Towards Embedded Electrochemical Sensors for On-Site Nitrite Detection by Gold Nanoparticles Modified Screen Printed Carbon Electrodes
Abstract
:1. Introduction
2. Existing Solutions in the Literature
2.1. Electrochemical Detection of Nitrite
2.2. Development of Potentiostats
3. Materials and Methods
3.1. Materials
3.2. Methods for Detection
3.3. Block Diagram of MSTStat
4. Investigation Results
4.1. Electrodeposition of Gold
4.2. Electrochemical Characterization of SPCE and EdAu/SPCE Electrodes
4.3. Benchmarking CV and EIS Methods of MSTStat
4.4. Behavior of EdAu/SPCE towards Nitrite and pH Analysis
4.5. Electrochemical Detection of Nitrite by MSTStat
4.6. Selectivity Studies and Real Sample Analysis
4.7. Stability Analysis of EdAu/SPCE
- Shelf life of the sensors: In this analysis, the response of the as-fabricated electrode was recorded in triplicate at a nitrite concentration of 300 µM for 15 days. As shown in Figure 9, the changes in the peak current values did not deviate significantly over the entire 15 days, thus confirming the good shelf-life capability of the developed electrode. It should be noted that 15 days was selected for analysis, not that the electrode drifted in the response afterward, but to demonstrate that the electrode developed in this work if left in dry conditions after measurement, does not show much deviation in the response.
- 2.
- Immersion analysis in PBS: The main aim of this investigation was to force a significant drift in the response by continuous immersion of the electrode in aqueous media containing 300 µM of nitrite in PBS and characterize the state of the surface by EIS. Accordingly, SWV and EIS measurements were performed every day. EIS is selected due to its non-destructive capability in evaluating the changes on the surface. For the measurements, the electrodes were enclosed in an airtight bottle containing a 300 µM concentration of nitrite and the responses were recorded in the same solution. A significant reduction in the peak current and a shift in the curves to higher potentials was observed as seen in Figure 10b. For EIS, the measurement was performed at a DC potential of 0.5 V, with an AC amplitude of 0.01 V and a frequency range from 0.1 to 15,000 Hz.
- 3.
- Accelerated tests for continuous monitoring: The main aim of these experiments was to test the stability of EdAu/SPCE by pushing it to its limits. In this regard, CV is considered a destructive electrochemical method because the electrode is subjected to potential changes within a short time, and thus, has the highest probability of deteriorating the sensor surface. Herein, to manifest excessive stress on the electrode surface, after the initial 25 SWV scans in presence of nitrite (300 µM), the electrode was subjected to 20 cycles of CV from 0 to 1 V at a very high scan rate of 0.25 V/s and very high concentration of nitrite (2000 µM) before the next SWV measurement.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karimi-Maleh, H.; Karimi, F.; Alizadeh, M.; Sanati, A.L. Electrochemical Sensors, a Bright Future in the Fabrication of Portable Kits in Analytical Systems. Chem. Rec. 2020, 20, 682–692. [Google Scholar] [CrossRef] [PubMed]
- Amali, R.; Lim, H.; Ibrahim, I.; Huang, N.; Zainal, Z.; Ahmad, S. Significance of nanomaterials in electrochemical sensors for nitrate detection: A review. Trends Environ. Anal. Chem. 2021, 31, e00135. [Google Scholar] [CrossRef]
