A Novel Classification of Coronal Plane Knee Joint Instability Using Nine-Axis Inertial Measurement Units in Patients with Medial Knee Osteoarthritis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Gait Analysis
2.3. IMU Classifications of the Relative Joint Behavior across the Femoro-Tibial Joint
- Pattern A: The first directions of medial–lateral acceleration on the thigh and shank are medial and medial.
- Pattern B: The first directions of medial–lateral acceleration on the thigh and shank are medial and lateral.
- Pattern C: The first directions of medial–lateral acceleration on the thigh and shank are lateral and medial.
- Pattern D: The first directions of medial–lateral acceleration on the thigh and shank are lateral and lateral.
2.4. Radiographic Measurements
2.5. Statistical Analysis
3. Results
3.1. IMU Classification and Demographics
3.2. Gait Speed
3.3. The Incidence of Clearly Visible Varus Thrust and Quantitative Varus Thrust
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, L.; Song, J.; Dunlop, D.; Felson, D.; Lewis, C.E.; Segal, N.; Torner, J.; Cooke, T.D.; Hietpas, J.; Lynch, J.; et al. Varus and valgus alignment and incident and progressive knee osteoarthritis. Ann. Rheum. Dis. 2010, 69, 1940–1945. [Google Scholar] [CrossRef] [PubMed]
- Felson, D.T. Osteoarthritis as a disease of mechanics. Osteoarthr. Cartil. 2013, 21, 10–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shelburne, K.B.; Torry, M.R.; Pandy, M.G. Contributions of muscles, ligaments, and the ground-reaction force to tibiofemoral joint loading during normal gait. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 2006, 24, 1983–1990. [Google Scholar] [CrossRef]
- Baliunas, A.J.; Hurwitz, D.E.; Ryals, A.B.; Karrar, A.; Case, J.P.; Block, J.A.; Andriacchi, T.P. Increased knee joint loads during walking are present in subjects with knee osteoarthritis. Osteoarthr. Cartil. 2002, 10, 573–579. [Google Scholar] [CrossRef] [Green Version]
- Sharma, L.; Chmiel, J.S.; Almagor, O.; Felson, D.; Guermazi, A.; Roemer, F.; Lewis, C.E.; Segal, N.; Torner, J.; Cooke, T.D.; et al. The role of varus and valgus alignment in the initial development of knee cartilage damage by MRI: The MOST study. Ann. Rheum. Dis. 2013, 72, 235–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernigou, P.; Medevielle, D.; Debeyre, J.; Goutallier, D. Proximal tibial osteotomy for osteoarthritis with varus deformity. A ten to thirteen-year follow-up study. J. Bone Jt. Surg. Am. Vol. 1987, 69, 332–354. [Google Scholar]
- Chang, A.; Hayes, K.; Dunlop, D.; Hurwitz, D.; Song, J.; Cahue, S.; Genge, R.; Sharma, L. Thrust during ambulation and the progression of knee osteoarthritis. Arthritis Rheum. 2004, 50, 3897–3903. [Google Scholar] [CrossRef] [PubMed]
- Omori, G.; Narumi, K.; Nishino, K.; Nawata, A.; Watanabe, H.; Tanaka, M.; Endoh, K.; Koga, Y. Association of mechanical factors with medial knee osteoarthritis: A cross-sectional study from Matsudai Knee Osteoarthritis Survey. J. Orthop. Sci. Off. J. Jpn. Orthop. Assoc. 2016, 21, 463–468. [Google Scholar] [CrossRef]
