Building a Low-Cost Wireless Biofeedback Solution: Applying Design Science Research Methodology
Abstract
:1. Introduction
1.1. Consumer-Grade Physiological Sensors Applied in Research
1.2. Relationship between User Experience and Users’ Emotional State
1.3. Affective Computing as a Tool for User Experience Evaluation
1.4. Motivations and Objectives
2. Methods
3. Results
3.1. Using Biofeedback Sensors with Arduino
3.1.1. Activity 3: Design and Development
3.1.2. Activities 4 and 5: Demonstration and Evaluation
3.2. Using Consumer-Grade Biofeedback Devices
3.2.1. Activity 3: Design and Development
3.2.2. Activity 4 and 5: Demonstration and Evaluation
3.3. Building a Low-Cost Biofeedback Platform
3.3.1. Activity 3: Design and Development
3.3.2. Activity 4: Demonstration
3.4. Activity 5: Evaluation
4. Discussion
4.1. Considerations of Selecting Sensors for Arduino Makers
4.2. Performance of the Low-Cost Biofeedback Platform Developed in This Study
5. Conclusions
- Our results demonstrate the possibility of identifying different physiological signals in varied circumstances. This result suggests the potential for using a low-cost biofeedback system in non-medical research, such as ergonomics, human factors engineering, user experience, human behavioral studies, and human–robot interaction.
- Using the self-developed system, researchers can integrate the biofeedback platform with different stimuli in various research contexts. By simultaneously recording the time points of various events and physiological signals, researchers can reduce the effort required for post-data processing while increasing the accuracy of time alignment to a specific event.
- Instead of using expensive medical-grade products, the success of the low-cost biofeedback system can serve as a reference framework, benefiting researchers who have limited budgets for equipment and biofeedback system development.
- The lightweight hardware makes the devices convenient to wear in ambient laboratories or in field studies.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jani, A.B.; Bagree, R.; Roy, A.K. Design of a low-power, low-cost ECG & EMG sensor for wearable biometric and medical application. In Proceedings of the 2017 IEEE SENSORS, Glasgow, UK, 29 October–1 November 2017; pp. 1–3. [Google Scholar]
- Silva, D.C.; Vinhas, V.; Reis, L.P.; Oliveira, E. Biometric Emotion Assessment and Feedback in an Immersive Digital Environment. Int. J. Soc. Robot. 2009, 1, 307–317. [Google Scholar] [CrossRef]
- Bota, P.; Wang, C.; Fred, A.; Silva, H. Emotion Assessment Using Feature Fusion and Decision Fusion Classification Based on Physiological Data: Are We There Yet? Sensors 2020, 20, 4723. [Google Scholar] [CrossRef]
- Oh, S.; Lee, J.Y.; Kim, D.K. The Design of CNN Architectures for Optimal Six Basic Emotion Classification Using Multiple Physiological Signals. Sensors 2020, 20, 866. [Google Scholar] [CrossRef] [Green Version]
- Egger, M.; Ley, M.; Hanke, S. Emotion Recognition from Physiological Signal Analysis: A Review. Electron. Notes Theor. Comput. Sci. 2019, 343, 35–55. [Google Scholar] [CrossRef]
- Baig, M.Z.; Kavakli, M. A Survey on Psycho-Physiological Analysis & Measurement Methods in Multimodal Systems. Multimodal Technol. Interact. 2019, 3, 37. [Google Scholar] [CrossRef] [Green Version]
- Chaltron, C.; Sherman, D.A.; Pamukoff, D.N.; Bazett-Jones, D.M.; Glaviano, N.R.; Norte, G.E. Whole-body vibration reduces hamstrings neuromuscular function in uninjured individuals. Phys. Ther. Sport 2023, 60, 17–25. [Google Scholar] [CrossRef]
- Morales-Sanchez, V.; Falco, C.; Hernandez-Mendo, A.; Reigal, R.E. Efficacy of Electromyographic Biofeedback in Muscle Recovery after Meniscectomy in Soccer Players. Sensors 2022, 22, 4024. [Google Scholar] [CrossRef]
- White, R.D.; Turner, R.P.; Arnold, N.; Bernica, A.; Lewis, B.N.; Swatzyna, R.J. Treating Severe Traumatic Brain Injury: Combining Neurofeedback and Hyperbaric Oxygen Therapy in a Single Case Study. Clin. EEG Neurosci. 2022, 53, 519–531. [Google Scholar] [CrossRef]
