Accuracy of Intracranial Pressure Monitoring—Single Centre Observational Study and Literature Review
Abstract
:1. Introduction
2. Materials and Methods
3. Observational Study
3.1. Why Monitor ICP?
3.2. Intracranial Pressure Sensor Technology
In Vivo Zeroing
3.3. Comparing ICP Sensor Performance to Bench Testing
4. Literature Review
4.1. Zero Drift in ICP Sensors
4.2. Agreement between Intraparenchymal Sensors
4.3. Agreement between Intraparenchymal Sensors and CSF Pressure in Clinical Studies
5. Discussion
5.1. Overall Accuracy of ICP Sensors with Respect to CSF Reference Pressure
5.2. Future of ICP Sensors
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Glossary
ICP | Intracranial Pressure |
TBI | Traumatic Brain Injury |
EVD | External Ventricular Drain |
CSF | Cerebrospinal Fluid |
CPP | Cerebral Perfusion Pressure |
Appendix A
Laboratory | Reference | Sensor | Sensor Type | Maximal Drift (mm Hg/day) | Comments |
---|---|---|---|---|---|
Monza, Italy | Citerio et al. (2004) [58] | Raumedic Neurovent-P | Piezoelectric Strain Gauge | 0–2.0 | Overall drift past 5 days; precise measurements for long-term, continuous recording |
Citerio et al. (2008) [59] | Raumedic Neurovent-P | Piezoelectric Strain Gauge | ±3.0 | Clinical application of Citerio et al. (2004) [50]; 12–17% failure of sensor to accurately measure ICP (n = 99) | |
Cambridge, UK | Czosnyka et al. (1996) [41] | Camino 110-4B | Fiberoptic | <0.8 | 24 h period |
Czosnyka et al. (1996) [41] | Codman MicroSensor | Piezoelectric Strain Gauge | <0.8 | 24 h period | |
Czosnyka et al. (1996) [41] | InnerSpace Medical ICP Monitoring Catheter Kit (OPD-SX) | Spectral Frequency | <0.8 | 24 h period; zero drift <0.4 mm Hg measured at a static pressure of 0 mm Hg | |
Czosnyka et al. (1997) [40] | Camino 110-4B | Fiberoptic | <0.7 | 24 h period | |
Czosnyka et al. (1997) [40] | Spiegelberg | Pneumatic | <0.7 | 24 h period; hourly adjustments to zero produced <0.3 mm Hg drift | |
Allin et al. (2008) [34] | Sophysa Pressio | Piezoelectric Strain Gauge | <0.05 | Over a 7-day period | |
Allin et al. (2008) [34] | Codman MicroSensor | Piezoelectric Strain Gauge | <0.05 | Over a 7-day period | |
Al-Tamimi et al. (2009) [44] | Codman MicroSensor | Piezoelectric Strain Gauge | 2.0 | Median value; 108 in-situ hours (median); drift was found to increase over time (Spearman’s correlation coefficient = 0.342; p = 0.001); drift ≥ 5.0 mm Hg found in 20% of sensors | |
Santiago de Compostela, Spain | Gelabert-González et al. (2006) [60] | Camino 110-4B | Fiberoptic | 7.3 ± 5.1 | Mean value; clinical assessment of 1000 sensors: 79 sensors (12.6%) showed no zero drift on removal; mean monitoring time of 58.4 ± 8.6 h |
Southampton, UK | Gray et al. (1996) [53] | Codman MicroSensor | Piezoelectric Strain Gauge | 0–1.0 | 24 h period; sensors inserted in both parenchymal (mean zero drift: 0.312 mm Hg) and subdural (mean zero drift: 0.475 mm Hg) locations |
Umeå, Sweden | Koskinen et al. (2005) [46] | Codman MicroSensor | Piezoelectric Strain Gauge | 0.9 ± 0.2 | Zero drift not correlated with duration of monitoring (analysis of data recorded over 7.2 ± 0.4 days; p = 0.9, Pearson R = 0.002) |
Frankfurt am Main, Germany | Lang et al. (2003) [52] | Spiegelberg | Pneumatic | ≥±2.0 | Average monitoring time of 10 days; sensors inserted in both intraparenchymal and subdural locations |
Barcelona, Spain | Martínez-Mañas et al. (2000) [55] | Camino 110-4B | Fiberoptic | 0 ± 2.0 in the first 24 h, then <±1.0 per day | 56 probes tested to confirm manufacturer specifications; 60.71% complied with zero drift standards, 39.28% drifted to positive or negative values; no observed correlation between monitoring duration and zero drift (p = 0.27) |
Teubingen, Germany | Morgalla et al. (1999) [42] | Camino 110-4B | Fiberoptic | 1.0–2.0 | Microsensor accuracy was reported: 24 h period (0.80 mm Hg drift), measurements binned at 5 mm Hg pressure intervals in the range of 0–80 mm Hg; 10-day drift measured at the same intervals (8.0 mm Hg) |
Morgalla et al. (1999) [42] | Codman MicroSensor | Piezoelectric Strain Gauge | 4.0≥ | Microsensor accuracy was reported: discrepancies observed at pressures ≥60 mm Hg; 24 h period (0.95 mm Hg drift), measurements binned at 5 mm Hg pressure intervals in the range of 0–80 mm Hg; 10-day drift measured at the same intervals (2.0 mm Hg) | |
