Fringe order error in multifrequency fringe projection phase unwrapping: Reason and correction. Appl. Opt. 2015, 54, 9390–9399. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Peng, K.; Lu, L.; Zhong, K.; Zhu, Z. Simplified fringe order correction for absolute phase maps recovered with multiple-spatial-frequency fringe projections. Meas. Sci. Technol. 2017, 28, 025203. [Google Scholar] [CrossRef]
- Ma, M.; Yao, P.; Deng, H.; Wang, Y.; Zhang, J.; Zhong, X. A simple and practical jump error removal method for fringe projection profilometry based on self-alignment technique. Rev. Sci. Instrum. 2018, 89, 123109. [Google Scholar] [CrossRef]
- Wu, Z.; Guo, W.; Lu, L.; Zhang, Q. Generalized phase unwrapping method that avoids jump errors for fringe projection profilometry. Opt. Express 2021, 29, 27181–27192. [Google Scholar] [CrossRef]
- Lu, J.; Mo, R.; Sun, H.; Chang, Z.; Zhao, X. Invalid phase values removal method for absolute phase recovery. Appl. Opt. 2016, 55, 387–394. [Google Scholar] [CrossRef]
- Zhang, Y.; Tong, J.; Lu, L.; Xi, J.; Yu, Y.; Guo, Q. Fringe order correction for fringe projection profilometry based on robust principal component analysis. IEEE Access 2021, 9, 23110–23119. [Google Scholar] [CrossRef]
- Zhang, Y.; Duan, C.; Xi, J.; Tong, J.; Yu, Y.; Guo, Q. A new method for fringe order error correction in fringe projection profilometry. In Proceedings of the SPIE/COS Photonics Asia, Hangzhou, China, 20–23 October 2019. [Google Scholar]
- Zhang, Y. Fringe Projection Profilometry: Performance Improvement using Robust Principal Component Analysis. Ph.D. Thesis, University of Wollongong, Wollongong, Australia, 2021. [Google Scholar]
- Kam, D.U.; Kim, J.H.; Lee, K. Unwrapped phase correction for robust 3D scanning. Appl. Opt. 2019, 58, 3676–3684. [Google Scholar] [CrossRef]
- Deng, J.; Li, J.; Feng, H.; Ding, S.; Xiao, Y.; Han, W.; Zeng, Z. Edge-preserved fringe-order correction strategy for code-based fringe projection profilometry. Signal Process. 2021, 182, 107959. [Google Scholar] [CrossRef]
- Zuo, C.; Feng, S.; Huang, L.; Tao, T.; Yin, W.; Chen, Q. Phase shifting algorithms for fringe projection profilometry: A review. Opt. Lasers Eng. 2018, 109, 23–59. [Google Scholar] [CrossRef]
- Zuo, C.; Huang, L.; Zhang, M.; Chen, Q.; Asundi, A. Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review. Opt. Lasers Eng. 2016, 85, 84–103. [Google Scholar] [CrossRef]
- Feng, S.; Zuo, C.; Zhang, L.; Tao, T.; Hu, Z.; Yin, W.; Qian, J.; Chen, Q. Calibration of fringe projection profilometry: A comparative review. Opt. Lasers Eng. 2021, 143, 106622. [Google Scholar] [CrossRef]
- Wang, H.; Kemao, Q.; Soon, S.H. Valid point detection in fringe projection profilometry. Opt. Express 2015, 23, 7535–7549. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhao, H.; Gao, X.; Zhang, Z.; Xi, J. Phase unwrapping error correction based on phase edge detection and classification. Opt. Lasers Eng. 2021, 137, 106389. [Google Scholar] [CrossRef]
- Zhu, K.; He, X.; Gao, Y.; Hao, R.; Wei, Z.; Long, B.; Mu, Z.; Wang, J. Invalid point removal method based on error energy function in fringe projection profilometry. Results Phys. 2022, 41, 105904. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, Z.; Zhu, K.; He, X.; Zhang, L.; He, J.; Mu, Z.; Wang, J.; Zhang, X.; Hao, R. Phase Unwrapping Error Correction Based on Multiple Linear Regression Analysis. Sensors 2023, 23, 2743. https://doi.org/10.3390/s23052743
Lv Z, Zhu K, He X, Zhang L, He J, Mu Z, Wang J, Zhang X, Hao R. Phase Unwrapping Error Correction Based on Multiple Linear Regression Analysis. Sensors. 2023; 23(5):2743. https://doi.org/10.3390/s23052743
Chicago/Turabian StyleLv, Zhuang, Kaifeng Zhu, Xin He, Lei Zhang, Jiawei He, Zhiya Mu, Jun Wang, Xin Zhang, and Ruidong Hao. 2023. "Phase Unwrapping Error Correction Based on Multiple Linear Regression Analysis" Sensors 23, no. 5: 2743. https://doi.org/10.3390/s23052743
APA StyleLv, Z., Zhu, K., He, X., Zhang, L., He, J., Mu, Z., Wang, J., Zhang, X., & Hao, R. (2023). Phase Unwrapping Error Correction Based on Multiple Linear Regression Analysis. Sensors, 23(5), 2743. https://doi.org/10.3390/s23052743