- Li, X.; Ping, J.; Ying, Y. Recent developments in carbon nanomaterial-enabled electrochemical sensors for nitrite detection. TrAC Trends Anal. Chem. 2019, 113, 1–12. [Google Scholar] [CrossRef]
- Qian, L.; Durairaj, S.; Prins, S.; Chen, A. Nanomaterial-based electrochemical sensors and biosensors for the detection of pharmaceutical compounds. Biosens. Bioelectron. 2021, 175, 112836. [Google Scholar] [CrossRef] [PubMed]
- Simoska, O.; Stevenson, K.J. Electrochemical sensors for rapid diagnosis of pathogens in real time. Analyst 2019, 144, 6461–6478. [Google Scholar] [CrossRef]
- Hassan, M.H.; Khan, R.; Andreescu, S. Advances in electrochemical detection methods for measuring contaminants of emerging concerns. Electrochem. Sci. Adv. 2022, 2, e2100184. [Google Scholar] [CrossRef]
- Zhu, W.; Xu, L.; Zhu, C.; Li, B.; Xiao, H.; Jiang, H.; Zhou, X. Magnetically controlled electrochemical sensing membrane based on multifunctional molecularly imprinted polymers for detection of insulin. Electrochim. Acta 2016, 218, 91–100. [Google Scholar] [CrossRef]
- Campuzano, S.; Pedrero, M.; Yáñez-Sedeño, P.; Pingarrón, J.M. Pingarrón, Antifouling (Bio)materials for Electrochemical (Bio)sensing. Int. J. Mol. Sci. 2019, 20, 423. [Google Scholar] [CrossRef] [Green Version]
- Cuartero, M.; Crespo, G.A.; Cherubini, T.; Pankratova, N.; Confalonieri, F.; Massa, F.; Tercier-Waeber, M.-L.; Abdou, M.; Schaefer, J.; Bakker, E. In Situ Detection of Macronutrients and Chloride in Seawater by Submersible Electrochemical Sensors. Anal. Chem. 2018, 90, 4702–4710. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Fan, Y.; Huang, Y.; Ling, J.; Klimowicz, A.; Pagano, G.; Li, B. Solving Sensor Reading Drifting Using Denoising Data Processing Algorithm (DDPA) for Long-Term Continuous and Accurate Monitoring of Ammonium in Wastewater. ACS EST Water 2021, 1, 530–541. [Google Scholar] [CrossRef]
- Soliman, M.; Eldyasti, A. Ammonia-Oxidizing Bacteria (AOB): Opportunities and applications—A review. Rev. Environ. Sci. Bio/Technol. 2018, 17, 285–321. [Google Scholar] [CrossRef]
- Schmidt, I. Aerobic and anaerobic ammonia oxidizing bacteria—Competitors or natural partners? FEMS Microbiol. Ecol. 2002, 39, 175–181. [Google Scholar] [CrossRef]
- Nkhahle, R.; Nyokong, T. Electrochemical Detection of Nitrite on Electrodes Modified by Click Chemistry Using Asymmetrical Co(II) and Mn(III) Phthalocyanines Containing Push-Pull Substituents. J. Electrochem. Soc. 2021, 168, 117514. [Google Scholar] [CrossRef]
- Chen, H.; Yang, T.; Liu, F.; Li, W. Electrodeposition of gold nanoparticles on Cu-based metal-organic framework for the electrochemical detection of nitrite. Sens. Actuators B Chem. 2019, 286, 401–407. [Google Scholar] [CrossRef]
- Islam, T.; Hasan, M.; Akter, S.S.; Alharthi, N.H.; Karim, M.R.; Aziz, A.; Hossain, D.; Ahammad, A.S. Fabrication of Ni–Co-Based Heterometallo-Supramolecular Polymer Films and the Study of Electron Transfer Kinetics for the Nonenzymatic Electrochemical Detection of Nitrite. ACS Appl. Polym. Mater. 2019, 2, 273–284. [Google Scholar] [CrossRef]
- Vilian, A.E.; Umapathi, R.; Hwang, S.-K.; Huh, Y.S.; Han, Y.-K. Pd-Cu nanospheres supported on Mo2C for the electrochemical sensing of nitrites. J. Hazard. Mater. 2021, 408, 124914. [Google Scholar] [CrossRef]