- Zarei, S.A.; Yahyavi, S.S.; Salehi, I.; Kazemiha, M.; Kamali, A.M.; Nami, M. Toward reanimating the laughter-involved large-scale brain networks to alleviate affective symptoms. Brain Behav. 2022, 12, e2640. [Google Scholar] [CrossRef]
- Horvath, E.; Kovacs, M.T.; Toth, D.; Toth, L. A study of the relationship between anxiety, cognitive emotion regulation and heart rate variability in athletes. J. Phys. Educ. Sport 2022, 22, 528–534. [Google Scholar]
- Rohani, F.; Khoshhal Roudposhti, K.; Taheri, H.; Mashhadi, A.; Mueller, A. Exploring Effective Features in ADHD Diagnosis among Children through EEG/Evoked Potentials using Machine Learning Techniques. Comput. Knowl. Eng. 2022, 5, 1–10. [Google Scholar]
- Sacrey, L.R.; Zwaigenbaum, L.; Brian, J.A.; Smith, I.M.; Armstrong, V.; Vaillancourt, T.; Schmidt, L.A. Behavioral and physiological differences during an emotion-evoking task in children at increased likelihood for autism spectrum disorder. Dev. Psychopathol. 2022, 1–11. [Google Scholar] [CrossRef]
- Garcia Martinez, A.; Avitia, G.C.; Loya Mendez, Y. Multidisciplinary intervention and cognitive remediation therapy for adults with obesity: A study protocol for a randomized controlled clinical trial. Contemp. Clin. Trials Commun. 2023, 31, 101041. [Google Scholar] [CrossRef]
- Faridi, A.; Taremian, F.; Thatcher, R.W.; Dadashi, M.; Moloodi, R. Comparing LORETA Z Score Neurofeedback and Cognitive Rehabilitation Regarding Their Effectiveness in Reducing Craving in Opioid Addicts. Basic Clin. Neurosci. 2022, 13, 81–96. [Google Scholar] [CrossRef]
- Fiľo, P.; Janoušek, O. The relation between physical and mental load, and the course of physiological functions and cognitive performance. Theor. Issues Ergon. Sci. 2021, 23, 38–59. [Google Scholar] [CrossRef]
- Pilcher, J.J.; Morris, D.M.; Limyansky, S.E.; Bryant, S.A. The effect of using activity workstations on heart rate variability during complex cognitive tasks. J. Am. Coll. Health 2022, 70, 948–955. [Google Scholar] [CrossRef]
- Tajari, S.N.; Gholami, S.; Rostami, R.; Trabelsi, K.; Taheri, M. The effect of perceptual-motor exercise on temporal dynamics of cognitive inhibition control in children with developmental coordination disorder. Ment. Health Phys. Act. 2023, 24, 100495. [Google Scholar] [CrossRef]
- Sawangjai, P.; Hompoonsup, S.; Leelaarporn, P.; Kongwudhikunakorn, S.; Wilaiprasitporn, T. Consumer Grade EEG Measuring Sensors as Research Tools: A Review. IEEE Sens. J. 2020, 20, 3996–4024. [Google Scholar] [CrossRef]
- Ding, N.; Zhong, Y.; Li, J.; Xiao, Q.; Zhang, S.; Xia, H. Visual preference of plant features in different living environments using eye tracking and EEG. PLoS ONE 2022, 17, e0279596. [Google Scholar] [CrossRef]
- Medhi, K.; Hoque, N.; Dutta, S.K.; Hussain, M.I. An efficient EEG signal classification technique for Brain–Computer Interface using hybrid Deep Learning. Biomed. Signal Process. Control 2022, 78, 104005. [Google Scholar] [CrossRef]
- Lin, C.J.; Lukodono, R.P. Classification of mental workload in Human-robot collaboration using machine learning based on physiological feedback. J. Manuf. Syst. 2022, 65, 673–685. [Google Scholar] [CrossRef]
- Lakhan, P.; Banluesombatkul, N.; Changniam, V.; Dhithijaiyratn, R.; Leelaarporn, P.; Boonchieng, E.; Hompoonsup, S.; Wilaiprasitporn, T. Consumer Grade Brain Sensing for Emotion Recognition. IEEE Sens. J. 2019, 19, 9896–9907. [Google Scholar] [CrossRef] [Green Version]
- Mase, J.M.; Leesakul, N.; Figueredo, G.P.; Torres, M.T. Facial identity protection using deep learning technologies: An application in affective computing. AI Ethics 2022, 1–10. [Google Scholar] [CrossRef]
- NeuroSky. Brain Wave Signal (EEG) of NeuroSky, Inc. Available online: https://frontiernerds.com/files/neurosky-vs-medical-eeg.pdf (accessed on 1 February 2023).
