Characterizing Cold Days and Spells and Their Relationship with Cold-Related Mortality in Bangladesh
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Requirement
2.2. Methods
2.2.1. Quality Control of the Temperature Data
- Whether the daily Tmin was higher than the daily Tmax at a given station of interest,
- If any of the values related to Tmin, Tmax, Ta were less than zero, and
- If there were abrupt change(s) in any of the Tmin, Tmax, and Ta values between successive days at a station of interest compared to its adjacent stations.
2.2.2. Calculating Cold Days and Spells
2.2.3. Quantifying the Rate of Changes in Cold Days and Spells
3. Results
3.1. Initial Calculation of Cold Days
3.2. Determining the Daily Average Temperature Threshold (Tthreshold) and Its Validation
3.3. Final Calculation of Cold Days and Classification
3.4. Computation of Cold Spells
3.5. Trend Analysis of Cold Days and Spells
4. Discussion
5. Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alam, M.M.; Mahtab, A.S.M.; Ahmed, M.R.; Hassan, Q.K. Developing a Cold-Related Mortality Database in Bangladesh. Int. J. Environ. Res. Public Health 2022, 19, 12175. [Google Scholar] [CrossRef]
- Vardoulakis, S.; Dear, K.; Hajat, S.; Heaviside, C.; Eggen, B.; McMichael, A. Comparative assessment of the effects of climate change on heat-and cold-related mortality in the United Kingdom and Australia. Environ. Health Perspect. 2014, 122, 1285–1292. [Google Scholar] [CrossRef] [Green Version]
- Massetti, E.; Mendelsohn, R. How do heat waves, cold waves, droughts, hail and tornadoes affect US agriculture. CMCC Res. Paper 2015, RP0271, 1–24. [Google Scholar]
- Si, D.; Jiang, D.; Lang, X.; Fu, S. Unprecedented North American snowstorm and East Asian cold wave in January 2016: Critical role of the Arctic atmospheric circulation. Atmos. Sci. Lett. 2021, 22, e1056. [Google Scholar] [CrossRef]
- Rosselló, J.; Becken, S.; Santana-Gallego, M. The effects of natural disasters on international tourism: A global analysis. Tour Manag. 2020, 79, 104080. [Google Scholar] [CrossRef] [PubMed]
- Budhathoki, N.K.; Zander, K.K. Socio-economic impact of and adaptation to extreme heat and cold of farmers in the food bowl of Nepal. Int. J. Environ. Res. Public Health 2019, 16, 1578. [Google Scholar] [CrossRef] [Green Version]
- Vajda, A.; Tuomenvirta, H.; Juga, I.; Nurmi, P.; Jokinen, P.; Rauhala, J. Severe weather affecting European transport systems: The identification, classification and frequencies of events. Nat. Hazards 2014, 72, 169–188. [Google Scholar] [CrossRef]
- Añel, J.A.; Fernández-González, M.; Labandeira, X.; López-Otero, X.; De la Torre, L. Impact of cold waves and heat waves on the energy production sector. Atmosphere 2017, 8, 209. [Google Scholar] [CrossRef] [Green Version]
- Kysely, J.; Pokorna, L.; Kyncl, J.; Kriz, B. Excess cardiovascular mortality associated with cold spells in the Czech Republic. BMC Public Health 2009, 9, 19. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Jiang, F.; Peng, L.; Zhang, J.; Geng, F.; Xu, J.; Zhen, C.; Shen, X.; Tong, S. The association between cold spells and pediatric outpatient visits for asthma in Shanghai, China. PLoS ONE 2012, 7, e42232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, W.; Yang, C.; Chu, C.; Li, T.; Tan, J.; Kan, H. The impact of the 2008 cold spell on mortality in Shanghai, China. Int. J. Biometeorol. 2013, 57, 179–184. [Google Scholar] [CrossRef]