- Rao, H.; Liu, Y.; Zhong, J.; Zhang, Z.; Zhao, X.; Liu, X.; Jiang, Y.; Zou, P.; Wang, X.; Wang, Y. Gold Nanoparticle/Chitosan@N,S Co-doped Multiwalled Carbon Nanotubes Sensor: Fabrication, Characterization, and Electrochemical Detection of Catechol and Nitrite. ACS Sustain. Chem. Eng. 2017, 5, 10926–10939. [Google Scholar] [CrossRef]
- Calabrese, E.J.; Bachmann, K.A.; Bailer, A.J.; Bolger, P.M.; Borak, J.; Cai, L.; Cedergreen, N.; Cherian, M.G.; Chiueh, C.C.; Clarkson, T.W.; et al. Biological stress response terminology: Integrating the concepts of adaptive response and preconditioning stress within a hormetic dose-response framework. Toxicol. Appl. Pharmacol. 2007, 222, 122–128. [Google Scholar] [CrossRef] [Green Version]
- Sebaei, A.S.; Refai, H.M. Hazard index: Probabilistic risk exposure of nitrate and nitrite in Egyptian fruits and vegetables. Int. J. Environ. Anal. Chem. 2021, 101, 1477–1484. [Google Scholar] [CrossRef]
- Üzer, A.; Sağlam, Ş.; Can, Z.; Erçağ, E.; Apak, R. Electrochemical Determination of Food Preservative Nitrite with Gold Nanoparticles/p-Aminothiophenol-Modified Gold Electrode. Int. J. Mol. Sci. 2016, 17, 1253. [Google Scholar] [CrossRef]
- Etesami, M.; Mohamed, N. Preparation of Pt/MWCNTs Catalyst by Taguchi Method for Electrooxidation of Nitrite. J. Anal. Chem. 2016, 71, 185–194. [Google Scholar] [CrossRef]
- Turdean, G.L.; Szabo, G. Nitrite detection in meat products samples by square-wave voltammetry at a new single walled carbon naonotubes—Myoglobin modified electrode. Food Chem. 2015, 179, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Liu, D.; Wang, K.; Mao, H.; You, T. Quantitative detection of nitrite with N-doped graphene quantum dots decorated N-doped carbon nanofibers composite-based electrochemical sensor. Sens. Actuators B Chem. 2017, 252, 17–23. [Google Scholar] [CrossRef]
- Liu, M.; Wang, L.; Meng, Y.; Chen, Q.; Li, H.; Zhang, Y.; Yao, S. (4-Ferrocenylethyne) Phenylamine Functionalized Graphene Oxide Modified Electrode for Sensitive Nitrite Sensing. Electrochim. Acta 2014, 116, 504–511. [Google Scholar] [CrossRef]
- Brahem, A.; Al-Hamry, A.; Gross, M.A.; Paterno, L.G.; Ben Ali, M.; Kanoun, O. Stability Enhancement of Laser-Scribed Reduced Graphene Oxide Electrodes Functionalized by Iron Oxide/Reduced Graphene Oxide Nanocomposites for Nitrite Sensors. J. Compos. Sci. 2022, 6, 221. [Google Scholar] [CrossRef]
- Wang, Y.-C.; Chen, Y.-C.; Chuang, W.-S.; Li, J.-H.; Chuang, C.-H.; Chen, C.-Y.; Kung, C.-W. Pore-Confined Silver Nanoparticles in a Porphyrinic Metal–Organic Framework for Electrochemical Nitrite Detection. ACS Appl. Nano Mater. 2020, 3, 9440–9448. [Google Scholar] [CrossRef]
- Amanulla, B.; Palanisamy, S.; Chen, S.-M.; Chiu, T.-W.; Velusamy, V.; Hall, J.M.; Chen, T.-W.; Ramaraj, S.K. Selective Colorimetric Detection of Nitrite in Water using Chitosan Stabilized Gold Nanoparticles Decorated Reduced Graphene oxide. Sci. Rep. 2017, 7, 14182. [Google Scholar] [CrossRef] [Green Version]
- Bagheri, H.; Hajian, A.; Rezaei, M.; Shirzadmehr, A. Composite of Cu metal nanoparticles-multiwall carbon nanotubes-reduced graphene oxide as a novel and high performance platform of the electrochemical sensor for simultaneous determination of nitrite and nitrate. J. Hazard. Mater. 2017, 324, 762–772. [Google Scholar] [CrossRef]
