Real-Time Trajectory Prediction Method for Intelligent Connected Vehicles in Urban Intersection Scenarios
Abstract
:1. Introduction
- We designed a real-time trajectory prediction method for ICVs, which combines the advantages of the Q-Learning algorithm and LSTM network with more consideration of spatiotemporal characteristics. We utilized the GM-PHD model to fuse the multi-sensor data output from the camera, LiDAR, V2X unit and traffic signal controller. Therefore, we not only enhanced positioning capabilities but also improved the capability of the trajectory prediction of the ICV;
- We improved the dimensionality of the input of an improved LSTM model by using microscopic data from V2X communication, such as speed, acceleration, and traffic light timing data. Meanwhile, the signal light factor was considered in the improved LSTM model, and the proposed trajectory prediction method had better performance at signal-controlled intersections;
- Different from most previous research results on vehicle trajectory prediction, we constructed an intelligent roadside unit for perceiving the data states of the ICVs, such as latitude, longitude, altitude, acceleration, and the trajectories of the ICVs, which could be predicted. Meanwhile, a practical urban intersection was selected for testing and evaluating the performance of the proposed model, obtaining a more credible result than the simulation.
2. Real-Time Trajectory Prediction Method for Intelligent Connected Vehicles
2.1. Vehicle Perception Model Based on GM-PHD
- (1)
- Data preprocessing
- (2)
- The Modeling of ICVs
- (3)
- Initialization of the GM-PHD parameters
- (4)
- ICV states prediction and processing
2.2. Vehicle Trajectory Prediction Model Based on Improved LSTM
2.2.1. Graph Modeling and Features Encoding for Improved LSTM
2.2.2. Prediction of ICVs Trajectory Based on the LSTM Model
2.2.3. Improved LSTM Based on Q-Learning
3. Results and Discussion
3.1. Scenario and Parameters
3.2. Evaluation Metrics
3.3. Experimental Results and Analysis
3.3.1. Accuracy of ICV Perception Analysis
3.3.2. Advanced ICV Trajectory-Prediction Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, S.; Jung, Y.; Park, Y.-H.; Kim, S.-W. Design of V2X-Based Vehicular Contents Centric Networks for Autonomous Driving. IEEE Trans. Intell. Transp. Syst. 2022, 23, 13526–13537. [Google Scholar] [CrossRef]
- Thandavarayan, G.; Sepulcre, M.; Gozalvez, J. Cooperative perception for connected and automated vehicles: Evaluation and impact of congestion control. IEEE Access 2020, 8, 197665–197683. [Google Scholar] [CrossRef]
- Thandavarayan, G.; Sepulcre, M.; Gozalvez, J. Generation of cooperative perception messages for connected and automated vehicles. IEEE Trans. Veh. Technol. 2020, 69, 16336–16341. [Google Scholar] [CrossRef]
- Wang, P.; Yu, H.; Zhang, W.; Wang, L.; Wu, W. Real-time traffic status evaluation method for urban cooperative vehicle infrastructure system. China J. Highw. Transp. 2019, 32, 176–187. [Google Scholar]
- Xiang, C.; Cheng, W.; Zhang, Z.; Jiao, X.; Qu, Y.; Chen, C.; Dai, H. Intelligent edge-empowered adaptive data recovery for urban traffic. J. Comp. Res. Dev. 2022, 1–15. [Google Scholar] [CrossRef]
- Yang, Z.; Tang, R.; Bao, J.; Lu, J.; Zhang, Z. A Real-time trajectory prediction method of small-scale quadrotors based on GPS data and neural network. Sensors 2020, 20, 7061. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Deng, H.; Zhang, J.; Wang, L.; Zhang, M.; Li, Y. Model predictive control for connected vehicle platoon under switching communication topology. IEEE Trans. Intell. Transp. Syst. 2022, 23, 7817–7830. [Google Scholar] [CrossRef]
