Bioluminescent-Triple-Enzyme-Based Biosensor with Lactate Dehydrogenase for Non-Invasive Training Load Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biochemical Design of the Bioluminescent Coupled Multi-Enzyme Systems
2.2. Chemicals and Solutions
2.3. Barker and Summerson Colorimetric Method
2.4. Collection of the Saliva Samples
2.5. Data Processing
3. Results
3.1. Optimization of Enzymes and Substrate Compositions of the Bioluminescent-Enzyme-Based Bioassay
3.2. Activity of the LDH + Red + Luc Enzyme System in the Presence of the Reported Lactate Concentrations in Saliva
3.3. Activity of the LDH + Red + Luc Enzyme System in the Presence of the Participants’ Saliva Samples
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sabatini, A.; Zompanti, A.; Grasso, S.; Gianfelici, A.; Di Castro, A.; Donatucci, B.; Pennazza, G.; Santonico, M. Design and development of an innovative sensor system for non-invasive monitoring of athletic performances. In Proceedings of the II Workshop on Metrology for Industry 4.0 and IoT (MetroInd4.0&IoT), Naples, Italy, 12 August 2019. [Google Scholar]
- Ye, S.; Feng, S.; Huang, L.; Bian, S. Recent progress in wearable biosensors: From healthcare monitoring to sports analytics. Biosensors 2020, 10, 205. [Google Scholar] [CrossRef]
- Coutts, A.J.; Wallace, L.K.; Slattery, K.M. Monitoring changes in performance, physiology, biochemistry, and psychology during overreaching and recovery in triathletes. Int. J. Sport. Med. 2007, 28, 125–134. [Google Scholar] [CrossRef]
- Djaoui, L.; Haddad, M.; Chamari, K.; Dellal, A. Monitoring training load and fatigue in soccer players with physiological markers. Physiol. Behav. 2017, 181, 86–94. [Google Scholar] [CrossRef]
- Foster, C.; Rodriguez-Marroyo, J.A.; De Koning, J.J. Monitoring training loads: The past, the present, and the future. Int. J. Sport. Physiol. Perform. 2017, 12, S2-2–S2-8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grzesiak-Gasek, I.; Kaczmarek, U. Influence of swimming training session on selected saliva components in youth swimmers. Front. Physiol. 2022, 1, 711. [Google Scholar] [CrossRef]
- Yixiao, X.U.; Yongcai, Z.; Binghong, G.A.O. Saliva: A potential biological sample for the application in sports training. J. Shanghai Univ. Sport 2022, 46, 84–94. [Google Scholar]
- Kratasyuk, V.A.; Stepanova, L.V.; Ranjan, R.; Sutormin, O.S.; Pande, S.; Zhukova, G.V.; Miller, O.M.; Maznyak, N.V.; Kolenchukova, O.A. A noninvasive and qualitative bioluminescent assay for express diagnostics of athletes’ responses to physical exertion. Luminescence 2021, 36, 384–390. [Google Scholar] [CrossRef] [PubMed]
- Claver, J.B.; Mirón, M.C.V.; Capitán-Vallvey, L.F. Disposable electrochemiluminescent biosensor for lactate determination in saliva. Analyst 2009, 134, 1423–1432. [Google Scholar] [CrossRef] [PubMed]
- Diaz, M.M.; Bocanegra, O.L.; Teixeira, R.R.; Soares, S.S.; Espindola, F.S. Response of salivary markers of autonomic activity to elite competition. Sport. Med. 2012, 33, 763–768. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Sharma, A.; Ahmed, A.; Sundramoorthy, A.K.; Furukawa, H.; Arya, S.; Khosla, A. Recent advances in electrochemical biosensors: Applications, challenges, and future scope. Biosensors 2021, 11, 336. [Google Scholar] [CrossRef]
- Ferraraccio, L.S.; Bertoncello, P. Electrochemiluminescence (ECL) biosensor based on tris (2, 2′-bipyridyl) ruthenium (II) with Glucose and Lactate dehydrogenases encapsulated within Alginate Hydrogels. Bioelectrochemistry 2023, 1, 108365. [Google Scholar] [CrossRef] [PubMed]
- Bucur, B.; Munteanu, F.D.; Marty, J.L.; Vasilescu, A. Advances in enzyme-based biosensors for pesticide detection. Biosensors 2018, 8, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Logeshwaran, P.; Megharaj, M.; Chadalavada, S.; Bowman, M.; Naidu, R. Petroleum hydrocarbons (PH) in groundwater aquifers: An overview of environmental fate, toxicity, microbial degradation and risk-based remediation approaches. Environ. Technol. Innov. 2018, 10, 175–193. [Google Scholar] [CrossRef]
- Esimbekova, E.N.; Torgashina, I.G.; Kalyabina, V.P.; Kratasyuk, V.A. Enzymatic biotesting: Scientific basis and application. Contemp. Probl. Ecol. 2021, 14, 290–304. [Google Scholar] [CrossRef]
