Head-Mounted Display for Clinical Evaluation of Neck Movement Validation with Meta Quest 2
Abstract
:1. Introduction
2. Related Work
3. Materials and Methods
3.1. Experimental Setup
3.2. Experimental Procedure
- Yaw axis: left neck rotation (look left) of 45° and maximum ROM, and right neck rotation (look right) of 45° and maximum ROM;
- Pitch axis: upward neck flexion (look up) of 20° and maximum ROM, and downward neck flexion (pitch axis) of 20° and maximum ROM;
- Roll axis: left neck lateralization (lean left) of 15° and maximum ROM, and right neck lateralization (lean right) of 15° and maximum ROM.
3.3. Data Analysis
3.3.1. Absolute Error
3.3.2. Criterion Validity and Agreement of the HMD-IMU
4. Results
5. Discussion
Strengths and Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Childress, M.A.; Stuek, S.J. Neck Pain: Initial Evaluation and Management. Am. Fam. Phys. 2020, 102, 150–156. [Google Scholar]
- MedlinePlus [Internet]. Bethesda (MD): National Library of Medicine (US) Neck Injuries and Disorders. Available online: https://medlineplus.gov/neckinjuriesanddisorders.html (accessed on 15 December 2022).
- Mahmoud, N.F.; Hassan, K.A.; Abdelmajeed, S.F.; Moustafa, I.M.; Silva, A.G. The Relationship Between Forward Head Posture and Neck Pain: A Systematic Review and Meta-Analysis. Curr. Rev. Musculoskelet. Med. 2019, 12, 562–577. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, B.; Hall, T.; Bossert, J.; Dugeny, A.; Cagnie, B.; Pitance, L. The Efficacy of Manual Therapy and Exercise for Treating Non-Specific Neck Pain: A Systematic Review. J. Back Musculoskelet Rehabil. 2017, 30, 1149–1169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Javdaneh, N.; Saeterbakken, A.H.; Shams, A.; Barati, A.H. Pain Neuroscience Education Combined with Therapeutic Exercises Provides Added Benefit in the Treatment of Chronic Neck Pain. Int. J. Environ. Res. Public Health 2021, 18, 8848. [Google Scholar] [CrossRef]
- Blanpied, P.R.; Gross, A.R.; Elliott, J.M.; Devaney, L.L.; Clewley, D.; Walton, D.M.; Sparks, C.; Robertson, E.K. Neck Pain: Revision 2017. J. Orthopaed. Sports Phys. Ther. 2017, 47, A1–A83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Defazio, G.; Belvisi, D.; Comella, C.; Hallett, M.; Jinnah, H.A.; Cimino, P.; Latorre, A.; Mascia, M.M.; Rocchi, L.; Gigante, A.F.; et al. Validation of a Guideline to Reduce Variability in Diagnosing Cervical Dystonia. J. Neurol. 2023; Online ahead of print. [Google Scholar] [CrossRef]
- Ye, C.; Xiao, Y.; Li, R.; Gu, H.; Wang, X.; Lu, T.; Jin, L. Pilot Feasibility Study of a Multi-View Vision Based Scoring Method for Cervical Dystonia. Sensors 2022, 22, 4642. [Google Scholar] [CrossRef]
- Tejera, D.M.; Beltran-Alacreu, H.; Cano-de-la-Cuerda, R.; Leon Hernández, J.V.; Martín-Pintado-Zugasti, A.; Calvo-Lobo, C.; Gil-Martínez, A.; Fernández-Carnero, J. Effects of Virtual Reality versus Exercise on Pain, Functional, Somatosensory and Psychosocial Outcomes in Patients with Non-Specific Chronic Neck Pain: A Randomized Clinical Trial. Int. J. Environ. Res. Public Health 2020, 17, 5950. [Google Scholar] [CrossRef]
- Muhanna, M.A. Virtual Reality and the CAVE: Taxonomy, Interaction Challenges and Research Directions. J. King Saud Univ. Comput. Inform. Sci. 2015, 27, 344–361. [Google Scholar] [CrossRef] [Green Version]
- Grassini, S. Virtual Reality Assisted Non-Pharmacological Treatments in Chronic Pain Management: A Systematic Review and Quantitative Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 4071. [Google Scholar] [CrossRef]
- Gumaa, M.; Khaireldin, A.; Rehan Youssef, A. Validity and Reliability of Interactive Virtual Reality in Assessing the Musculoskeletal System: A Systematic Review. Curr. Rev. Musculoskelet. Med. 2021, 14, 130–144. [Google Scholar] [CrossRef] [PubMed]
- Juliano, J.M.; Liew, S.-L. Transfer of Motor Skill between Virtual Reality Viewed Using a Head-Mounted Display and Conventional Screen Environments. J. NeuroEng. Rehabilit. 2020, 17, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ioannou, A.; Papastavrou, E.; Avraamides, M.N.; Charalambous, A. Virtual Reality and Symptoms Management of Anxiety, Depression, Fatigue, and Pain: A Systematic Review. SAGE Open Nurs. 2020, 6, 2377960820936163. [Google Scholar] [CrossRef] [PubMed]
- Sutrich, N. Almost 80% of VR Headsets Sold in 2021 Were an Oculus Quest 2. Available online: https://www.androidcentral.com/quest-2-2021-most-sold (accessed on 10 June 2022).