- Wang, X.; Ning, Z.; Hu, X.; Ngai, E.C.-H.; Wang, L.; Hu, B.; Kwok, R.Y. A city-wide real-time traffic management system: Enabling crowdsensing in social internet of vehicles. IEEE Commun. Mag. 2018, 56, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Lyu, N.; Wen, J.; Duan, Z.; Wu, C. Vehicle trajectory prediction and cut-in collision warning model in a connected vehicle environment. IEEE Trans. Intell. Transp. Syst. 2022, 23, 966–981. [Google Scholar] [CrossRef]
- Li, X.; Guo, Z. Multi-source information fusion model of traffic lifeline based on improved D-S evidence theory. In Proceedings of the 2018 26th International Conference on Geoinformatics (Geoinformatics 2018), Kunming, China, 1–6 June 2018. [Google Scholar]
- Hossain, M.; Elshafiey, I.; Al-Sanie, A. Cooperative vehicle positioning with multi-sensor data fusion and vehicular communications. Wirel. Netw. 2019, 25, 1403–1413. [Google Scholar] [CrossRef]
- Bounini, F.; Gingras, D.; Pollart, H.; Gruyer, D. From simultaneous localization and mapping to collaborative localization for intelligent vehicles. IEEE Commun. Mag. 2021, 13, 196–216. [Google Scholar] [CrossRef]
- Jie, B.; Li, S.; Zhang, H.; Huang, L.; Wang, P. Robust target detection and tracking algorithm based on roadside radar and camera. Sensors 2021, 21, 1116. [Google Scholar]
- Sabzalian, M.H.; Mohammadzadeh, A.; Rathinasamy, S.; Zhang, W. A developed observer-based type-2 fuzzy control for chaotic systems. Int. J. Syst. Sci. 2021, 1–20. [Google Scholar] [CrossRef]
- Sabzalian, M.H.; Mohammadzadeh, A.; Lin, S.; Zhang, W. A robust control of a class of induction motors using rough type-2 fuzzy neural networks. Soft Comput. 2020, 24, 9809–9819. [Google Scholar] [CrossRef]
- Schreier, M.; Willert, V.; Adamy, J. An integrated approach to maneuver-based trajectory prediction and criticality assessment in arbitrary road environments. IEEE Trans. Intell. Transp. Syst. 2016, 17, 2751–2766. [Google Scholar] [CrossRef]
- Xie, G.; Gao, H.; Qian, L.; Huang, B.; Li, K.; Wang, J. Vehicle trajectory prediction by integrating physics and maneuver-based approaches using interactive multiple models. IEEE Trans. Ind. Electron. 2018, 65, 5999–6008. [Google Scholar] [CrossRef]
- Cui, H.; Radosavljevic, V.; Chou, F.; Lin, T.; Nguyen, T.; Huang, T.; Schneider, J.; Djuric, N. Multimodal trajectory predictions for autonomous driving using deep convolutional networks. In Proceedings of the International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 2090–2096. [Google Scholar]
- Luo, W.; Yang, B.; Urtasun, R. Fast and furious: Real time end-to-end 3D detection, tracking and motion forecasting with a single convolutional net. In Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 3569–3577. [Google Scholar]
- Wen, H.; Zhang, W.; Zhao, S. Vehicle lane-change trajectory prediction model based on generative adversarial networks. J. Cent. South Univ. (Nat. Sci. Ed.) 2020, 48, 32–40. [Google Scholar]
- Qin, S.; Li, T. Research on multi-interaction vehicle trajectory prediction. Comput. Ind. Eng. 2021, 57, 232–238. [Google Scholar]
- Wang, P.; Wang, Y.; Deng, H.; Zhang, M.; Zhang, J. Multilane spatiotemporal trajectory optimization method (MSTTOM) for connected vehicles. J. Adv. Transp. 2020, 2020, 8819911. [Google Scholar] [CrossRef]