- Kolosova, E.M.; Sutormin, O.S.; Stepanova, L.V.; Shpedt, A.A.; Rimatskaya, N.V.; Sukovataya, I.E.; Kratasyuk, V.A. Bioluminescent enzyme inhibition-based assay for the prediction of toxicity of pollutants in urban soils. Environ. Technol. Innovation 2021, 24, 101842. [Google Scholar] [CrossRef]
- Kolosova, E.M.; Sutormin, O.S.; Shpedt, A.A.; Stepanova, L.V.; Kratasyuk, V.A. Bioluminescent-Inhibition-Based Biosensor for Full-Profile Soil Contamination Assessment. Biosensors 2022, 12, 353. [Google Scholar] [CrossRef]
- Ugarova, N.N.; Lebedeva, O.V.; Frumkina, I.G. Bioluminescent microassay of various metabolites using bacterial luciferase co-immobilized with multienzyme systems. Anal. Biochem. 1988, 173, 221–227. [Google Scholar] [CrossRef]
- Sutormin, O.S.; Sukovataya, I.E.; Pande, S.; Kratasyuk, V.A. Effect of viscosity on efficiency of enzyme catalysis of bacterial luciferase coupled with lactate dehydrogenase and NAD(P)H:FMN-Oxidoreductase. Mol. Catal. 2018, 458, 60–66. [Google Scholar] [CrossRef]
- Davies, R.H.; Corry, J.W.; Andrade, J.D. Lactate assay based on bacterial bioluminescence: Enhancement, dry reagent development, and miniaturization. In Bioluminescence and Chemiluminescence; World Scientific: Singapore, 2002; pp. 441–444. [Google Scholar]
- Guilbault, G.G.; Palleschi, G.; Lubrano, G. Non-invasive biosensors in clinical analysis. Biosens. Bioelectron. 1995, 10, 379–392. [Google Scholar] [CrossRef]
- Petropoulos, K.; Piermarini, S.; Bernardini, S.; Palleschi, G.; Moscone, D. Development of a disposable biosensor for lactate monitoring in saliva. Sens. Actuators B 2016, 237, 8–15. [Google Scholar] [CrossRef]
- Soldatkin, O.O.; Nazarenko, O.A.; Pavluchenko, O.S.; Kukla, O.L.; Arkhipova, V.M.; Dzyadevych, S.V.; Soldatkin, O.P.; El’skaya, A.V. Optimization of enzymatic bioselective elements as components of potentiometric multibiosensor. Biopolym. Cell 2008, 24, 41. [Google Scholar] [CrossRef] [Green Version]
- Tékus, É.; Kaj, M.; Szabó, E.; Szénási, N.; Kerepesi, I.; Figler, M.; Gábriel, R.; Wilhelm, M. Comparison of blood and saliva lactate level after maximum intensity exercise. Acta Biol. Hung. 2012, 63, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Ohkuwa, T.; Itoh, H.; Yamazaki, Y.; Sato, Y. Salivary and blood lactate after supramaximal exercise in sprinters and long-distance runners. Scand. J. Med. Sci. Sport. 1995, 5, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Edwards, T.; Spiteri, T.; Piggott, B.; Bonhota, J.; Haff, G.; Joyce, C. Monitoring and managing fatigue in basketball. Sports 2018, 6, 19. [Google Scholar] [CrossRef] [Green Version]
- Roos, L.; Taube, W.; Brandt, M.; Heyer, L.; Wyss, T. Monitoring of daily training load and training load responses in endurance sports: What do coaches want? Schweiz. Z. Sportmed. Sport. 2013, 61, 30–36. [Google Scholar]
- Bellagambi, F.; Lomonaco, T.; Salvo, P.; Vivaldi, F.M. Saliva sampling: Methods and devices. an overview. TrAC Trends Anal. Chem. 2020, 124, 115781. [Google Scholar] [CrossRef]
- Mani, V.; Beduk, T.; Khushaim, W.; Elçin Ceylan, A.; Timur, S.; Wolfbeis, O.S.; Nabil Salama, K. Electrochemical sensors targeting salivary biomarkers: A comprehensive review. TrAC Trends Anal. Chem. 2021, 135, 116164. [Google Scholar] [CrossRef]
- Kim, J.; Valdés Ramírez, G.; Bandodkar, A.J.; Jia, W.; Martinez, A.G.; Ramírez, J.; Mercier, P.P.; Wang, J. Non-invasive mouthguard biosensor for continuous salivary monitoring of metabolites. Analyst 2014, 139, 1632–1636. [Google Scholar] [CrossRef]
- Tuteja, S.K.; Ormsby, C.; Neethirajan, S. Noninvasive label-free detection of cortisol and lactate using graphene embedded screen-printed electrode. Nano-Micro Lett. 2018, 10, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Kratasyuk, V.A.; Kolosova, E.M.; Sutormin, O.S.; Lonshakova-Mukina, V.I.; Baygin, M.M.; Rimatskaya, N.V.; Sukovataya, I.E.; Shpedt, A.A. Software for matching standard activity enzyme biosensors for soil pollution analysis. Sensors 2021, 21, 1017. [Google Scholar] [CrossRef]
- System SURE Plus and En SURE Manual. Available online: https://www.hygiena.com/wp-content/uploads/2021/03/SystemSURE-Plus-and-EnSURE-Manual-V5.0.pdf (accessed on 23 January 2023).