- Wagner, R.E.; Placido da Silva, H.; Gramann, K. Validation of a Low-Cost Electrocardiography (ECG) System for Psychophysiological Research. Sensors 2021, 21, 4485. [Google Scholar] [CrossRef]
- Castaneda, D.; Esparza, A.; Ghamari, M.; Soltanpur, C.; Nazeran, H. A review on wearable photoplethysmography sensors and their potential future applications in health care. Int. J. Biosens. Bioelectron. 2018, 4, 195–202. [Google Scholar] [CrossRef] [Green Version]
- Montini, E.; Cutrona, V.; Gladysz, B.; Dell’Oca, S.; Landolfi, G.; Bettoni, A. A methodology to select wearable devices for Industry 5.0 applications. In Proceedings of the 2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation (ETFA), Stuttgart, Germany, 6–9 September 2022; pp. 1–4. [Google Scholar]
- Bolanos, M.; Nazeran, H.; Haltiwanger, E. Comparison of heart rate variability signal features derived from electrocardiography and photoplethysmography in healthy individuals. Int. Conf. IEEE Eng. Med. Biol. Soc. 2006, 2006, 4289–4294. [Google Scholar]
- Esgalhado, F.; Batista, A.; Vassilenko, V.; Russo, S.; Ortigueira, M. Peak Detection and HRV Feature Evaluation on ECG and PPG Signals. Symmetry 2022, 14, 1139. [Google Scholar] [CrossRef]
- Lin, W.-H.; Wu, D.; Li, C.; Zhang, H.; Zhang, Y.-T. Comparison of Heart Rate Variability from PPG with That from ECG. In The International Conference on Health Informatics; IFMBE Proceedings; Springer: Cham, Switzerland, 2014; pp. 213–215. [Google Scholar]
- Weiler, D.T.; Villajuan, S.O.; Edkins, L.; Cleary, S.; Saleem, J.J. Wearable heart rate monitor technology accuracy in research: A comparative study between PPG and ECG technology. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2017, 61, 1292–1296. [Google Scholar] [CrossRef]
- Tăuţan, A.-M.; Young, A.; Wentink, E.; Wieringa, F. Characterization and reduction of motion artifacts in photoplethysmographic signals from a wrist-worn device. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2015, 2015, 6146–6149. [Google Scholar]
- Wijshoff, R.W.; Mischi, M.; Veen, J.; Van Der Lee, A.M.; Aarts, R.M. Reducing motion artifacts in photoplethysmograms by using relative sensor motion: Phantom study. J. Biomed. Opt. 2012, 17, 117007. [Google Scholar] [CrossRef] [Green Version]
- Lai, P.H.; Kim, I. Lightweight wrist photoplethysmography for heavy exercise: Motion robust heart rate monitoring algorithm. Healthc. Technol. Lett. 2015, 2, 6–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- TajDini, M.; Sokolov, V.; Kuzminykh, I.; Shiaeles, S.; Ghita, B. Wireless Sensors for Brain Activity—A Survey. Electronics 2020, 9, 2092. [Google Scholar] [CrossRef]
- Liu, S.H.; Wang, J.J.; Chen, W.; Pan, K.L.; Su, C.H. An Examination System to Detect Deep Vein Thrombosis of a Lower Limb Using Light Reflection Rheography. Sensors 2021, 21, 2446. [Google Scholar] [CrossRef] [PubMed]