- Hwang, S.W.; Lebow, J.M.; Bierer, M.F.; O’Connell, J.J.; Orav, E.J.; Brennan, T.A. Risk factors for death in homeless adults in Boston. Arch. Intern. Med. 1998, 158, 1454–1460. [Google Scholar] [CrossRef] [Green Version]
- Vuillermoz, C.; Aouba, A.; Grout, L.; Vandentorren, S.; Tassin, F.; Moreno-Betancur, M.; Jougla, É.; Rey, G. Mortality among homeless people in France, 2008–10. Eur. J. Public Health 2016, 26, 1028–1033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staddon, P.L.; Montgomery, H.E.; Depledge, M.H. Climate warming will not decrease winter mortality. Nat. Clim. Chang. 2014, 4, 190–194. [Google Scholar] [CrossRef]
- Stocker, T. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Cambridge University Press: Cambridge, UK, 2014; pp. 869–952. [Google Scholar]
- Guo, S.; Yan, D.; Gui, C. The typical hot year and typical cold year for modeling extreme events impacts on indoor environment: A generation method and case study. Build. Simul. 2020, 13, 543–558. [Google Scholar] [CrossRef]
- Hu, Y.; He, Y.; Dong, W. Changes in temperature extremes based on a 6-hourly dataset in China from 1961–2005. Adv. Atmos. Sci. 2009, 26, 1215–1225. [Google Scholar] [CrossRef]
- Donaldson, G.; Ermakov, S.; Komarov, Y.M.; McDonald, C.; Keatinge, W. Cold related mortalities and protection against cold in Yakutsk, eastern Siberia: Observation and interview study. BMJ 1998, 317, 978–982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, H.; Yao, Z.; Zhang, Y.; Xu, Y.; Xu, X.; Liu, T.; Lin, H.; Lao, X.; Rutherford, S.; Chu, C. Short-term effects of the 2008 cold spell on mortality in three subtropical cities in Guangdong Province, China. Environ. Health Perspect. 2013, 121, 210–216. [Google Scholar] [CrossRef] [Green Version]
- Huynen, M.-M.; Martens, P.; Schram, D.; Weijenberg, M.P.; Kunst, A.E. The impact of heat waves and cold spells on mortality rates in the Dutch population. Environ. Health Perspect. 2001, 109, 463–470. [Google Scholar] [CrossRef]
- Domonkos, P.; Kyselý, J.; Piotrowicz, K.; Petrovic, P.; Likso, T. Variability of extreme temperature events in south–central Europe during the 20th century and its relationship with large-scale circulation. Int. J. Climatol. 2003, 23, 987–1010. [Google Scholar] [CrossRef]
- India Meteorological Department. All India Multi-Hazard Winter Weather Warnings Bulletin. Available online: https://internal.imd.gov.in/section/nhac/dynamic/sigwxibf.pdf (accessed on 5 August 2021).
- Chen, J.; Yang, J.; Zhou, M.; Yin, P.; Wang, B.; Liu, J.; Chen, Z.; Song, X.; Ou, C.-Q.; Liu, Q. Cold spell and mortality in 31 Chinese capital cities: Definitions, vulnerability and implications. Environ. Int. 2019, 128, 271–278. [Google Scholar] [CrossRef]
- Sekhon, N.S.; Hassan, Q.K.; Sleep, R.W. Evaluating potential of MODIS-based indices in determining “snow gone” stage over forest-dominant regions. Remote Sens. 2010, 2, 1348–1363. [Google Scholar] [CrossRef] [Green Version]
- Hassan, Q.K.; Rahman, K.M. Remote sensing-based determination of understory grass greening stage over boreal forest. J. Appl. Remote Sens. 2013, 7, 073578. [Google Scholar] [CrossRef]
- Sun, R.; Chen, L.J.L.; Planning, U. How can urban water bodies be designed for climate adaptation? Landsc. Urban. Plan. 2012, 105, 27–33. [Google Scholar] [CrossRef]
- Karmakar, S. Patterns of climate change and its impacts in northwestern Bangladesh. J. Eng. Sci. 2019, 10, 33–48. [Google Scholar]
- Khatun, M.A.; Rashid, M.B.; Hygen, H.O. Climate of Bangladesh; no. 08/2016; Norwegian Meteorological Institute, and Bangladesh Meteorological Department: Dhaka, Bangladesh, 2016; p. 159. ISSN 2387-4201.
