Computation of Eigenvalues and Eigenfunctions in the Solution of Eddy Current Problems
Abstract
:1. Introduction
2. Theory
3. Solution
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meng, X.; Lu, M.; Yin, W.; Bennecer, A.; Kirk, K.J. Evaluation of Coating Thickness Using Lift-Off Insensitivity of Eddy Current Sensor. Sensors 2021, 21, 419. [Google Scholar] [CrossRef]
- Ha, N.; Lee, H.-S.; Lee, S. Development of a Wireless Corrosion Detection System for Steel-Framed Structures Using Pulsed Eddy Currents. Sensors 2021, 21, 8199. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Huang, J.; Liu, L.; Qin, S.; Fu, Z. A Novel Pulsed Eddy Current Criterion for Non-Ferromagnetic Metal Thickness Quantifications under Large Liftoff. Sensors 2022, 22, 614. [Google Scholar] [CrossRef] [PubMed]
- Xia, Z.; Huang, R.; Chen, Z.; Yu, K.; Zhang, Z.; Salas-Avila, J.R.; Yin, W. Eddy Current Measurement for Planar Structures. Sensors 2022, 22, 8695. [Google Scholar] [CrossRef] [PubMed]
- Tytko, G. Eddy Current Testing of Conductive Coatings Using a Pot-Core Sensor. Sensors 2023, 23, 1042. [Google Scholar] [CrossRef]
- Dziczkowski, L. Elimination of coil liftoff from eddy current measurements of conductivity. IEEE Trans. Instrum. Meas. 2013, 62, 3301–3307. [Google Scholar] [CrossRef]
- Vasic, D.; Rep, I.; Spikic, D.; Kekelj, M. Model of Magnetically Shielded Ferrite-Cored Eddy Current Sensor. Sensors 2022, 22, 326. [Google Scholar] [CrossRef]
- Huang, R.; Lu, M.; Zhang, Z.; Zhao, Q.; Xie, Y.; Tao, Y.; Meng, T.; Peyton, A.; Theodoulidis, T.; Yin, W. Measurement of the radius of metallic plates based on a novel finite region eigenfunction expansion (FREE) method. IEEE Sens. J. 2020, 20, 15099–15106. [Google Scholar] [CrossRef]
- Huang, R.; Lu, M.; Peyton, A.; Yin, W. Thickness Measurement of Metallic Plates with Finite Planar Dimension Using Eddy Current Method. IEEE Trans. Instrum. Meas. 2020, 69, 8424–8431. [Google Scholar] [CrossRef]
- Tytko, G. Eddy current testing of small radius conductive cylinders with the employment of an I-core sensor. Measurement 2021, 186, 110219. [Google Scholar] [CrossRef]
- Tytko, G. Measurement of multilayered conductive discs using eddy current method. Measurement 2022, 204, 112053. [Google Scholar] [CrossRef]
- Vasic, D.; Bilas, V.; Ambrus, D. Compensation of Coil Radial Offset in Single-Coil Measurement of Metal Tube Properties. In Proceedings of the IEEE Instrumentation & Measurement Technology Conference IMTC 2007, Warsaw, Poland, 1–3 May 2007; pp. 1–4. [Google Scholar] [CrossRef]
- Theodoulidis, T.; Skarlatos, A. Efficient calculation of transient eddy current response from multi-layer cylindrical conductive media. Philos. Trans. R. Soc. A 2020, 378, 20190588. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yan, B.; Li, W.; Jing, H.; Chen, Z.; Li, D. Pulse-modulation eddy current probes for imaging of external corrosion in nonmagnetic pipes. NDT E Int. 2017, 88, 51–58. [Google Scholar] [CrossRef]
- Luloff, M.S. Concerning the exact solution for an internal transmit-receive eddy current probe at arbitrary locations and orientations within two non-concentric conductive tubes. NDT E Int. 2020, 116, 102298. [Google Scholar] [CrossRef]
- Guo, W.; Gao, B.; Tian, G.-Y.; Si, D. Physic perspective fusion of electromagnetic acoustic transducer and pulsed eddy current testing in non-destructive testing system. Philos. Trans. R. Soc. A 2020, 378, 20190608. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Bowler, J.R.; Theodoulidis, T.P. Eddy Currents Induced in a Finite Length Layered Rod by a Coaxial Coil. IEEE Trans. Magn. 2005, 41, 2455–2461. [Google Scholar] [CrossRef]