- Salem, M.; Elkaseer, A.; El-Maddah, I.A.M.; Youssef, K.Y.; Scholz, S.G.; Mohamed, H.K. Non-Invasive Data Acquisition and IoT Solution for Human Vital Signs Monitoring: Applications, Limitations and Future Prospects. Sensors 2022, 22, 6625. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Lu, X.; Li, Z.; Zhang, M.; Li, J.; Zhang, D. Investigating the Physiological Correlates of Daily Well-being: A PERMA Model-Based Study. Open Psychol. J. 2020, 13, 169–180. [Google Scholar] [CrossRef]
- Shui, X.; Zhang, M.; Li, Z.; Hu, X.; Wang, F.; Zhang, D. A dataset of daily ambulatory psychological and physiological recording for emotion research. Sci. Data 2021, 8, 161. [Google Scholar] [CrossRef]
- Norman, D.; Miller, J.; Henderson, A. What you see, some of what’s in the future, and how we go about doing it: HI at Apple Computer. In Proceedings of the Conference Companion on Human Factors in Computing Systems, Denver, CO, USA, 7–11 May 1995; p. 155. [Google Scholar]
- Norman, D.; Nielsen, J. The Definition of User Experience (UX). Available online: https://www.nngroup.com/articles/definition-user-experience/ (accessed on 1 February 2023).
- SOCIETY, E.R. UX Definitions. Available online: https://experienceresearchsociety.org/ux/ux-definitions/ (accessed on 1 February 2023).
- SOCIETY, E.R. UX Evaluation Methods. Available online: https://experienceresearchsociety.org/ux/evaluation-methods/ (accessed on 1 February 2023).
- Picard, R.W. Affective Computing; MIT Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Fernández-Caballero, A.; González, P.; López, M.; Navarro, E. Special Issue on Socio-Cognitive and Affective Computing. Appl. Sci. 2018, 8, 1371. [Google Scholar] [CrossRef] [Green Version]
- Tao, J.; Tan, T. Affective computing: A review. In International Conference on Affective Computing and Intelligent Interaction; Springer: Berlin/Heidelberg, Germany, 2005; pp. 981–995. [Google Scholar]
- Zaki, T.; Islam, M.N. Neurological and physiological measures to evaluate the usability and user-experience (UX) of information systems: A systematic literature review. Comput. Sci. Rev. 2021, 40, 100375. [Google Scholar] [CrossRef]
- Certicky, M.; Certicky, M.; Sincak, P.; Magyar, G.; Vascak, J.; Cavallo, F. Psychophysiological Indicators for Modeling User Experience in Interactive Digital Entertainment. Sensors 2019, 19, 989. [Google Scholar] [CrossRef] [Green Version]
- Liapis, A.; Katsanos, C.; Karousos, N.; Xenos, M.; Orphanoudakis, T. User Experience Evaluation: A Validation Study of a Tool-based Approach for Automatic Stress Detection Using Physiological Signals. Int. J. Hum.-Comput. Interact. 2020, 37, 470–483. [Google Scholar] [CrossRef]
- Maia, C.L.B.; Furtado, E.S. An Approach to Analyze User’s Emotion in HCI Experiments Using Psychophysiological Measures. IEEE Access 2019, 7, 36471–36480. [Google Scholar] [CrossRef]
- Mehta, D.; Siddiqui, M.F.H.; Javaid, A.Y. Facial Emotion Recognition: A Survey and Real-World User Experiences in Mixed Reality. Sensors 2018, 18, 416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rico-Olarte, C.; López, D.M.; Kepplinger, S. Towards a Conceptual Framework for the Objective Evaluation of User Experience. In Design, User Experience, and Usability: Theory and Practice; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2018; pp. 546–559. [Google Scholar]