- Meta Meta Quest 2: General Information and Technical Specifications. Available online: https://www.meta.com/es/quest/products/quest-2/ (accessed on 23 December 2022).
- Buń, P.; Husár, J.; Kaščak, J. Hand Tracking in Extended Reality Educational Applications. In Proceedings of the Advances in Manufacturing III; Trojanowska, J., Kujawińska, A., Machado, J., Pavlenko, I., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 317–325. [Google Scholar]
- Sukari, A.A.A.; Singh, S.; Bohari, M.H.; Idris, Z.; Ghani, A.R.I.; Abdullah, J.M. Examining the Range of Motion of the Cervical Spine: Utilising Different Bedside Instruments. Malays J. Med. Sci. 2021, 28, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Razeghi, M.; Rezaei, I.; Bervis, S. Chapter 47—Virtual Reality and Applications to Treating Neck Pain. In Treatments, Mechanisms, and Adverse Reactions of Anesthetics and Analgesics; Rajendram, R., Patel, V.B., Preedy, V.R., Martin, C.R., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 565–574. ISBN 978-0-12-820237-1. [Google Scholar]
- Sarig Bahat, H.; Chen, X.; Reznik, D.; Kodesh, E.; Treleaven, J. Interactive Cervical Motion Kinematics: Sensitivity, Specificity and Clinically Significant Values for Identifying Kinematic Impairments in Patients with Chronic Neck Pain. Man. Ther. 2015, 20, 295–302. [Google Scholar] [CrossRef] [Green Version]
- Kiper, P.; Baba, A.; Alhelou, M.; Pregnolato, G.; Maistrello, L.; Agostini, M.; Turolla, A. Assessment of the Cervical Spine Mobility by Immersive and Non-Immersive Virtual Reality. J. Electromyogr. Kinesiol. 2020, 51, 102397. [Google Scholar] [CrossRef]
- Chen, K.B.; Xu, X.; Lin, J.-H.; Radwin, R.G. Evaluation of Older Driver Head Functional Range of Motion Using Portable Immersive Virtual Reality. Exp. Gerontol. 2015, 70, 150–156. [Google Scholar] [CrossRef]
- Carnevale, A.; Mannocchi, I.; Sassi, M.S.H.; Carli, M.; De Luca, G.; Longo, U.G.; Denaro, V.; Schena, E. Virtual Reality for Shoulder Rehabilitation: Accuracy Evaluation of Oculus Quest 2. Sensors 2022, 22, 5511. [Google Scholar] [CrossRef]
- Xu, X.; Chen, K.B.; Lin, J.-H.; Radwin, R.G. The Accuracy of the Oculus Rift Virtual Reality Head-Mounted Display during Cervical Spine Mobility Measurement. J. Biomech. 2015, 48, 721–724. [Google Scholar] [CrossRef] [Green Version]
- Sarig-Bahat, H.; Weiss, P.L.; Laufer, Y. Cervical Motion Assessment Using Virtual Reality. Spine 2009, 34, 1018–1024. [Google Scholar] [CrossRef]
- Santos-Paz, J.A.; Sánchez-Picot, Á.; Rojo, A.; Martín-Pintado-Zugasti, A.; Otero, A.; Garcia-Carmona, R. A Novel Virtual Reality Application for Autonomous Assessment of Cervical Range of Motion: Development and Reliability Study. PeerJ 2022, 10, e14031. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.S.; Yang, K.Y.; Youn, K.; Yoon, C.; Yeom, J.; Hwang, H.; Lee, J.; Kim, K. Validation of Attitude and Heading Reference System and Microsoft Kinect for Continuous Measurement of Cervical Range of Motion Compared to the Optical Motion Capture System. Ann. Rehabil. Med. 2016, 40, 568–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chalimourdas, A.; Dimitriadis, Z.; Kapreli, E.; Strimpakos, N. Test—Re-Test Reliability and Concurrent Validity of Cervical Active Range of Motion in Young Asymptomatic Adults Using a New Inertial Measurement Unit Device. Exp. Rev. Me. Dev. 2021, 18, 1029–1037. [Google Scholar] [CrossRef] [PubMed]