- Jeong, J.H.; Ho, C.H. Changes in occurrence of cold surges over East Asia in association with Arctic Oscillation. Geophys. Res. Lett. 2005, 32, L14704. [Google Scholar] [CrossRef]
- Wheeler, D.; Harvey, V.; Atkinson, D.; Collins, R.; Mills, M. A climatology of cold air outbreaks over North America: WACCM and ERA-40 comparison and analysis. J. Geophys. Res. Atmos. 2011, 116, D12107. [Google Scholar] [CrossRef]
- Heo, J.-W.; Ho, C.-H.; Park, T.-W.; Choi, W.; Jeong, J.-H.; Kim, J. Changes in cold surge occurrence over East Asia in the future: Role of thermal structure. Atmosphere 2018, 9, 222. [Google Scholar] [CrossRef] [Green Version]
- Yong-Sang, C.; Chang-Hoi, H.; Gong, D.-Y.; Jeong, J.-H.; Park, T.-W. Adaptive change in intra-winter distribution of relatively cold events to East Asian warming. TAO 2009, 20, 8. [Google Scholar]
- Kim, E.S.; Ahn, J.B. Study on the classification and characteristics of cold surge in South Korea. Int. J. Climatol. 2022, 43, 720–735. [Google Scholar] [CrossRef]
- Park, T.W.; Ho, C.H.; Yang, S.; Jeong, J.H. Influences of Arctic Oscillation and Madden-Julian Oscillation on cold surges and heavy snowfalls over Korea: A case study for the winter of 2009–2010. J. Geophys. Res. Atmos. 2010, 115, D23122. [Google Scholar] [CrossRef]
- Park, T.-W.; Ho, C.-H.; Deng, Y. A synoptic and dynamical characterization of wave-train and blocking cold surge over East Asia. Clim. Dyn. 2014, 43, 753–770. [Google Scholar] [CrossRef]
- Yang, X.; Zeng, G.; Zhang, G.; Iyakaremye, V.; Xu, Y. Future projections of winter cold surge paths over East Asia from CMIP6 models. Int. J. Climatol. 2021, 41, 1230–1245. [Google Scholar] [CrossRef]
- Park, T.-W.; Ho, C.-H.; Jeong, S.-J.; Choi, Y.-S.; Park, S.K.; Song, C.-K. Different characteristics of cold day and cold surge frequency over East Asia in a global warming situation. J. Geophys. Res. Atmos. 2011, 116, D12118. [Google Scholar] [CrossRef] [Green Version]
- Ou, T.; Chen, D.; Jeong, J.-H.; Linderholm, H.W.; Zhou, T. Changes in winter cold surges over southeast China: 1961 to 2012. Asia Pac. J. Atmos. Sci. 2015, 51, 29–37. [Google Scholar] [CrossRef]
- Xie, Z.; Black, R.X.; Deng, Y. The structure and large-scale organization of extreme cold waves over the conterminous United States. Clim. Dyn. 2017, 49, 4075–4088. [Google Scholar] [CrossRef]
- Yang, X.; Zeng, G.; Zhang, G.; Li, C.J.T.; Climatology, A. Linkage between interannual variation of winter cold surge over East Asia and autumn sea ice over the Barents Sea. Theor. Appl. Climatol. 2021, 144, 339–351. [Google Scholar] [CrossRef]
- Vavrus, S.; Walsh, J.; Chapman, W.; Portis, D. The behavior of extreme cold air outbreaks under greenhouse warming. Int. J. Climatol. 2006, 26, 1133–1147. [Google Scholar] [CrossRef]
- Menzel, A.; Seifert, H.; Estrella, N. Effects of recent warm and cold spells on European plant phenology. Int. J. Biometeorol. 2011, 55, 921–932. [Google Scholar] [CrossRef]
- McCalla, R.; Day, E.; Millward, H. The relative concept of warm and cold spells of temperature: Methodology and application. Arch. Meteorol. Geophys. Bioklimatol. B 1978, 25, 323–336. [Google Scholar] [CrossRef]
- Smith, E.T.; Sheridan, S.C. The characteristics of extreme cold events and cold air outbreaks in the eastern United States. Int. J. Climatol. 2018, 38, e807–e820. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 163–171. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Statistical Yearbook Bangladesh 2020; Bangladesh Bureau of Statistics: Dhaka, Bangladesh, 2020.
- Islam, N.; Uyeda, H. Comparison of TRMM 3B42 products with surface rainfall over Bangladesh. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Seoul, Republic of Korea, 25–29 July 2005; pp. 4112–4115. [Google Scholar]
- Bangladesh Geography. Available online: https://en.banglapedia.org/index.php?title=Bangladesh_Geography (accessed on 5 August 2021).