- Häfner, B.; Bajpai, V.; Ott, J.; Schmitt, G.A. A survey on cooperative architectures and maneuvers for connected and automated vehicles. IEEE Commun. Surv. Tutor. 2022, 24, 380–403. [Google Scholar] [CrossRef]
- Wang, P.; Liu, X.; Wang, Y.; Wang, T.; Zhang, J. Short-term traffic state prediction based on mobile edge computing in V2X communication. Appl. Sci. 2021, 11, 11530. [Google Scholar] [CrossRef]
- Zyner, A.; Worrall, S.; Nebot, E. Naturalistic driver intention and path prediction using recurrent neural networks. IEEE Trans. Intell. Transp. Syst. 2018, 21, 1584–1594. [Google Scholar] [CrossRef] [Green Version]
- Schreiber, M.; Hoermann, S.; Dietmayer, K. Long-term occupancy grid prediction using recurrent neural networks. In Proceedings of the 2019 International IEEE Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 9299–9305. [Google Scholar]
- Ma, Y.; Zhu, X.; Zhang, S.; Yang, R.; Wang, W.; Manocha, D. TrafficPredict: Trajectory prediction for heterogeneous traffic-agents. In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19), Honolulu, HI, USA, 27 January–1 February 2019. [Google Scholar]
- Ji, X.; Fei, C.; He, X.; Liu, Y.; Liu, Y. Intention recognition and trajectory prediction for vehicles using LSTM network. China J. Highw. Transp. 2019, 32, 34–42. [Google Scholar]
- Shi, W.; Xu, J.; Zhu, D.; Zhang, G.; Wang, X.; Li, J.; Zhang, X. RGB-D semantic segmentation and label-oriented Voxelgrid fusion for accurate 3D semantic mapping. IEEE Trans. Circ. Syst. Video Technol. 2022, 32, 183–197. [Google Scholar] [CrossRef]
- Lindenmaier, L.; Aradi, S.; Bécsi, T.; Törő, O. GM-PHD filter based sensor data fusion for automotive frontal perception system. IEEE Trans. Veh. 2022, 71, 7215–7229. [Google Scholar] [CrossRef]
- Zhao, Y.; Lee, J.; Chen, W. Q-greedyUCB: A new exploration policy to learn resource-efficient scheduling. China Commun. 2021, 18, 12–23. [Google Scholar] [CrossRef]
- Inou, M.; Tang, S.; Obana, S. LSTM-Based High Precision Pedestrian Positioning. In Proceedings of the 2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 8–11 January 2022; pp. 675–678. [Google Scholar]
- Rubino, C.; Crocco, M.; Bue, A.D. 3D Object Localisation from Multi-View Image Detections. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 1281–1294. [Google Scholar] [CrossRef]
- Shin, K.; Kwon, Y.P.; Tomizuka, M. RoarNet: A Robust 3D Object Detection Based on Region Approximation Refinement. In Proceedings of the 2019 IEEE Intelligent Vehicles Symposium (IV), Paris, France, 29 August 2019; pp. 2510–2515. [Google Scholar]
- Cho, K.; Merrienboer, B.V.; Gulcehre, C.; Bougares, F. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078. [Google Scholar]
- Alahi, A.; Goel, K.; Ramanathan, V.; Robicquet, A.; Li, F.; Savarese, S. Social LSTM: Human trajectory prediction in crowded spaces computer vision and pattern recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 961–971. [Google Scholar]
- Vemula, A.; Muelling, K.; Oh, J. Social Attention: Modeling attention in human crowds. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–26 May 2018; pp. 4601–4607. [Google Scholar]
1: | Given for target , the set of measurements for |
2: | Step 1. (Initialization) |
3: | for do |
4: | Initialize , Initialize |
5: | end for |
6: | Step 2. (Prediction for birth ICVs) |
7: | i: = 0 |
8: | for do |