- Desjardins, D.P.R.; Krause, T.W.; Gauthier, N. Analytical modeling of the transient response of a coil encircling a ferromagnetic conducting rod in pulsed eddy current testing. NDT E Int. 2013, 60, 127–131. [Google Scholar] [CrossRef]
- Mohseni, E.; Boukani, H.H.; Franca, D.R.; Viens, M. A Study of the Automated Eddy Current Detection of Cracks in Steel Plates. J. Nondestr. Eval. 2020, 39, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le, M.; Luong, V.S.; Nguyen, K.D.; Lee, J. Electromagnetic Testing of Corrosion at Rivet Sites via Principal Component Analysis. J. Nondestr. Eval. 2021, 40, 36. [Google Scholar] [CrossRef]
- Skarlatos, A.; Theodoulidis, T. Solution to the eddy-current induction problem in a conducting half-space with a vertical cylindrical borehole. Proc. R. Soc. A 2012, 468, 1758–1777. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Y.; Ren, S.; Ren, Y.; Abidin, I.M.Z.; Chen, Z. Pulse-Modulation Eddy Current Evaluation of Interlaminar Corrosion in Stratified Conductors: Semi-Analytical Modeling and Experiments. Sensors 2022, 22, 3458. [Google Scholar] [CrossRef]
- Farag, H.E.; Toyserkani, E.; Khamesee, M.B. Non-Destructive Testing Using Eddy Current Sensors for Defect Detection in Additively Manufactured Titanium and Stainless-Steel Parts. Sensors 2022, 22, 5440. [Google Scholar] [CrossRef]
- Bao, Y.; Xu, M.; Qiu, J.; Song, J. Efficient Model Assisted Probability of Detection Estimations in Eddy Current NDT with ACA-SVD Based Forward Solver. Sensors 2022, 22, 7625. [Google Scholar] [CrossRef] [PubMed]
- Theodoulidis, T.; Bowler, J.R. Eddy current coil interaction with a right-angled conductive wedge. Proc. R. Soc. A 2005, 461, 3123–3139. [Google Scholar] [CrossRef]
- Bowler, J.R.; Theodoulidis, T.P. Coil impedance variation due to induced current at the edge of a conductive plate. J. Phys. D Appl. Phys. 2006, 39, 2862–2868. [Google Scholar] [CrossRef]
- Paul, S.; Bird, J.Z. Improved analytic model for eddy current force considering edge-effect of a conductive plate. In Proceedings of the XXII International Conference on Electrical Machines (ICEM), Lausanne, Switzerland, 6 September 2016; pp. 789–795. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, B.; Luo, Y.; Zhu, R. Inductance calculations for coaxial iron-core coils shielded by cylindrical screens of high permeability. IET Electr. Power Appl. 2019, 13, 795–804. [Google Scholar] [CrossRef]
- Fan, S.; Yi, J.; Sun, H.; Yun, F. Quantifying Hole-Edge Crack of Bolt Joints by Using an Embedding Triangle Eddy Current Sensing Film. Sensors 2021, 21, 2567. [Google Scholar] [CrossRef]
- Aldrina, J.C.; Sabbagh, H.A.; Murphy, R.K.; Sabbagh, E.H. Recent advances in modeling discontinuities in anisotropic and heterogeneous materials in eddy current NDE. AIP Conf. Proc. 2012, 1335, 1565. [Google Scholar] [CrossRef]
- Grimberg, R.; Tian, G.-Y. High-frequency electromagnetic non-destructive evaluation for high spatial resolution, using metamaterials. Proc. R. Soc. A 2012, 468, 3080–3099. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, S.; Liu, H.; Mandache, C.; Liu, Z. Pulsed Eddy Current Data Analysis for the Characterization of the Second-Layer Discontinuities. J. Nondestr. Eval. 2019, 38, 7. [Google Scholar] [CrossRef]
- Delves, L.M.; Lyness, J.N. A numerical method for locating the zeros of an analytic function. Math. Comput. 1967, 21, 543–560. [Google Scholar] [CrossRef]