- Shahid, S. Spatio-temporal variability of rainfall over Bangladesh during the time period 1969-2003. Asia Pac. J. Atmos. Sci. 2009, 45, 375–389. [Google Scholar]
- Alamgir, M.; Ahmed, K.; Homsi, R.; Dewan, A.; Wang, J.-J.; Shahid, S. Downscaling and projection of spatiotemporal changes in temperature of Bangladesh. Earth Syst. Environ. 2019, 3, 381–398. [Google Scholar] [CrossRef]
- Belvederesi, C.; Dominic, J.A.; Hassan, Q.K.; Gupta, A.; Achari, G. Short-Term River Flow Forecasting Framework and Its Application in Cold Climatic Regions. Water 2020, 12, 3049. [Google Scholar] [CrossRef]
- Belvederesi, C.; Dominic, J.A.; Hassan, Q.K.; Gupta, A.; Achari, G. Predicting River Flow Using an AI-Based Sequential Adaptive Neuro-Fuzzy Inference System. Water 2020, 12, 1622. [Google Scholar] [CrossRef]
- Abdullah, A.Y.M.; Bhuian, M.H.; Kiselev, G.; Dewan, A.; Hassan, Q.K.; Rafiuddin, M. Extreme temperature and rainfall events in Bangladesh: A comparison between coastal and inland areas. Int. J. Climatol. 2022, 42, 3253–3273. [Google Scholar] [CrossRef]
- Alam, M.S.; Liu, Q.; Schneider, P.; Mozumder, M.M.H.; Uddin, M.M.; Monwar, M.M.; Hoque, M.E.; Barua, S. Stock Assessment and Rebuilding of Two Major Shrimp Fisheries (Penaeus monodon and Metapenaeus monoceros) from the Industrial Fishing Zone of Bangladesh. J. Mar. Sci. Eng. 2022, 10, 201. [Google Scholar] [CrossRef]
- MMCH Fails to Provide Ambulance for Patients. Available online: https://www.thedailystar.net/country/mmch-fails-provide-ambulance-patients-1211965 (accessed on 29 December 2022).
- Baten, N.; Hossain, M.A.; Rahman, M.H.; Rahman, M.A. Cold wave condition over Bangladesh for the period of 1988–2017. Dew Drop. 2022, 8, 141–151. [Google Scholar]
- Proximity to Water Bodies. Available online: https://www.acer-acre.ca/resources/climate-change-in-context/general-concepts/proximity-to-water-bodies#:~:text=Large%20bodies%20of%20water%20such,cooler%20and%20in%20winter%20warmer (accessed on 29 December 2022).
- Rahman, M.; Lateh, H. Spatio-temporal analysis of warming in Bangladesh using recent observed temperature data and GIS. Clim. Dyn. 2016, 46, 2943–2960. [Google Scholar] [CrossRef]
- Mullick, M.R.A.; Nur, R.M.; Alam, M.J.; Islam, K.A. Observed trends in temperature and rainfall in Bangladesh using pre-whitening approach. Glob. Planet. Chang. 2019, 172, 104–113. [Google Scholar] [CrossRef]
- Imran, H.; Kala, J.; Uddin, S.; Islam, A.S.; Acharya, N. Spatiotemporal analysis of temperature and precipitation extremes over Bangladesh using a novel gridded observational dataset. Weather. Clim. Extrem. 2023, 39, 100544. [Google Scholar] [CrossRef]
Ref. | Type of Temperature | Period * | Multiplier of SD | Region/Country | Description |
---|---|---|---|---|---|
[37] | Tavg | 1954–2005 | 1.5 | China and Korea | Used 103 Chinese and 13 Korean weather stations. Assessed as a cold spell if it consecutively continued for at least 2 days. |
[38] | 1961–2012 | 1.5 | Southeast China | Employed 100 grid points at a resolution of 0.5° × 0.5° in the surrounding area. Declared as a cold spell if persisted for at least 1–2 days. | |
[39] | 1950–2005 | 1.5 | USA | Data was used from the T62 Gaussian grid with 194 × 94 points. Used 237 grid points at a resolution of 1.25° × 0.9° longitude-latitude. If 10% of grid points exceeds considered extreme cold. Declared as an extreme cold spell if it persists for at least 3 or more days. | |
[40] | 1979–2018 | 1.5 | East Asia | ERA-Interim data is used for 1° × 1° resolution and considered cold when the air temperature drops more than one 5° × 5° box. | |
[33] | 1975–2019 | 1.5 | South Korea | Used 56 in situ stations. Temperature falls to 1.5 SD, which is approximately equal to 5.7 °C within 2 days. | |
[29] | 1957/58–2000/01 | 1.5 and 2 | South China | Used 172 Chinese and 5 Korean weather stations. Considered cold surges (if SD = 1.5) and strong ones (SD = 2) if the condition was consecutively sustained for 2 days. | |