- Sharma, L.; Chang, A.H.; Jackson, R.D.; Nevitt, M.; Moisio, K.C.; Hochberg, M.; Eaton, C.; Kwoh, C.K.; Almagor, O.; Cauley, J.; et al. Varus Thrust and Incident and Progressive Knee Osteoarthritis. Arthritis Rheumatol. 2017, 69, 2136–2143. [Google Scholar] [CrossRef] [Green Version]
- Espinosa, S.E.; Costello, K.E.; Souza, R.B.; Kumar, D. Lower knee extensor and flexor strength is associated with varus thrust in people with knee osteoarthritis. J. Biomech. 2020, 107, 109865. [Google Scholar] [CrossRef]
- Andriacchi, T.P.; Mundermann, A. The role of ambulatory mechanics in the initiation and progression of knee osteoarthritis. Curr. Opin. Rheumatol. 2006, 18, 514–518. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, T.; Wada, M.; Kawahara, H.; Sato, M.; Baba, H.; Shimada, S. Dynamic load at baseline can predict radiographic disease progression in medial compartment knee osteoarthritis. Ann. Rheum. Dis. 2002, 61, 617–622. [Google Scholar] [CrossRef] [PubMed]
- Kuroyanagi, Y.; Nagura, T.; Kiriyama, Y.; Matsumoto, H.; Otani, T.; Toyama, Y.; Suda, Y. A quantitative assessment of varus thrust in patients with medial knee osteoarthritis. Knee 2012, 19, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Chang, A.H.; Chmiel, J.S.; Moisio, K.C.; Almagor, O.; Zhang, Y.; Cahue, S.; Sharma, L. Varus thrust and knee frontal plane dynamic motion in persons with knee osteoarthritis. Osteoarthr. Cartil. 2013, 21, 1668–1673. [Google Scholar] [CrossRef] [Green Version]
- Hunt, M.A.; Schache, A.G.; Hinman, R.S.; Crossley, K.M. Varus thrust in medial knee osteoarthritis: Quantification and effects of different gait-related interventions using a single case study. Arthritis Care Res. 2011, 63, 293–297. [Google Scholar] [CrossRef]
- Iwama, Y.; Harato, K.; Kobayashi, S.; Niki, Y.; Ogihara, N.; Matsumoto, M.; Nakamura, M.; Nagura, T. Estimation of the External Knee Adduction Moment during Gait Using an Inertial Measurement Unit in Patients with Knee Osteoarthritis. Sensors 2021, 21, 4118. [Google Scholar] [CrossRef] [PubMed]
- Ishii, Y.; Ishikawa, M.; Kurumadani, H.; Hayashi, S.; Nakamae, A.; Nakasa, T.; Sumida, Y.; Tsuyuguchi, Y.; Kanemitsu, M.; Deie, M.; et al. Increase in medial meniscal extrusion in the weight-bearing position observed on ultrasonography correlates with lateral thrust in early-stage knee osteoarthritis. J. Orthop. Sci. 2020, 25, 640–646. [Google Scholar] [CrossRef] [PubMed]
- Misu, S.; Tanaka, S.; Ishihara, K.; Asai, T.; Nishigami, T. Applied Assessment Method for Varus Thrust during Walking in Patients with Knee Osteoarthritis Using Acceleration Data Measured by an Inertial Measurement Unit. Sensors 2022, 22, 6460. [Google Scholar] [CrossRef]
- Yoshimura, I.; Naito, M.; Hara, M.; Zhang, J. Analysis of the significance of the measurement of acceleration with respect to lateral laxity of the anterior cruciate ligament insufficient knee. Int. Orthop. 2000, 24, 276–278. [Google Scholar] [CrossRef] [Green Version]
