Optical Imaging, Optical Sensing and Devices
Conflicts of Interest
References
- Kim, J.; Kim, K.; Lee, D.; Shin, Y.; Kang, S.; Kim, J.-R.; Choi, Y.; An, K.; Lee, M. Locking multi-laser frequencies to a precision wavelength meter: Application to cold atoms. Sensors 2021, 21, 6255. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Shi, Y.; Li, F.; Wai, P.K.A. Fourier domain mode locked laser and its applications. Sensors 2022, 22, 3145. [Google Scholar] [CrossRef] [PubMed]
- Skvortsov, A.; Babich, E.; Lipovskii, A.; Redkov, A.; Yang, G.; Zhurikhina, V. Raman Scattering Study of Amino Acids Adsorbed on a Silver Nanoisland Film. Sensors 2022, 22, 5455. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Sun, H.; Zhang, H.; Li, Y.; Guo, H.; Zhang, L.; Li, R.; Yin, Q. Simulation and Experimental Research on a Beam Homogenization System of a Semiconductor Laser. Sensors 2022, 22, 3725. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, X.; Zhao, Y.; Fang, Y. Time-of-Flight Imaging in Fog Using Polarization Phasor Imaging. Sensors 2022, 22, 3159. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.; Luo, H.; Yu, C. Dual-Wavelength Polarization-Dependent Bifocal Metalens for Achromatic Optical Imaging Based on Holographic Principle. Sensors 2022, 22, 1889. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Gao, J.; Qu, T.; Zhou, S.; Zhao, D. Three-dimensional reconstruction of light field based on phase similarity. Sensors 2021, 21, 7734. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Meng, X.; Yin, Y.; Wu, H. A multi-image encryption based on sinusoidal coding frequency multiplexing and deep learning. Sensors 2021, 21, 6178. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xu, K.; Wang, S. Precision measurement method of large shaft diameter based on dual camera system. Sensors 2022, 22, 3982. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Cheng, Y.; Chen, M.; Yuan, L.; Hong, D.; Li, L. Temperature-compensated multi-point strain sensing based on cascaded FBG and optical FMCW interferometry. Sensors 2022, 22, 3970. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Tan, F.; Yu, C. Few-Mode Fiber Characterization System Based on the Spatially and Spectrally Imaging Technique. Sensors 2022, 22, 1809. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yu, C.; Lu, P. An optical fiber sensor for axial strain, curvature, and temperature measurement based on single-core six-hole optical fiber. Sensors 2022, 22, 1666. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Tang, M.; Wang, L. Optical Imaging, Optical Sensing and Devices. Sensors 2023, 23, 2882. https://doi.org/10.3390/s23062882
Chen W, Tang M, Wang L. Optical Imaging, Optical Sensing and Devices. Sensors. 2023; 23(6):2882. https://doi.org/10.3390/s23062882
Chicago/Turabian StyleChen, Wen, Ming Tang, and Liang Wang. 2023. "Optical Imaging, Optical Sensing and Devices" Sensors 23, no. 6: 2882. https://doi.org/10.3390/s23062882
APA StyleChen, W., Tang, M., & Wang, L. (2023). Optical Imaging, Optical Sensing and Devices. Sensors, 23(6), 2882. https://doi.org/10.3390/s23062882