Morgalla et al. (1999) [42] | Epidyn | Epidural | >8.0 | Microsensor accuracy was reported: underestimated ICP, especially at higher pressures; 24 h period (1.20 mm Hg drift), measurements binned at 5 mm Hg pressure intervals in the range of 0–80 mm Hg; 10-day drift measured at the same intervals (15.0 mm Hg) | |
Morgalla et al. (1999) [42] | Gaeltec ICT/B | Epidural | 4.0≥ | Microsensor accuracy was reported: 24 h period (1.5 mm Hg drift), measurements binned at 5 mm Hg pressure intervals in the range of 0–80 mm Hg; 10-day drift measured at the same intervals (10 mm Hg) | |
Morgalla et al. (1999) [42] | HanniSet | External Ventricular Drain | 1.0–3.0 | Microsensor accuracy was reported: 24 h period (0.2 mm Hg drift), measurements binned at 5 mm Hg pressure intervals in the range of 0–80 mm Hg; 10-day drift measured at the same intervals (1.0 mm Hg) | |
Morgalla et al. (1999) [42] | Medex | External Ventricular Drain | 2.0–4.0 | Microsensor accuracy was reported: 24 h period (1.8 mm Hg drift), measurements binned at 5 mm Hg pressure intervals in the range of 0–80 mm Hg; 10-day drift measured at the same intervals (3.5 mm Hg) | |
Morgalla et al. (1999) [42] | Spiegelberg | Pnematic | <4.0 at pressures >50mm Hg; ≤6.0 at pressures >60 mm Hg | Microsensor accuracy was reported: 24 h period (2.1 mm Hg drift), measurements binned at 5 mm Hg pressure intervals in the range of 0–80 mm Hg; 10-day drift measured at the same intervals (7.0 mm Hg) | |
Morgalla et al. (2002) [38] | Camino 110-4B | Fiberoptic | 2.9 | Median values for mean absolute pressure changes; 10-day drift: 4.0 mm Hg (transducers tested at 0–50 mm Hg) | |
Morgalla et al. (2002) [43] | Gaeltec ICT/B | Epidural | 5.2 | Median values for mean absolute pressure changes; 10-day drift: 9.0 mm Hg (transducers tested at 0–50 mm Hg) | |
Morgalla et al. (2002) [43] | HanniSet | External Ventricular Drain | 0 | Median values for mean absolute pressure changes; 10-day drift: 0 mm Hg (transducers tested at 0–50 mm Hg) | |
Morgalla et al. (2002) [43] | Spiegelberg | Pneumatic | 2.4 | Median values for mean absolute pressure changes; 10-day drift: 2.0 mm Hg (transducers tested at 0–50 mm Hg) | |
Copenhagen, Denmark | Norager et al. (2018) [27] | Raumedic Neurovent-P | Piezoelectric Strain Gauge | 2.5 | Median baseline drift in 19 sensors (median implantation time of 241 days) |
Lilja et al. (2014) [54] | Raumedic Neurovent-P | Piezoelectric Strain Gauge | ±2.0 | Assessment of hydrocephalus patients (n = 21); median duration of sensor implantation was 288 days; poor compatible ICP curve visualization software | |
Glasgow, UK | Piper et al. (2001) [56] | Camino 110-4B | Fiberoptic | −0.67 | Mean zero drift (3-day median implantation time); median drift reported at −1 mm Hg; more than 50% of the catheters had an observed drift >±3 mm Hg |
Laboratory | Reference | Sensor 1 | Sensor 2 | Agreement | Comments |
---|---|---|---|---|---|
Cambridge, UK | Allin et al. (2008) [34] | Codman MicroSensor | Sophysa Pressio | Excellent agreement (reported Pearson R = 0.999) | Codman devices require additional bridge amplifiers to connect to computerized data streaming |
Czosnyka et al. (1996) [41] | Camino 110-4B | Codman MicroSensor | No significant differences in zero drift at a static pressure of 20 mm Hg; comparable for pulsatile pressure measurement; Camino temperature drift (0.27 mm Hg/°C) significantly higher than Codman; <0.3 mm Hg static error (Camino) vs. <2 mm Hg static error (Codman); very good frequency detection for both (bandwidth >30 Hz) | Codman is preferred for clinical use; also bench tested InnerSpace Medical’s ICP Monitoring Catheter Kit (OPX-SD), which had the lowest 24 h zero drift compared with both Codman and Camino sensors, but otherwise did not perform as well | |
Czosnyka et al. (1997) [40] | Camino 110-4B | Spiegelberg | Camino temperature drift recorded at 0.27 mm Hg/°C; excellent agreement between transducers at pressures 0–100 mm Hg over 20 min (reported Pearson R = 0.99); static error <1 mm Hg up to pressures of 40 mm Hg that increased to 5 mm Hg at 100 mm Hg (Spiegelberg) vs. static error <0.7 mm Hg (Camino) | Spiegelberg devices are less expensive but are “limited by low frequency response and non-linear distortion as amplitude underestimation increases [with] mean pressure” | |