- Tsukamoto, H.; Saito, K.; Matsunaga, T.; Iwami, T.; Saito, H.; Kijima, H.; Akagawa, M.; Komatsu, A.; Miyakoshi, N.; Shimada, Y. Diagnostic Accuracy of the Mobile Assessment of Varus Thrust Using Nine-axis Inertial Measurement Units. Prog. Rehabil. Med. 2021, 6, 20210009. [Google Scholar] [CrossRef]
- Favre, J.; Erhart-Hledik, J.C.; Chehab, E.F.; Andriacchi, T.P. Baseline ambulatory knee kinematics are associated with changes in cartilage thickness in osteoarthritic patients over 5 years. J. Biomech. 2016, 49, 1859–1864. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Xiong, S. Accuracy of Base of Support Using an Inertial Sensor Based Motion Capture System. Sensors 2017, 17, 2091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seel, T.; Raisch, J.; Schauer, T. IMU-based joint angle measurement for gait analysis. Sensors 2014, 14, 6891–6909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsurumiya, K.; Hayasaka, W.; Igarashi, Y.; Komatsu, A.; Tsukamoto, H.; Suda, T.; Iwami, T.; Shimada, Y. A Novel Quantification Method for Gait Assessment in Knee Osteoarthritis Patients. In Proceedings of the 30th 2019 International Symposium on Micro-NanoMechatronics and Human Science (From Micro & Nano Scale Systems to Robotics & Mechatronics Systems), Nagoya, Japan, 1–4 December 2019. [Google Scholar]
- Tsurumiya, K.; Hayasaka, W.; Komatsu, A.; Tsukamoto, H.; Suda, T.; Iwami, T.; Shimada, Y. Quantitative Evaluation Related to Disease Progression in Knee Osteoarthritis Patients During Gait. Adv. Biomed. Eng. 2021, 10, 51–57. [Google Scholar] [CrossRef]
- Kellgren, J.H.; Lawrence, J.S. Radiological assessment of osteo-arthrosis. Ann. Rheum. Dis. 1957, 16, 494–502. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.K.; Yadav, S.L.; Singh, U.; Wadhwa, S. Muscle Activation Profiles and Co-Activation of Quadriceps and Hamstring Muscles around Knee Joint in Indian Primary Osteoarthritis Knee Patients. J. Clin. Diagn. Res. 2017, 11, RC09–RC14. [Google Scholar] [CrossRef]
- Sharifi Renani, M.; Myers, C.A.; Zandie, R.; Mahoor, M.H.; Davidson, B.S.; Clary, C.W. Deep Learning in Gait Parameter Prediction for OA and TKA Patients Wearing IMU Sensors. Sensors 2020, 20, 5553. [Google Scholar] [CrossRef]
- Yang, N.H.; Nayeb-Hashemi, H.; Canavan, P.K.; Vaziri, A. Effect of frontal plane tibiofemoral angle on the stress and strain at the knee cartilage during the stance phase of gait. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 2010, 28, 1539–1547. [Google Scholar] [CrossRef]
- Shelburne, K.B.; Torry, M.R.; Pandy, M.G. Muscle, ligament, and joint-contact forces at the knee during walking. Med. Sci. Sports Exerc. 2005, 37, 1948–1956. [Google Scholar] [CrossRef] [Green Version]
- Amis, A.A. Biomechanics of high tibial osteotomy. Knee Surg. Sports Traumatol. Arthrosc. 2013, 21, 197–205. [Google Scholar] [CrossRef]