- Carmona-Pérez, C.; Garrido-Castro, J.L.; Torres Vidal, F.; Alcaraz-Clariana, S.; García-Luque, L.; Alburquerque-Sendín, F.; Rodrigues-de-Souza, D.P. Concurrent Validity and Reliability of an Inertial Measurement Unit for the Assessment of Craniocervical Range of Motion in Subjects with Cerebral Palsy. Diagnostics 2020, 10, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elgueta-Cancino, E.; Rice, K.; Abichandani, D.; Falla, D. Measurement Properties of Smartphone Applications for the Measurement of Neck Range of Motion: A Systematic Review and Meta Analyses. BMC Musculoskelet. Disord. 2022, 23, 138. [Google Scholar] [CrossRef]
- Cánovas-Ambit, G.; García-Vidal, J.A.; Agustín, R.M.-S.; Dalla-Vecchia, A.A.; Sánchez-Barbadora, M.; Medina-Mirapeix, F. Validity and Reliability of Veloflex to Measure Active Cervical Range of Motion in Asymptomatic and Symptomatic Subjects. PeerJ 2021, 9, e11228. [Google Scholar] [CrossRef]
- Salinas-Bueno, I.; Roig-Maimó, M.F.; Martínez-Bueso, P.; San-Sebastián-Fernández, K.; Varona, J.; Mas-Sansó, R. Camera-Based Monitoring of Neck Movements for Cervical Rehabilitation Mobile Applications. Sensors 2021, 21, 2237. [Google Scholar] [CrossRef]
- Lopes, D.S.; Faria, A.; Barriga, A.; Caneira, S.; Baptista, F.; Matos, C.; Neves, A.F.; Prates, L.; Pereira, Â.M.; Nicolau, H. Visual Biofeedback for Upper Limb Compensatory Movements: A Preliminary Study Next to Rehabilitation Professionals; The Eurographics Association: Eindhoven, The Netherlands, 2019; ISBN 978-3-03868-088-8. [Google Scholar]
- Deans, E.; Kane, R.B. Extending Mathematics, 2nd ed.; American Book Company: Woodstock, GA, USA, 1968. [Google Scholar]
- Prinsen, C.A.C.; Mokkink, L.B.; Bouter, L.M.; Alonso, J.; Patrick, D.L.; de Vet, H.C.W.; Terwee, C.B. COSMIN Guideline for Systematic Reviews of Patient-Reported Outcome Measures. Qual. Life Res. 2018, 27, 1147–1157. [Google Scholar] [CrossRef] [Green Version]
- Shrout, P.E.; Fleiss, J.L. Intraclass Correlations: Uses in Assessing Rater Reliability. Psychol. Bull. 1979, 86, 420–428. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Statistical Methods for Assessing Agreement between Two Methods of Clinical Measurement. Lancet 1986, 1, 307–310. [Google Scholar] [CrossRef]
- Adegoke, B.O.A.; Offiah, M.N.; Okoye, E.C.; Akosile, C.O. Intra-Rater Reliabilities and Concurrent Validity of the Universal Goniometer and Tape Measure for Measuring Cervical Active Range of Motion. J. Musculoskelet. Res. 2015, 18, 1550005. [Google Scholar] [CrossRef]
- LaValle, S.M.; Yershova, A.; Katsev, M.; Antonov, M. Head Tracking for the Oculus Rift. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 187–194. [Google Scholar] [CrossRef]
- Audette, I.; Dumas, J.-P.; Côté, J.N.; De Serres, S.J. Validity and Between-Day Reliability of the Cervical Range of Motion (CROM) Device. J. Orthop. Sports Phys. Ther. 2010, 40, 318–323. [Google Scholar] [CrossRef] [PubMed]
- Ghorbani, F.; Kamyab, M.; Azadinia, F. Smartphone Applications as a Suitable Alternative to CROM Device and Inclinometers in Assessing the Cervical Range of Motion in Patients with Nonspecific Neck Pain. J. Chiropract. Med. 2020, 19, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Knight, J.F.; Baber, C. Effect of Head-Mounted Displays on Posture. Hum. Factors 2007, 49, 797–807. [Google Scholar] [CrossRef] [PubMed]