- Davies, B. Locating the zeros of an analytic function. J. Comput. Phys. 1986, 66, 36–49. [Google Scholar] [CrossRef]
- Dellnitz, M.; Schutze, O.; Zheng, Q. Locating all the zeros of an analytic function in one complex variable. J. Comput. Appl. Math. 2002, 138, 325–333. [Google Scholar] [CrossRef] [Green Version]
- Kowalczyk, P. Complex Root Finding Algorithm Based on Delaunay Triangulation. ACM Trans. Math. Soft. 2015, 41, 1–13. [Google Scholar] [CrossRef]
- Vasic, D.; Ambru, D.; Bilas, V. Computation of the eigenvalues for bounded domain eddy-current models with coupled regions. IEEE Trans. Magn. 2016, 52, 1–10. [Google Scholar] [CrossRef]
- Kowalczyk, P. Global Complex Roots and Poles Finding Algorithm Based on Phase Analysis for Propagation and Radiation Problems. IEEE Trans. Anten. Propag. 2018, 66, 7198–7205. [Google Scholar] [CrossRef] [Green Version]
- Tytko, G.; Dawidowski, Ł. Locating complex eigenvalues for analytical eddy-current models used to detect flaws. COMPEL 2019, 38, 1800–1809. [Google Scholar] [CrossRef]
- Dziedziewicz, S.; Lech, R.; Kowalczyk, P. A Self-Adaptive Complex Root Tracing Algorithm for the Analysis of Propagation and Radiation Problem. IEEE Trans. Anten. Propag. 2021, 69, 5171–5174. [Google Scholar] [CrossRef]
- Dodd, C.V.; Deeds, W.E. Electromagnetic forces in conductors. J. Appl. Phys. 1967, 38, 5045–5051. [Google Scholar] [CrossRef]
- Gockenbach, M.S. Partial Differential Equations: Analytical and Numerical Methods; Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA, USA, 2011; pp. 396–400. [Google Scholar]
- Tytko, G. Fast Method of Calculating the Air-Cored Coil Impedance Using the Filamentary Coil Model. PIER M 2020, 91, 101–109. [Google Scholar] [CrossRef]
Tests | f [kHz] | μr | σ [MS/m] | c [mm] | Problem |
---|---|---|---|---|---|
1 | 1 | 1 | 60 | 4 | hole |
2 | 100 | 1 | 60 | 4 | hole |
3 | 10 | 50 | 60 | 4 | hole |
4 | 1 | 50 | 1 | 4 | hole |
5 | 10 | 10 | 30 | 8 | hole |
6 | 10 | 1 | 30 | 8 | hole |
7 | 10 | 1 | 60 | 15 | disk |
8 | 1 | 10 | 1 | 10 | disk |
9 | 200 | 1 | 30 | 15 | disk |
10 | 10 | 1 | 1 | 5 | disk |
Tests | Incorrect Eigenvalues | Time [s] | ||||||
---|---|---|---|---|---|---|---|---|
SLGF | MCCE | Newton | Fsolve | SLGF | MCCE | Newton | Fsolve | |
1 | 0 | 0 | 0 | 0 | 0.6 | 1.0 | 0.4 | 2.3 |
2 | 0 | 2 | 3 | 3 | 0.7 | 7.5 | 17.7 | 9.8 |
3 | 0 | 3 | 3 | 3 | 0.6 | 2.0 | 13.1 | 1.1 |
4 | 0 | 0 | 0 | 0 | 0.6 | 1.1 | 0.4 | 1.4 |
5 | 0 | 6 | 6 | 6 | 0.6 | 2.1 | 12.6 | 0.9 |
6 | 0 | 0 | 0 | 0 | 0.7 | 1 | 7.2 | 1.1 |
7 | 0 | 6 | 1 | 6 | 0.6 | 5.4 | 12.9 | 5.0 |
8 | 0 | 0 | 1 | 0 | 1.0 | 2.1 | 0.2 | 1.7 |
9 | 0 | 12 | 12 | 12 | 2.0 | 2.1 | 11.5 | 1.7 |
10 | 0 | 0 | 0 | 0 | 0.6 | 1.1 | 1.2 | 6.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Theodoulidis, T.; Skarlatos, A.; Tytko, G. Computation of Eigenvalues and Eigenfunctions in the Solution of Eddy Current Problems. Sensors 2023, 23, 3055. https://doi.org/10.3390/s23063055
Theodoulidis T, Skarlatos A, Tytko G. Computation of Eigenvalues and Eigenfunctions in the Solution of Eddy Current Problems. Sensors. 2023; 23(6):3055. https://doi.org/10.3390/s23063055
Chicago/Turabian StyleTheodoulidis, Theodoros, Anastassios Skarlatos, and Grzegorz Tytko. 2023. "Computation of Eigenvalues and Eigenfunctions in the Solution of Eddy Current Problems" Sensors 23, no. 6: 3055. https://doi.org/10.3390/s23063055
APA StyleTheodoulidis, T., Skarlatos, A., & Tytko, G. (2023). Computation of Eigenvalues and Eigenfunctions in the Solution of Eddy Current Problems. Sensors, 23(6), 3055. https://doi.org/10.3390/s23063055