- Mo, R.; Wang, X.; Yuan, Q.; Yan, X.; Su, T.; Feng, Y.; Lv, L.; Zhou, C.; Hong, P.; Sun, S.; et al. Electrochemical Determination of Nitrite by Au Nanoparticle/Graphene-Chitosan Modified Electrode. Sensors 2018, 18, 1986. [Google Scholar] [CrossRef] [Green Version]
- Vilian, A.T.E.; Veeramani, V.; Chen, S.-M.; Madhu, R.; Kwak, C.H.; Huh, Y.S.; Han, Y.-K. Immobilization of myoglobin on Au nanoparticle-decorated carbon nanotube/polytyramine composite as a mediator-free H2O2 and nitrite biosensor. Sci. Rep. 2015, 5, 18390. [Google Scholar] [CrossRef] [Green Version]
- Ghani, M.A.A.; Nordin, A.N.; Rahim, R.A.; Gunawan, T.S.; Zain, Z.M. Evaluation of Portable Potentiostats for Electrochemical Measurements: Voltammetry and Impedance Spectroscopy. In Proceedings of the 2022 IEEE 8th International Conference on Smart Instrumentation, Measurement and Applications (ICSIMA), Melaka, Malaysia, 26–28 September 2022; pp. 132–137. [Google Scholar]
- Jenkins, D.M.; Lee, B.E.; Jun, S.; Reyes-De-Corcuera, J.; McLamore, E.S. ABE-Stat, a Fully Open-Source and Versatile Wireless Potentiostat Project Including Electrochemical Impedance Spectroscopy. J. Electrochem. Soc. 2019, 166, B3056–B3065. [Google Scholar] [CrossRef]
- Matsubara, Y. A Small yet Complete Framework for a Potentiostat, Galvanostat, and Electrochemical Impedance Spectrometer. J. Chem. Educ. 2021, 98, 3362–3370. [Google Scholar] [CrossRef]
- Li, Y.C.; Melenbrink, E.L.; Cordonier, G.J.; Boggs, C.; Khan, A.; Isaac, M.K.; Nkhonjera, K.L.; Bahati, D.; Billinge, S.J.; Haile, S.M.; et al. An Easily Fabricated Low-Cost Potentiostat Coupled with User-Friendly Software for Introducing Students to Electrochemical Reactions and Electroanalytical Techniques. J. Chem. Educ. 2018, 95, 1658–1661. [Google Scholar] [CrossRef] [Green Version]
- Kellner, K.; Posnicek, T.; Ettenauer, J.; Zuser, K.; Brandl, M. A New, Low-cost Potentiostat for Environmental Measurements with an Easy-to-use PC Interface. Procedia Eng. 2015, 120, 956–960. [Google Scholar] [CrossRef] [Green Version]
- Glasscott, M.W.; Verber, M.D.; Hall, J.R.; Pendergast, A.D.; McKinney, C.J.; Dick, J.E. SweepStat: A Build-It-Yourself, Two-Electrode Potentiostat for Macroelectrode and Ultramicroelectrode Studies. J. Chem. Educ. 2020, 97, 265–270. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, S.; Bhattacharya, M. SStat: Wi-Fi and Bluetooth integrated Multimodal Do-It-Yourself” Electrochemical Potentiostat. In Proceedings of the IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, Singapore, 18–21 October 2020; pp. 5249–5254. [Google Scholar]
- Cordova-Huaman, A.V.; Jauja-Ccana, V.R.; La Rosa-Toro, A. Low-cost smartphone-controlled potentiostat based on Arduino for teaching electrochemistry fundamentals and applications. Heliyon 2021, 7, e06259. [Google Scholar] [CrossRef]
- Krorakai, K.; Klangphukhiew, S.; Kulchat, S.; Patramanon, R. Smartphone-Based NFC Potentiostat for Wireless Electrochemical Sensing. Appl. Sci. 2021, 11, 392. [Google Scholar] [CrossRef]
- Bukkawar, S.; Sarwade, N.; Panse, M.S.; Muthurajan, H. Design and development of portable potentiostat for advanced research in electrochemical biosensing. In Proceedings of the 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI), Chennai, India, 21–22 September 2017; pp. 2531–2535. [Google Scholar]