9: | i: = i+1, |
10: | end for |
11: | for do |
12: | for do |
13: | i: = i+1, , |
14: | |
15: | end for |
16: | end for |
17: | Step 3. (Prediction for existing ICVs) |
18: | for do |
19: | i: = i+1, , , |
20: | end for |
21: | |
22: | Step 4. (Construction of PHD update components) |
23: | for do |
24: | , |
25: | , |
26: | end for |
27: | Step 5. (Update) |
28: | for do |
29: | , , |
30: | end for |
31: | l: = 0 |
32: | for each do |
33: | l: = l+1 |
34: | for do |
35: | , |
36: | |
37: | end for |
38: | for do |
39: | |
40: | end for |
41: | end for |
42: | |
43: | Output |
The Speed States of ICVs | Q-Value |
---|---|
Acceleration | 2 |
Constant | 1 |
Deceleration | −1 |
Parameters | Description | Values |
---|---|---|
Intelligent roadside unit and ICVs | The number of ICVs | 3 |
V2X communication | YES | |
Average latency of V2X communication | 6.3 ms | |
Sensors | Camera | 1080 p/25 Hz |
LiDAR | 32 lines/10 Hz | |
V2X unit | LTE-V/10 Hz | |
GM-PHD | The updating period of the transformation equation | 0.1 s |
State transition matrix of ICV | ||
Improved LSTM | Number of hidden layers | 3 |
Number of hidden layer nodes | 300 | |
Epoch | 20 | |
Batch size | 100 | |
Loss function weight β | 0.5 | |
Learning rate | 0.001 | |
Optimizer | Adam | |
The number of historical trajectory points αin | 30 | |
The number of predicted trajectories points βout | 20 |
ID | Timestamp | V2X | Longitude | Latitude | Steering Angle (°) | Speed (m/s) | Acceleration (m/s2) | Horizontal Distance (m) | Heading Angle (°) |
---|---|---|---|---|---|---|---|---|---|
56 | 1609232645.1 | Yes | 116.2138744 | 39.9306601 | 2.3 | 0.10 | −0.06 | 7.82 | 87.22 |
57 | 1609232645.1 | No | 116.2139378 | 39.9306706 | —— | 2.12 | —— | 12.14 | 89.92 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
66 | 1609233146.8 | No | 116.2127605 | 39.9306347 | —— | 2.12 | —— | 18.15 | 155.52 |
67 | 1609233146.8 | No | 116.2120121 | 39.9306501 | —— | 4.98 | —— | 15.47 | 88.59 |
Timestamp | Period (s) | Signal Light State (East-West) | Time Remaining (s) |
---|---|---|---|
1609232622 | 105 | Green | 23 |
1609232623 | 105 | Green | 22 |
⋮ | ⋮ | ⋮ | ⋮ |
1609233152 | 105 | Red | 17 |
1609233153 | 105 | Red | 16 |
Evaluation Metrics | Camera | LiDAR | V2X Unit | GM-PHD |
---|---|---|---|---|
Maximum Error (m) | 11.4623 | 0.8268 | 10.9980 | 0.1401 |
Minimum Error (m) | 0.1917 | 0.0082 | 0.0488 | 0.0011 |
Average Error (m) | 3.5881 | 0.2111 | 8.1386 | 0.1181 |
MAPE | 20.26% | 0.91% | 28.87% | 0.10% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Yu, H.; Liu, C.; Wang, Y.; Ye, R. Real-Time Trajectory Prediction Method for Intelligent Connected Vehicles in Urban Intersection Scenarios. Sensors 2023, 23, 2950. https://doi.org/10.3390/s23062950
Wang P, Yu H, Liu C, Wang Y, Ye R. Real-Time Trajectory Prediction Method for Intelligent Connected Vehicles in Urban Intersection Scenarios. Sensors. 2023; 23(6):2950. https://doi.org/10.3390/s23062950
Chicago/Turabian StyleWang, Pangwei, Hongsheng Yu, Cheng Liu, Yunfeng Wang, and Rongsheng Ye. 2023. "Real-Time Trajectory Prediction Method for Intelligent Connected Vehicles in Urban Intersection Scenarios" Sensors 23, no. 6: 2950. https://doi.org/10.3390/s23062950
APA StyleWang, P., Yu, H., Liu, C., Wang, Y., & Ye, R. (2023). Real-Time Trajectory Prediction Method for Intelligent Connected Vehicles in Urban Intersection Scenarios. Sensors, 23(6), 2950. https://doi.org/10.3390/s23062950