- Mandryk, R.L.; Inkpen, K.M.; Calvert, T.W. Using psychophysiological techniques to measure user experience with entertainment technologies. Behav. Inf. Technol. 2006, 25, 141–158. [Google Scholar] [CrossRef]
- Jahedi, S.; Méndez, F. On the advantages and disadvantages of subjective measures. J. Econ. Behav. Organ. 2014, 98, 97–114. [Google Scholar] [CrossRef]
- Albert, W.; Tullis, T.S. Chapter 8—Measuring Emotion. In Measuring the User Experience, 3rd ed.; Albert, W., Tullis, T.S., Eds.; Morgan Kaufmann: Burlington, MA, USA, 2023; pp. 195–216. [Google Scholar]
- Heng, W.; Solomon, S.; Gao, W. Flexible Electronics and Devices as Human-Machine Interfaces for Medical Robotics. Adv. Mater. 2022, 34, e2107902. [Google Scholar] [CrossRef]
- Holland, J.; Kingston, L.; McCarthy, C.; Armstrong, E.; O’Dwyer, P.; Merz, F.; McConnell, M. Service Robots in the Healthcare Sector. Robotics 2021, 10, 47. [Google Scholar] [CrossRef]
- Becker, M.; Efendić, E.; Odekerken-Schröder, G. Emotional communication by service robots: A research agenda. J. Serv. Manag. 2022, 33, 675–687. [Google Scholar] [CrossRef]
- Chiang, A.-H.; Trimi, S.; Lo, Y.-J. Emotion and service quality of anthropomorphic robots. Technol. Forecast. Soc. Chang. 2022, 177, 121550. [Google Scholar] [CrossRef]
- Filieri, R.; Lin, Z.; Li, Y.; Lu, X.; Yang, X. Customer Emotions in Service Robot Encounters: A Hybrid Machine-Human Intelligence Approach. J. Serv. Res. 2022, 25, 614–629. [Google Scholar] [CrossRef]
- Kipnis, E.; McLeay, F.; Grimes, A.; de Saille, S.; Potter, S. Service Robots in Long-Term Care: A Consumer-Centric View. J. Serv. Res. 2022, 25, 667–685. [Google Scholar] [CrossRef]
- Hwang, C.-L.; Deng, Y.-C.; Pu, S.-E. Human-Robot Collaboration Using Sequential-Recurrent-Convolution-Network-Based Dynamic Face Emotion and Wireless Speech Command Recognitions. IEEE Access 2022, 1. [Google Scholar] [CrossRef]
- Yang, D. Design of Service Robot Based on User Emotion Recognition and Environmental Monitoring. J. Environ. Public Health 2022, 2022, 3517995. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Sun, S.; Zhang, Z.; Ma, Z.; Wu, X.; Li, H.; Chen, T.; Zhang, K. Consumer shopping emotion and interest database: A unique database with a multimodal emotion recognition method for retail service robots to infer consumer shopping intentions better than humans. J. Electron. Imaging 2022, 31, 061807. [Google Scholar] [CrossRef]
- Telembici, T.; Muscar, L.; Grama, L.; Rusu, C. Emotion Recognition Audio Database for Service Robots. In Proceedings of the 2022 International Symposium on Electronics and Telecommunications (ISETC), Timisoara, Romania, 10–11 November 2022; pp. 1–4. [Google Scholar]
- Weiss, A.; Bernhaupt, R.; Lankes, M.; Tscheligi, M. The USUS evaluation framework for human-robot interaction. Symp. New Front. Hum.-Robot. Interact. 2009, 4, 11–26. [Google Scholar]