- Bianchi, V.; Boni, A.; Bassoli, M.; Giannetto, M.; Fortunati, S.; Careri, M.; De Munari, I. IoT and Biosensors: A Smart Portable Potentiostat with Advanced Cloud-Enabled Features. IEEE Access 2021, 9, 141544–141554. [Google Scholar] [CrossRef]
- Saldan, I.; Dobrovetska, O.; Sus, L.; Makota, O.; Pereviznyk, O.; Kuntyi, O.; Reshetnyak, O. Electrochemical synthesis and properties of gold nanomaterials. J. Solid State Electrochem. 2018, 22, 637–656. [Google Scholar] [CrossRef]
- Hezard, T.; Fajerwerg, K.; Evrard, D.; Collière, V.; Behra, P.; Gros, P. Influence of the gold nanoparticles electrodeposition method on Hg(II) trace electrochemical detection. Electrochim. Acta 2012, 73, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Vogel, Y.B.; Darwish, N.; Kashi, M.B.; Gooding, J.J.; Ciampi, S. Hydrogen evolution during the electrodeposition of gold nanoparticles at Si(100) photoelectrodes impairs the analysis of current-time transients. Electrochim. Acta 2017, 247, 200–206. [Google Scholar] [CrossRef]
- Chiang, H.-C.; Wang, Y.; Zhang, Q.; Levon, K. Optimization of the Electrodeposition of Gold Nanoparticles for the Application of HighlySensitive, Label-Free Biosensor. Biosensors 2019, 9, 50. [Google Scholar] [CrossRef] [Green Version]
- Gunawardena, G.; Hills, G.; Montenegro, I.; Scharifker, B. Scharifker, Electrochemical nucleation. J. Electroanal. Chem. Interfacial Electrochem. 1982, 138, 225–239. [Google Scholar] [CrossRef]
- Zakaria, N.D.; Omar, M.H.; Kamal, N.N.A.; Razak, K.A.; Sönmez, T.; Balakrishnan, V.; Hamzah, H.H. Effect of Supporting Background Electrolytes on the Nanostructure Morphologies and Electrochemical Behaviors of Electrodeposited Gold Nanoparticles on Glassy Carbon Electrode Surfaces. ACS Omega 2021, 6, 24419–24431. [Google Scholar] [CrossRef]
- Gotti, G.; Fajerwerg, K.; Evrard, D.; Gros, P. Electrodeposited gold nanoparticles on glassy carbon: Correlation between nanoparticles characteristics and oxygen reduction kinetics in neutral media. Electrochim. Acta 2014, 128, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Ressine, A.; Vaz-Domínguez, C.; Fernandez, V.M.; De Lacey, A.L.; Laurell, T.; Ruzgas, T.; Shleev, S. Bioelectrochemical studies of azurin and laccase confined in three-dimensional chips based on gold-modified nano-/microstructured silicon. Biosens. Bioelectron. 2010, 25, 1001–1007. [Google Scholar] [CrossRef]
- Su, W.; Kim, S.-E.; Cho, M.; Nam, J.-D.; Choe, W.-S.; Lee, Y. Selective detection of endotoxin using an impedance aptasensor with electrochemically deposited gold nanoparticles. Innate Immun. 2013, 19, 388–397. [Google Scholar] [CrossRef]
- Nithyayini, K.; Harish, M.; Nagashree, K. Electrochemical detection of nitrite at NiFe2O4 nanoparticles synthesised by solvent deficient method. Electrochim. Acta 2019, 317, 701–710. [Google Scholar] [CrossRef]
- Huang, X.; Li, Y.; Chen, Y.; Wang, L. Electrochemical determination of nitrite and iodate by use of gold nanoparticles/poly(3-methylthiophene) composites coated glassy carbon electrode. Sens. Actuators B Chem. 2008, 134, 780–786. [Google Scholar] [CrossRef]
- Pham, X.-H.; Li, C.A.; Han, K.N.; Huynh-Nguyen, B.-C.; Le, T.-H.; Ko, E.; Kim, J.H.; Seong, G.H. Electrochemical detection of nitrite using urchin-like palladium nanostructures on carbon nanotube thin film electrodes. Sens. Actuators B Chem. 2014, 193, 815–822. [Google Scholar] [CrossRef]