- Robon, M.J.; Perell, K.L.; Fang, M.; Guererro, E. The relationship between ankle plantar flexor muscle moments and knee compressive forces in subjects with and without pain. Clin. Biomech. 2000, 15, 522–527. [Google Scholar] [CrossRef] [PubMed]
- Telfer, S.; Lange, M.J.; Sudduth, A.S.M. Factors influencing knee adduction moment measurement: A systematic review and meta-regression analysis. Gait Posture 2017, 58, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Sah, R.L.; Kim, Y.J.; Doong, J.Y.; Grodzinsky, A.J.; Plaas, A.H.; Sandy, J.D. Biosynthetic response of cartilage explants to dynamic compression. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 1989, 7, 619–636. [Google Scholar] [CrossRef] [PubMed]
- Abusara, Z.; Seerattan, R.; Leumann, A.; Thompson, R.; Herzog, W. A novel method for determining articular cartilage chondrocyte mechanics in vivo. J. Biomech. 2011, 44, 930–934. [Google Scholar] [CrossRef]
- Mau-Moeller, A.; Jacksteit, R.; Jackszis, M.; Feldhege, F.; Weippert, M.; Mittelmeier, W.; Bader, R.; Skripitz, R.; Behrens, M. Neuromuscular function of the quadriceps muscle during isometric maximal, submaximal and submaximal fatiguing voluntary contractions in knee osteoarthrosis patients. PLoS ONE 2017, 12, e0176976. [Google Scholar] [CrossRef]
- Mills, K.; Hunt, M.A.; Ferber, R. Biomechanical deviations during level walking associated with knee osteoarthritis: A systematic review and meta-analysis. Arthritis Care Res. 2013, 65, 1643–1665. [Google Scholar] [CrossRef] [Green Version]
- Rutherford, D.; Baker, M.; Wong, I.; Stanish, W. The effect of age and knee osteoarthritis on muscle activation patterns and knee joint biomechanics during dual belt treadmill gait. J. Electromyogr. Kinesiol. Off. J. Int. Soc. Electrophysiol. Kinesiol. 2017, 34, 58–64. [Google Scholar] [CrossRef]
- Ling, S.M.; Conwit, R.A.; Talbot, L.; Shermack, M.; Wood, J.E.; Dredge, E.M.; Weeks, M.J.; Abernethy, D.R.; Metter, E.J. Electromyographic patterns suggest changes in motor unit physiology associated with early osteoarthritis of the knee. Osteoarthr. Cartil. 2007, 15, 1134–1140. [Google Scholar] [CrossRef] [Green Version]
- Koshino, T. Etiology, classifications and clinical findings of osteoarthritis of the knee. Ryumachi 1985, 25, 191–203. [Google Scholar]
- Wyndow, N.; Collins, N.J.; Vicenzino, B.; Tucker, K.; Crossley, K.M. Foot and ankle characteristics and dynamic knee valgus in individuals with patellofemoral osteoarthritis. J. Foot Ankle Res. 2018, 11, 65. [Google Scholar] [CrossRef] [Green Version]
Pattern A (n = 27) | Pattern B (n = 21) | Pattern C (n = 25) | Pattern D (n = 20) | p Value | |
---|---|---|---|---|---|
Age | 35.1 ± 17.5 | 40.8 ± 24.5 | 52.3 ± 18.8 | 59.3 ± 16.2 | 0.016 |
Height (cm) | 158.4 ± 9.9 | 149.8 ± 6.2 | 160.9 ± 12.2 | 161.6 ± 7.3 | 0.158 |
Body weight (kg) | 57.4 ± 11.0 | 69.3 ± 20.9 | 71.3 ± 25.9 | 66.9 ± 15.5 | 0.474 |
KL 0 (CTL) (n = 24) | 12 (44%) | 9 (42%) | 3 (12%) | 0 (0%) | |
KL 1 (n = 8) | 3 (11%) | 2 (10%) | 2 (8%) | 1 (5%) | |
KL 2 (n = 14) | 3 (11%) | 2 (10%) | 8 (32%) | 1 (5%) | |
KL 3 (n = 31) | 9 (34%) | 6 (28%) | 8 (32%) | 8 (40%) | |