[41] | 1980–1999 | 2 | Northern Hemisphere | Utilized seven global circulation model outputs with variable grid sizes. Assessed as a cold spell if consecutively continued for at least 2 days. | |
[42] | 1951–2006 | 1.5 and 3 | Europe | Employed at cell level with a resolution of 0.5° × 0.5°. Considered cold (if SD = 1.5) and very cold (SD = 3) if the condition was sustained over a few (undefined) consecutive days. | |
[43] | Tmax | 1950–1972 | 1 | Atlantic Canada | Used one weather station. Declared as a cold spell if the condition continued for at least 3 days. |
[44] | Tmin and Tmax | 1948–2016 | 1.25 | Eastern USA | Employed 20 weather stations. Regarded as a cold spell if the condition was consecutively sustained for at least 5 days. |
Temp. °C | Percent of Death in Different Divisions | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Rangpur | Rajshahi | Mymensingh | Sylhet | Dhaka | Khulna | Barishal | Chattogram | Average | ||
Calibration during 2009–2010 to 2014–2015 | 13 | 63 | 94 | 17 | 32 | 47 | 47 | 2 | 43 | |
14 | 86 | 98 | 79 | 32 | 62 | 55 | 4 | 12 | 54 | |
15 | 91 | 99 | 88 | 36 | 78 | 67 | 11 | 29 | 62 | |
16 | 99 | 99 | 88 | 44 | 84 | 79 | 43 | 31 | 71 | |
17 | 100 | 99 | 88 | 60 | 91 | 84 | 100 | 80 | 88 | |
18 | 100 | 100 | 88 | 100 | 91 | 84 | 100 | 81 | 93 | |
19 | 100 | 100 | 88 | 100 | 100 | 100 | 100 | 81 | 96 | |
20 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | |
Validation during 2015–2016 to 2020–2021 | 13 | 64 | 79 | No deaths were found | 72 | |||||
14 | 77 | 99 | 20 | 33 | 57 | |||||
15 | 80 | 100 | 37 | 72 | 72 | |||||
16 | 90 | 100 | 53 | 25 | 89 | 3 | 25 | 55 | ||
17 | 97 | 100 | 70 | 67 | 100 | 100 | 75 | 87 | ||
18 | 100 | 100 | 70 | 67 | 100 | 100 | 83 | 92 | ||
19 | 100 | 100 | 100 | 92 | 100 | 100 | 83 | 96 | ||
20 | 100 | 100 | 100 | 92 | 100 | 100 | 83 | 96 | ||
21 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | ||
Calibration during odd winter | 13 | 73 | 97 | 32 | 67 | |||||
14 | 93 | 99 | 100 | 32 | 23 | 45 | 10 | 11 | 52 | |
15 | 94 | 99 | 100 | 63 | 54 | 58 | 40 | 76 | 73 | |
16 | 96 | 99 | 100 | 100 | 65 | 78 | 80 | 78 | 87 | |
17 | 99 | 99 | 100 | 100 | 85 | 81 | 100 | 78 | 93 | |
18 | 100 | 100 | 100 | 100 | 85 | 82 | 100 | 98 | 96 | |
19 | 100 | 100 | 100 | 100 | 96 | 100 | 100 | 100 | 100 | |
20 | 100 | 100 | 100 | 100 | 96 | 100 | 100 | 100 | 100 | |
21 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | |
Validation during even winter | 13 | 44 | 95 | 44 | 19 | 68 | 53 | 1 | 94 | 52 |
14 | 72 | 98 | 44 | 19 | 68 | 56 | 1 | 94 | 57 | |
15 | 83 | 100 | 67 | 22 | 68 | 79 | 1 | 94 | 64 | |
16 | 100 | 100 | 67 | 22 | 77 | 94 | 14 | 94 | 71 | |
17 | 100 | 100 | 67 | 47 | 87 | 100 | 100 | 94 | 87 | |
18 | 100 | 100 | 67 | 75 | 87 | 100 | 100 | 94 | 90 | |
19 | 100 | 100 | 67 | 100 | 100 | 100 | 100 | 100 | 96 | |
20 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alam, M.M.; Mahtab, A.S.M.; Ahmed, M.R.; Hassan, Q.K. Characterizing Cold Days and Spells and Their Relationship with Cold-Related Mortality in Bangladesh. Sensors 2023, 23, 2832. https://doi.org/10.3390/s23052832
Alam MM, Mahtab ASM, Ahmed MR, Hassan QK. Characterizing Cold Days and Spells and Their Relationship with Cold-Related Mortality in Bangladesh. Sensors. 2023; 23(5):2832. https://doi.org/10.3390/s23052832
Chicago/Turabian StyleAlam, Md. Mahbub, A. S. M. Mahtab, M. Razu Ahmed, and Quazi K. Hassan. 2023. "Characterizing Cold Days and Spells and Their Relationship with Cold-Related Mortality in Bangladesh" Sensors 23, no. 5: 2832. https://doi.org/10.3390/s23052832
APA StyleAlam, M. M., Mahtab, A. S. M., Ahmed, M. R., & Hassan, Q. K. (2023). Characterizing Cold Days and Spells and Their Relationship with Cold-Related Mortality in Bangladesh. Sensors, 23(5), 2832. https://doi.org/10.3390/s23052832