- Hamilton, W.C. Significance tests on the crystallographic R factor. Acta Crystallogr. 1965, 18, 502–510. [Google Scholar] [CrossRef]
- Anurag, A.; Al-Hamry, A.; Attuluri, Y.; Palaniyappan, S.; Wagner, G.; Dentel, D.; Tegenkamp, C.; Kanoun, O. Optimized Reduction of a Graphene Oxide-MWCNT Composite with Electrochemically Deposited Copper Nanoparticles on Screen Printed Electrodes for a Wide Range of Detection of Nitrate. ChemElectroChem 2023, 10, e202200945. [Google Scholar] [CrossRef]
- Promsuwan, K.; Thavarungkul, P.; Kanatharana, P.; Limbut, W. Flow injection amperometric nitrite sensor based on silver microcubics-poly (acrylic acid)/poly (vinyl alcohol) modified screen printed carbon electrode. Electrochim. Acta 2017, 232, 357–369. [Google Scholar] [CrossRef]
- Haldorai, Y.; Kim, J.Y.; Vilian, A.E.; Heo, N.S.; Huh, Y.S.; Han, Y.-K. An enzyme-free electrochemical sensor based on reduced graphene oxide/Co3O4 nanospindle composite for sensitive detection of nitrite. Sens. Actuators B Chem. 2016, 227, 92–99. [Google Scholar] [CrossRef]
- Chen, W.; Niu, X.; Li, X.; Li, X.; Li, G.; He, B.; Li, Q.; Sun, W. Investigation on direct electrochemical and electrocatalytic behavior of hemoglobin on palladium-graphene modified electrode. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 80, 135–140. [Google Scholar] [CrossRef]
- Yadav, D.K.; Ganesan, V.; Sonkar, P.K.; Gupta, R.; Rastogi, P.K. Electrochemical investigation of gold nanoparticles incorporated zinc based metal-organic framework for selective recognition of nitrite and nitrobenzene. Electrochim. Acta 2016, 200, 276–282. [Google Scholar] [CrossRef]
- Zhang, O.; Wen, Y.; Xu, J.; Lu, L.; Duan, X.; Yu, H. One-step synthesis of poly(3,4-ethylenedioxythiophene)–Au composites and their application for the detection of nitrite. Synth. Met. 2013, 164, 47–51. [Google Scholar] [CrossRef]
- Heli, H.; Eskandari, I.; Sattarahmady, N.; Moosavi-Movahedi, A. Cobalt nanoflowers: Synthesis, characterization and derivatization to cobalt hexacyanoferrate—Electrocatalytic oxidation and determination of sulfite and nitrite. Electrochim. Acta 2012, 77, 294–301. [Google Scholar] [CrossRef]
- Nasraoui, S.; Al-Hamry, A.; Teixeira, P.R.; Ameur, S.; Paterno, L.G.; Ben Ali, M.; Kanoun, O. Electrochemical sensor for nitrite detection in water samples using flexible laser-induced graphene electrodes functionalized by CNT decorated by Au nanoparticles. J. Electroanal. Chem. 2021, 880, 114893. [Google Scholar] [CrossRef]
- Talbi, M.; Al-Hamry, A.; Teixeira, P.R.; Paterno, L.G.; Ben Ali, M.; Kanoun, O. Enhanced Nitrite Detection by a Carbon Screen Printed Electrode Modified with Photochemically-Made AuNPs. Chemosensors 2022, 10, 40. [Google Scholar] [CrossRef]
- Wang, Z.; Liao, F.; Guo, T.; Yang, S.; Zeng, C. Synthesis of crystalline silver nanoplates and their application for detection of nitrite in foods. J. Electroanal. Chem. 2012, 664, 135–138. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, J.; Li, Y.W.; Shan, Q.; Wu, W. Ni nanosheets evenly distributed on MoS2 for selective electrochemical detection of nitrite. Colloids Surf. A Physicochem. Eng. Asp. 2021, 625, 126865. [Google Scholar] [CrossRef]
- Bredar, A.R.C.; Chown, A.L.; Burton, A.R.; Farnum, B.H. Electrochemical Impedance Spectroscopy of Metal Oxide Electrodes for Energy Applications. ACS Appl. Energy Mater. 2020, 3, 66–98. [Google Scholar] [CrossRef] [Green Version]