KL4 (n = 16) | 0 (0%) | 2 (10%) | 4 (16%) | 10 (50%) | |
HKA angle (°) | 1.4 (3.5) | 1.7 (3.9) | 2.1 (3.6) | 2.5 (4.3) | 0.088 |
KL 0 (CTR) | KL 1 | KL 2 | KL 3 | KL 4 | Average +/− SD | |
---|---|---|---|---|---|---|
Pattern A (n= 27) | 1.44 (12) | 1.45 (3) | 1.36 (3) | 1.31 (9) | N/A | 1.39 ± 0.07 |
Pattern B (n = 21) | 1.42 (9) | 1.34 (2) | 1.34 (2) | 1.29 (6) | 1.23 (2) | 1.32 ± 0.11 ‖ |
Pattern C (n = 25) | 1.40 (3) | 1.34 (2) | 1.32 (8) | 1.27 (8) | 1.22 (4) | 1.31 ± 0.10 ‖ |
Pattern D (n = 20) | N/A | 1.42 (1) | 1.29 (1) | 1.26 (8) | 1.18 (10) | 1.28 ± 0.14 ‖¶** |
Average ± SD | 1.42 ± 0.02 | 1.38 ± 0.09 § | 1.32 ± 0.07 *†§ | 1.28 ± 0.06 *†§ | 1.21 ± 0.04 *†‡§ |
KL 0 (CTR) | KL 1 | KL 2 | KL 3 | KL 4 | Total | |
---|---|---|---|---|---|---|
Pattern A (n = 27) | 0/12(0%) | 0/3 (0%) | 0/3 (0%) | 0/9 (0%) | 0/0 (0%) | 0/27 (0%) |
Pattern B (n = 21) | 0/9 (0%) | 0/2 (0%) | 0/2 (0%) | 2/6 (33%) | 1/2(50%) | 3/21 (14%) |
Pattern C (n = 25) | 0/3 (0%) | 1/2 (50%) | 4/8(50%) | 5 /8(62%) | 3/4 (75%) | 13/25 (52%) |
Pattern D (n = 20) | 0/0 (0%) | 1/1 (100%) | 1/1 (100%) | 7/8 (88%) | 9/10 (90%) | 18/20 (90%) |
Total | 0/24 (0%) | 2/8 (12%) | 5/14 (35%) | 14/31 (54%) | 13/16 (81%) | 34/93 (40%) |
KL 0 (CTR) | KL 1 | KL 2 | KL 3 | KL 4 | p Value | |
---|---|---|---|---|---|---|
varus thrust (°) | 5.4 ± 2.2 | 4.8 ± 3.2 | 5.9 ± 2.2 | 8.1 ± 3.4 | 11.7 ± 2.3 | 0.000 |
(4.5–6.3) | (2.1–7.4) | (4.6–7.2) | (6.7–9.6) | (10.2–13.3) | ||
Pattern A | Pattern B | Pattern C | Pattern D | p Value | ||
varus thrust (°) | 5.4 ± 2.2 | 4.8 ± 3.2 | 5.9 ± 2.2 | 8.1 ± 3.4 | 0.000 | |
(2.3–3.0) | (4.8–5.7) | (6.7–8.5) | (9.6–11.6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsukamoto, H.; Saito, K.; Saito, H.; Kijima, H.; Akagawa, M.; Komatsu, A.; Iwami, T.; Miyakoshi, N. A Novel Classification of Coronal Plane Knee Joint Instability Using Nine-Axis Inertial Measurement Units in Patients with Medial Knee Osteoarthritis. Sensors 2023, 23, 2797. https://doi.org/10.3390/s23052797
Tsukamoto H, Saito K, Saito H, Kijima H, Akagawa M, Komatsu A, Iwami T, Miyakoshi N. A Novel Classification of Coronal Plane Knee Joint Instability Using Nine-Axis Inertial Measurement Units in Patients with Medial Knee Osteoarthritis. Sensors. 2023; 23(5):2797. https://doi.org/10.3390/s23052797
Chicago/Turabian StyleTsukamoto, Hiroaki, Kimio Saito, Hidetomo Saito, Hiroaki Kijima, Manabu Akagawa, Akira Komatsu, Takehiro Iwami, and Naohisa Miyakoshi. 2023. "A Novel Classification of Coronal Plane Knee Joint Instability Using Nine-Axis Inertial Measurement Units in Patients with Medial Knee Osteoarthritis" Sensors 23, no. 5: 2797. https://doi.org/10.3390/s23052797
APA StyleTsukamoto, H., Saito, K., Saito, H., Kijima, H., Akagawa, M., Komatsu, A., Iwami, T., & Miyakoshi, N. (2023). A Novel Classification of Coronal Plane Knee Joint Instability Using Nine-Axis Inertial Measurement Units in Patients with Medial Knee Osteoarthritis. Sensors, 23(5), 2797. https://doi.org/10.3390/s23052797