- Ito, K.; Tada, M.; Ujike, H.; Hyodo, K. Effects of the Weight and Balance of Head-Mounted Displays on Physical Load. Appl. Sci. 2021, 11, 6802. [Google Scholar] [CrossRef]
- Moghaddas, D.; de Zoete, R.M.J.; Edwards, S.; Snodgrass, S.J. Differences in the Kinematics of the Cervical and Thoracic Spine during Functional Movement in Individuals with or without Chronic Neck Pain: A Systematic Review. Physiotherapy 2019, 105, 421–433. [Google Scholar] [CrossRef]
- Banquiero, M.; Valdeolivas, G.; Trincado, S.; García, N.; Juan, M.C. Passthrough Mixed Reality with Oculus Quest 2: A Case Study on Learning Piano. IEEE MultiMedia 2023, 1–11. [Google Scholar] [CrossRef]
HMD | IMU | ||||
---|---|---|---|---|---|
Axis | Mean (°) | SD | Mean (°) | SD | |
Yaw | Look left 45° | −44.98 | 0.53 | −44.73 | 0.73 |
Look left MAX | −67.58 | 9.93 | −66.98 | 9.80 | |
Look right 45° | 44.78 | 0.61 | 44.89 | 0.86 | |
Look right MAX | 61.86 | 9.79 | 61.57 | 9.83 | |
Pitch | Look down 20° | 19.27 | 0.67 | 19.54 | 1.09 |
Look down MAX | 49.37 | 5.26 | 49.84 | 5.41 | |
Look up 20° | −20.56 | 0.68 | 20.66 | 0.78 | |
Look up MAX | −41.43 | 5.91 | −41.45 | 5.95 | |
Roll | Lean left 15° | 16.29 | 1.89 | 15.95 | 1.94 |
Lean left MAX | 31.87 | 4.45 | 31.71 | 4.52 | |
Lean right 15° | −16.08 | 1.65 | −15.92 | 1.64 | |
Lean right MAX | −30.14 | 4.71 | −30.20 | 4.63 |
Error | Validity | |||
---|---|---|---|---|
Axis | MAE (°) | %MAE (%) | r | |
Yaw | Look left 45° | 0.38 ± 0.34 | 0.86 ± 0.77 | 0.78 |
Look left MAX | 0.67 ± 0.46 | 1.01 ± 0.71 | 0.99 | |
Look right 45° | 0.45 ± 0.30 | 1.01 ± 0.69 | 0.78 | |
Look right MAX | 0.49 ± 0.37 | 0.83 ± 0.62 | 0.99 | |
Pitch | Look down 20° | 0.58 ± 0.34 | 2.96 ± 1.77 | 0.85 |
Look down MAX | 0.54 ± 0.34 | 1.07 ± 0.69 | 0.99 | |
Look up 20° | 0.49 ± 0.30 | 2.39 ± 1.48 | 0.70 | |
Look up MAX | 0.39 ± 0.30 | 0.93 ± 0.74 | 0.99 | |
Roll | Lean left 15° | 0.48 ± 0.44 | 3.11 ± 2.85 | 0.95 |
Lean left MAX | 0.53 ± 0.40 | 1.72 ± 1.31 | 0.98 | |
Lean right 15° | 0.32 ± 0.29 | 2.04 ± 1.84 | 0.96 | |
Lean right MAX | 0.41 ± 0.29 | 1.42 ± 0.98 | 0.99 | |
Average | 0.48 ± 0.09 | 1.61 ± 0.82 | 0.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trinidad-Fernández, M.; Bossavit, B.; Salgado-Fernández, J.; Abbate-Chica, S.; Fernández-Leiva, A.J.; Cuesta-Vargas, A.I. Head-Mounted Display for Clinical Evaluation of Neck Movement Validation with Meta Quest 2. Sensors 2023, 23, 3077. https://doi.org/10.3390/s23063077
Trinidad-Fernández M, Bossavit B, Salgado-Fernández J, Abbate-Chica S, Fernández-Leiva AJ, Cuesta-Vargas AI. Head-Mounted Display for Clinical Evaluation of Neck Movement Validation with Meta Quest 2. Sensors. 2023; 23(6):3077. https://doi.org/10.3390/s23063077
Chicago/Turabian StyleTrinidad-Fernández, Manuel, Benoît Bossavit, Javier Salgado-Fernández, Susana Abbate-Chica, Antonio J. Fernández-Leiva, and Antonio I. Cuesta-Vargas. 2023. "Head-Mounted Display for Clinical Evaluation of Neck Movement Validation with Meta Quest 2" Sensors 23, no. 6: 3077. https://doi.org/10.3390/s23063077
APA StyleTrinidad-Fernández, M., Bossavit, B., Salgado-Fernández, J., Abbate-Chica, S., Fernández-Leiva, A. J., & Cuesta-Vargas, A. I. (2023). Head-Mounted Display for Clinical Evaluation of Neck Movement Validation with Meta Quest 2. Sensors, 23(6), 3077. https://doi.org/10.3390/s23063077