- Pritchard, B.T.; Stanton, W.; Lord, R.; Petocz, P.; Pepping, G.J. Factors affecting measurement of salivary cortisol and secretory immunoglobulin A in field studies of athletes. Front. Endocrinol. 2017, 8, 168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terburg, D.; Morgan, B.; van Honk, J. The testosterone–cortisol ratio: A hormonal marker for proneness to social aggression. Int. J. Law Psychiatry 2009, 32, 216. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.; Nater, U.M. Salivary alpha-amylase as a biomarker of stress in behavioral medicine. Int. J. Behav. Med. 2020, 27, 337–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leicht, C.A.; Goosey-Tolfrey, V.L.; Bishop, N.C. Exercise intensity and its impact on relationships between salivary immunoglobulin A, saliva flow rate and plasma cortisol concentration. Eur. J. Appl. Physiol. 2018, 118, 1179–1187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Anthropometric Parameters | Values of the Parameters |
---|---|
Age (years) | 18–19 |
Weight (kg) | 60–70 |
Height (cm) | 170–180 |
Number of the Participant | Lactate, mmol/L | |
---|---|---|
Before Physical Exertion | After Physical Exertion | |
4 | 0.2 ± 0.03 | 0.3 ± 0.05 |
5 | 0.2 ± 0.03 | 0.2 ± 0.03 |
6 | 0.2 ± 0.03 | 0.2 ± 0.03 |
9 | 0.2 ± 0.03 | 0.2 ± 0.03 |
10 | 0.2 ± 0.03 | 0.2 ± 0.03 |
11 | 0.2 ± 0.03 | 0.2 ± 0.03 |
12 | 0.2 ± 0.03 | 0.2 ± 0.03 |
13 | 0.2 ± 0.03 | 0.25 ± 0.04 |
14 | 0.2 ± 0.03 | 0.2 ± 0.03 |
15 | 0.2 ± 0.03 | 0.2 ± 0.03 |
16 | 0.2 ± 0.03 | 1.4 ± 0.21 |
17 | 0.2 ± 0.03 | 0.25 ± 0.04 |
19 | 0.2 ± 0.03 | 0.25 ± 0.04 |
20 | 0.2 ± 0.03 | 0.5 ± 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhukova, G.V.; Sutormin, O.S.; Sukovataya, I.E.; Maznyak, N.V.; Kratasyuk, V.A. Bioluminescent-Triple-Enzyme-Based Biosensor with Lactate Dehydrogenase for Non-Invasive Training Load Monitoring. Sensors 2023, 23, 2865. https://doi.org/10.3390/s23052865
Zhukova GV, Sutormin OS, Sukovataya IE, Maznyak NV, Kratasyuk VA. Bioluminescent-Triple-Enzyme-Based Biosensor with Lactate Dehydrogenase for Non-Invasive Training Load Monitoring. Sensors. 2023; 23(5):2865. https://doi.org/10.3390/s23052865
Chicago/Turabian StyleZhukova, Galina V., Oleg S. Sutormin, Irina E. Sukovataya, Natalya V. Maznyak, and Valentina A. Kratasyuk. 2023. "Bioluminescent-Triple-Enzyme-Based Biosensor with Lactate Dehydrogenase for Non-Invasive Training Load Monitoring" Sensors 23, no. 5: 2865. https://doi.org/10.3390/s23052865
APA StyleZhukova, G. V., Sutormin, O. S., Sukovataya, I. E., Maznyak, N. V., & Kratasyuk, V. A. (2023). Bioluminescent-Triple-Enzyme-Based Biosensor with Lactate Dehydrogenase for Non-Invasive Training Load Monitoring. Sensors, 23(5), 2865. https://doi.org/10.3390/s23052865