- Dobrosovestnova, A.; Hannibal, G.; Reinboth, T. Service robots for affective labor: A sociology of labor perspective. AI Soc. 2022, 37, 487–499. [Google Scholar] [CrossRef] [PubMed]
- Hlee, S.; Park, J.; Park, H.; Koo, C.; Chang, Y. Understanding customer’s meaningful engagement with AI-powered service robots. Inf. Technol. People, 2022; ahead-of-print. [Google Scholar] [CrossRef]
- Abdulsalam, W.H.; Alhamdani, R.S.; Abdullah, M.N. Facial Emotion Recognition from Videos Using Deep Convolutional Neural Networks. Int. J. Mach. Learn. Comput. 2019, 9, 14–19. [Google Scholar] [CrossRef] [Green Version]
- Ayata, D.; Yaslan, Y.; Kamasak, M.E. Emotion Recognition from Multimodal Physiological Signals for Emotion Aware Healthcare Systems. J. Med. Biol. Eng. 2020, 40, 149–157. [Google Scholar] [CrossRef] [Green Version]
- Domínguez-Jiménez, J.A.; Campo-Landines, K.C.; Martínez-Santos, J.C.; Delahoz, E.J.; Contreras-Ortiz, S.H. A machine learning model for emotion recognition from physiological signals. Biomed. Signal Process. Control 2020, 55, 101646. [Google Scholar] [CrossRef]
- Giannopoulos, P.; Perikos, I.; Hatzilygeroudis, I. Deep Learning Approaches for Facial Emotion Recognition: A Case Study on FER-2013. In Advances in Hybridization of Intelligent Methods; Smart Innovation, Systems and Technologies; Springer: Cham, Switzerland, 2018; pp. 1–16. [Google Scholar]
- Jain, D.K.; Shamsolmoali, P.; Sehdev, P. Extended deep neural network for facial emotion recognition. Pattern Recognit. Lett. 2019, 120, 69–74. [Google Scholar] [CrossRef]
- Kalsum, T.; Anwar, S.M.; Majid, M.; Khan, B.; Ali, S.M. Emotion recognition from facial expressions using hybrid feature descriptors. IET Image Process. 2018, 12, 1004–1012. [Google Scholar] [CrossRef]
- Lee, J.; Yoo, S.K. Recognition of Negative Emotion using Long Short-Term Memory with Bio-Signal Feature Compression. Sensors 2020, 20, 573. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Xu, C.; Feng, Z. Analysis of physiological for emotion recognition with the IRS model. Neurocomputing 2016, 178, 103–111. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Z.; He, H. Hierarchical Convolutional Neural Networks for EEG-Based Emotion Recognition. Cogn. Comput. 2017, 10, 368–380. [Google Scholar] [CrossRef]
- Minaee, S.; Minaei, M.; Abdolrashidi, A. Deep-Emotion: Facial Expression Recognition Using Attentional Convolutional Network. Sensors 2021, 21, 46. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, Z.; Frounchi, J.; Amiri, M. Wavelet-based emotion recognition system using EEG signal. Neural Comput. Appl. 2016, 28, 1985–1990. [Google Scholar] [CrossRef]
- Ragot, M.; Martin, N.; Em, S.; Pallamin, N.; Diverrez, J.-M. Emotion Recognition Using Physiological Signals: Laboratory vs. Wearable Sensors. Adv. Hum. Factors Wearable Technol. Game Des. 2018, 608, 15–22. [Google Scholar]
- Sang, D.V.; Ha, P.T. Discriminative deep feature learning for facial emotion recognition. In Proceedings of the 2018 1st International Conference on Multimedia Analysis and Pattern Recognition (MAPR), Ho Chi Minh City, Vietnam, 5–6 April 2018; pp. 1–6. [Google Scholar]