- Kumar, K.C.; Rao, B.V.A.; Rao, S.S. Effect of hydrodynamics on a copper-nickel alloy rotating disc electrode in a marine environment. New J. Chem. 2017, 41, 11155–11169. [Google Scholar] [CrossRef]
Ref. | Methods Implemented | Interface | Potential Range in V | Resolution in Bit |
---|---|---|---|---|
[32] | CV, DPV, EIS | Bluetooth | −1.65 to 1.65 | 24 |
[33] | CV, CA, EIS, SWV | - | −12 to 12 | 14 |
[34] | CV, LSC, CA | USB | −2.5 to 2.5 | - |
[35] | CV | - | - | 16 |
[36] | CV, LSV, CA, CC | USB | −1.5 to 1.5 | 16 |
[37] | CV, LSV, CA | Bluetooth, WiFi | −1.5 to 1.5 | 12 |
[38] | CV, LSV, CA | Bluetooth | −1.5 to 1.5 | - |
[39] | CV, CA | NFC | −0.8 to 0.8 | - |
[40] | LSV | USB | - | 24 |
[41] | DPV | WiFi | −0.6 to 0.6 | 12 |
This work | CV, SWV, EIS | Bluetooth, Zigbee, USB | −1.65 to 1.65 | 12 |
Electrode | Technique | LOD (µM) | Linear Range (µM) | Ref |
---|---|---|---|---|
AgMC-PAA/PVA/SPCE | Amperometry | 4.5 | 2–800 | [56] |
CO3O4/RGO | Amperometry | 0.14 | 1–380 | [57] |
Hb-Nafion/Pd-Gr/CILE | Voltammetry | 30 | 600–61,000 | [58] |
Au/Zn-MOF/GCE | CV | 1 | 5–65,000 | [59] |
Nano-Au/P3MT/GCE | Amperometry | 2.3 | 10–1000 | [52] |
PEDOT-AuNps/GCE | Amperometry | 0.1 | 3–300 | [60] |
Co nanoflowers/CPE | Amperometry | 1.19 | 100–2150 | [61] |
LIG/F-MWCNT-AuNps | Voltammetry | 0.9 | 10–140 | [62] |
CSPE/AuNPs-PEI | Voltammetry | 0.0025 | 0.01–4 | [63] |
AgNP/GCE | Amperometry | 1.20 | 10–1000 | [64] |
Ni/MOS2/GCE | Voltammetry | 2.48 | 5–800 | [65] |
EdAu/SPCE | Voltammetry | 0.38 | 1–300 | This work |
Added Concentration (µM) | Current Recorded (µA) | Recovery (%) | RSD (%) (n = 3) |
---|---|---|---|
50 | 23.54 | 92.13 | 2.19 |
100 | 51.406 | 105.08 | 0.91 |
150 | 71.76 | 108.95 | 3.58 |
200 | 86.52 | 94.72 | 4.71 |
250 | 101.2 | 90.61 | 3.26 |
300 | 117.4 | 95.45 | 5.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adiraju, A.; Munjal, R.; Viehweger, C.; Al-Hamry, A.; Brahem, A.; Hussain, J.; Kommisetty, S.; Jalasutram, A.; Tegenkamp, C.; Kanoun, O. Towards Embedded Electrochemical Sensors for On-Site Nitrite Detection by Gold Nanoparticles Modified Screen Printed Carbon Electrodes. Sensors 2023, 23, 2961. https://doi.org/10.3390/s23062961
Adiraju A, Munjal R, Viehweger C, Al-Hamry A, Brahem A, Hussain J, Kommisetty S, Jalasutram A, Tegenkamp C, Kanoun O. Towards Embedded Electrochemical Sensors for On-Site Nitrite Detection by Gold Nanoparticles Modified Screen Printed Carbon Electrodes. Sensors. 2023; 23(6):2961. https://doi.org/10.3390/s23062961
Chicago/Turabian StyleAdiraju, Anurag, Rohan Munjal, Christian Viehweger, Ammar Al-Hamry, Amina Brahem, Jawaid Hussain, Sanhith Kommisetty, Aditya Jalasutram, Christoph Tegenkamp, and Olfa Kanoun. 2023. "Towards Embedded Electrochemical Sensors for On-Site Nitrite Detection by Gold Nanoparticles Modified Screen Printed Carbon Electrodes" Sensors 23, no. 6: 2961. https://doi.org/10.3390/s23062961
APA StyleAdiraju, A., Munjal, R., Viehweger, C., Al-Hamry, A., Brahem, A., Hussain, J., Kommisetty, S., Jalasutram, A., Tegenkamp, C., & Kanoun, O. (2023). Towards Embedded Electrochemical Sensors for On-Site Nitrite Detection by Gold Nanoparticles Modified Screen Printed Carbon Electrodes. Sensors, 23(6), 2961. https://doi.org/10.3390/s23062961