- Shu, L.; Yu, Y.; Chen, W.; Hua, H.; Li, Q.; Jin, J.; Xu, X. Wearable Emotion Recognition Using Heart Rate Data from a Smart Bracelet. Sensors 2020, 20, 718. [Google Scholar] [CrossRef] [Green Version]
- Song, T.; Zheng, W.; Lu, C.; Zong, Y.; Zhang, X.; Cui, Z. MPED: A Multi-Modal Physiological Emotion Database for Discrete Emotion Recognition. IEEE Access 2019, 7, 12177–12191. [Google Scholar] [CrossRef]
- Wrobel, M. Applicability of Emotion Recognition and Induction Methods to Study the Behavior of Programmers. Appl. Sci. 2018, 8, 323. [Google Scholar] [CrossRef] [Green Version]
- vom Brocke, J.; Hevner, A.; Maedche, A. Introduction to design science research. In Design Science Research. Cases. Progress in IS; Springer: Cham, Switzerland, 2020; pp. 1–13. [Google Scholar]
- Peffers, K.; Tuunanen, T.; Rothenberger, M.A.; Chatterjee, S. A Design Science Research Methodology for Information Systems Research. J. Manag. Inf. Syst. 2014, 24, 45–77. [Google Scholar] [CrossRef]
- Drachen, A.; Nacke, L.E.; Yannakakis, G.; Pedersen, A.L. Correlation between heart rate, electrodermal activity and player experience in first-person shooter games. In Proceedings of the 5th ACM SIGGRAPH Symposium on Video Games, Los Angeles, CA, USA, 28–29 July 2010; pp. 49–54. [Google Scholar]
- Poltavski, D.V. The use of single-electrode wireless EEG in biobehavioral investigations. Mob. Health Technol. Methods Protoc. 2015, 1256, 375–390. [Google Scholar]
- Rogers, J.M.; Johnstone, S.J.; Aminov, A.; Donnelly, J.; Wilson, P.H. Test-retest reliability of a single-channel, wireless EEG system. Int. J. Psychophysiol. 2016, 106, 87–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavallo, A.; Foster, N.C.; Balasubramanian, K.K.; Merello, A.; Zini, G.; Crepaldi, M.; Becchio, C. A low-cost stand-alone platform for measuring motor behavior across developmental applications. iScience 2021, 24, 102742. [Google Scholar] [CrossRef]
- Peirce, J.; Hirst, R.; MacAskill, M. Building Experiments in PsychoPy; Sage: Thousand Oaks, CA, USA, 2022; pp. 258–263. [Google Scholar]
Sensor | Manufacturer | Model |
---|---|---|
EEG | Twarm.com | NeuroSky TGAM MDL0026 |
GSR | SEEED | Grove-GSR_Sensor V1.2 |
HR | SEEED | Grove-Finger-clip Heart Rate Sensor |
SEEED | Grove-Ear-clip Heart Rate Sensor | |
SEEED | Grove-Chest Strap Heart Rate Sensor | |
DFRobot | Heart Rate Monitor Sensor (PPG) | |
DFRobot | Analog Heart Rate Monitor Sensor (ECG) | |
World Famous Electronics LLC. | Pulse Sensor |
Designer | Library | Version | OS | Release Date | DOC |
---|---|---|---|---|---|
NeuroSky | NeuroSkyPy | 1.6 | Windows | 24 January 2020 | Yes |
Emotiv | pyeeg 1 | 0.0.2 | Windows | 31 March 2021 | No |
Interaxon | Muselsl | 2.2.1 | Windows, | 2 June 2022 | Yes |
Mac, | |||||
Linux, | |||||
POSIX, | |||||
OpenBCI | pyOpenBCI | 0.13 | Windows | 28 May 2019 | Yes |
Mac, | |||||
Linux 2 |
Function | Library | Version | Sampling/Updating Frequency |
---|---|---|---|
GUI | PySide6 | 6.3.0 | 1 Hz |
EEG | NeuroSkyPy | 1.6 | 512 Hz for the raw value and 1 Hz for EEG power |
HR | bleak | 0.14.2 | 1 Hz |
GSR | bleak | 0.14.2 | 125 Hz |
Face | OpenCV | 4.5.5.64 | 1 Hz |
Graph | pyqtgraph | 0.12.4 | 1 Hz |
Power | Range |
---|---|
delta | 0.5–2.75 Hz |
theta | 3.5–6.75 Hz |
low-alpha | 7.5–9.25 Hz |
high-alpha | 10.0–11.75 Hz |
low-beta | 13.0–16.75 Hz |
high-beta | 18.0–29.75 Hz |
low-gamma | 31.0–39.75 Hz |
mid-gamma | 41.0–49.75 Hz |
Comparisons | t-value | p-value |
---|---|---|
HR: 2D game vs. baseline | t658 = 2.24 | 0.026 |
HR: 3D slide vs. baseline | t658 = −11.17 | <0.001 |
HR: 2D game vs. 3D slide | t1198 = 27.85 | <0.001 |
GSR: 2D game vs. baseline | t1198 = −91.47 | <0.001 |
GSR: 3D slide vs. baseline | t1198 = −31.74 | <0.001 |
GSR: 2D game vs. 3D slide | t1198 = −36.70 | <0.001 |
EEG Raw: 2D game vs. baseline | t1198 = −2.02 | 0.043 |
EEG Raw: 3D slide vs. baseline | t1198 = 4.17 | <0.001 |
EEG Raw: 2D game vs. 3D slide | t1198 = −5.28 | <0.001 |
Sequence | Poor Signal | Attention | Meditation | Delta | Theta | High Alpha | Low Alpha | High Beta | Low Beta | Mid Gamma | Low Gamma |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 66 | 77 | 2414 | 4479 | 1085 | 3016 | 2274 | 7953 | 3891 | 4919 |
1 | 0 | 48 | 81 | 225175 | 207487 | 39649 | 27987 | 24423 | 15753 | 49699 | 11359 |
2 | 0 | 50 | 67 | 89096 | 26396 | 4230 | 7523 | 9308 | 4242 | 3581 | 5368 |
3 | 0 | 40 | 51 | 485739 | 659212 | 59886 | 134022 | 52701 | 71614 | 71203 | 31691 |
4 | 0 | 40 | 56 | 86695 | 45658 | 15004 | 30145 | 25936 | 24866 | 31767 | 25100 |
5 | 0 | 57 | 47 | 11212 | 29726 | 4074 | 2742 | 35128 | 11414 | 13355 | 37743 |
6 | 0 | 69 | 38 | 18924 | 18845 | 4427 | 5056 | 39467 | 27661 | 14828 | 21849 |
7 | 0 | 84 | 35 | 51547 | 48415 | 12819 | 9886 | 30886 | 37115 | 19827 | 21989 |
8 | 0 | 78 | 29 | 304630 | 113782 | 2388 | 30708 | 13421 | 11459 | 8432 | 22863 |
9 | 0 | 61 | 34 | 706916 | 266871 | 11765 | 32688 | 26741 | 9476 | 8145 | 21529 |
10 | 0 | 57 | 37 | 368630 | 24306 | 7170 | 5785 | 39560 | 10214 | 53417 | 37668 |
11 | 0 | 61 | 38 | 6043 | 20863 | 8923 | 7053 | 26674 | 20595 | 31412 | 23924 |
12 | 0 | 74 | 34 | 121654 | 20911 | 3792 | 2298 | 13380 | 5358 | 7991 | 4227 |
13 | 0 | 83 | 34 | 793945 | 107148 | 7736 | 13083 | 43273 | 12841 | 25614 | 52645 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, C.-F.; Lin, C.J. Building a Low-Cost Wireless Biofeedback Solution: Applying Design Science Research Methodology. Sensors 2023, 23, 2920. https://doi.org/10.3390/s23062920
Cheng C-F, Lin CJ. Building a Low-Cost Wireless Biofeedback Solution: Applying Design Science Research Methodology. Sensors. 2023; 23(6):2920. https://doi.org/10.3390/s23062920
Chicago/Turabian StyleCheng, Chih-Feng, and Chiuhsiang Joe Lin. 2023. "Building a Low-Cost Wireless Biofeedback Solution: Applying Design Science Research Methodology" Sensors 23, no. 6: 2920. https://doi.org/10.3390/s23062920
APA StyleCheng, C. -F., & Lin, C. J. (2023). Building a Low-Cost Wireless Biofeedback Solution: Applying Design Science Research Methodology. Sensors, 23(6), 2920. https://doi.org/10.3390/s23062920