Newcastle upon Tyne, UK | Banister et al. (2000) [45] | Camino 110-4B | Codman MicroSensor | ICP measured within 10 mm Hg in 11 patients; >10 mm Hg disparity in 6 patients | Small sample size (n = 17); Codman was “misleading” in 18% of patients; preference for Camino sensors to register clinical events |
Oslo, Norway | Eide (2006) [47] | Camino 110-4B | Codman MicroSensor | Differences >5 mm Hg observed in 13% of ICP recordings | Extremely small sample size (n = 3); discrepancies attributed to differing baseline pressures |
Eide & Bakken (2011) [48] | Codman MicroSensor | Raumedic Neurovent-P | Differences in baseline pressure ≥2 mm Hg in 96% of Codman sensors and 53% of Raumedic sensors observed as a result of electrostatic discharges (0.5–5 kV) | Discrepancies in baseline pressures (either sudden or gradual shifts) ≥10 mm Hg can significantly affect ICP management |
Laboratory | Reference | Sensor | Differences from CSF Pressure | Comments |
---|---|---|---|---|
Oslo, Norway | Brean et al. (2006) [61] | Codman MicroSensor | Mean difference between Codman and ventricular reference pressure reported at −0.71 ± 6.8 mm Hg | Data obtained from a case study; measurements from single wave parameters |
Eide et al. (2012) [62] | Codman MicroSensor, Edward’s fluid sensor connected to an external ventricular drain (Truwave PX-600 F Pressure Monitoring Set, Edwards Lifesciences LLC, Irvine, CA, USA), and Spiegelberg | Significant differences in mean ICP reported >5 mm Hg between ventricular pressure and each sensor type | Comparison of solid strain gauge sensors with either fluid or air-pouch sensors; “simultaneous monitoring of ICP using two solid sensors may show marked differences in static ICP but close to identity in dynamic ICP waveforms”; solid ICP sensors exhibit less disparity from “true” ICP and are preferred for clinical use; small sample size (n = 17) | |
Marseille, France | Bruder et al. (1995) [63] | Camino 110-4B | Camino underestimated ventricular pressure by about 9 mm Hg | 95% confidence interval of bias: −9.8 to 27.8 mm Hg; small sample size (n = 10), male patients only |
Newcastle upon Tyne, UK | Chambers et al. (1993) [49] | Camino 110-4B | Reads an average of 1.15 mm Hg higher than ventricular pressure | |
Chambers et al. (2001) [64] | Spiegelberg | Mean ICP differences > ±1.5 mm Hg between Spiegelberg and ventricular pressure | Reported results obtained from 10 patients; small overall sample size (n = 11) | |
Sheffield, UK; Singapore | Childs & Shen (2015) [65] | Raumedic Neurovent-P | Mean difference between intraparenchymal and ventricular pressure measured at −0.832 mm Hg | Tissue pressure is reported to be marginally lower than ventricular pressure (p = 0.379); temperature also did not vary significantly between local pressure sites (p = 0.92); small sample size (n = 17) |
Houston, TX, USA | Crutchfield et al. (1990) [66] | Camino Model 420 | Camino estimated ventricular pressure within ±3 mm Hg over a 0- to 30-mm Hg pressure range; robust correlation of 0.977 | Study conducted in dogs |
Gopinath et al. (1995) [67] | Codman MicroSensor | Mean difference between Codman and ventricular pressure measured at 0.5 ± 2.6 mm Hg | Small sample size (n = 25) | |
Frankfurt am Main, Germany | Lang et al. (2003) [52] | Spiegelberg | Absolute difference between Spiegelberg and intraventricular pressure >±3 mm Hg in 99.6% of paired readings and >±2 mm Hg in 91.3% of paired readings | Average Bland Altman bias of 0.5, with 10% lower Spiegelberg readings with ICP > 25 mm Hg (n = 87) |
Umeå, Sweden | Koskinen et al. (2005) [46] | Codman MicroSensor | Strong agreement between the Codman and ventricular pressure (p < 0.0001, Pearson R = 0.79) | Mean ICP in the ventricles measured at 18.3 ± 0.3 mm Hg vs. 19.0 ± 0.2 mm Hg measured by Codman (n = 128) |
Lenfeldt et al. (2007) [51] | Codman MicroSensor | Measured differences between Codman and lumbar pressure observed at −0.75 ± 2.10 mm Hg | Agreement between intracranial and lumbar pressure assessed patients with normal pressure hydrocephalus (n = 10) | |
Orange, CA, USA | Schickner & Young (1992) [50] | Camino 110-4B | Mean ICP difference between the Camino and the ventricular catheter of 9.2 ± 7.8 mm Hg | ICP recorded for up to 118 h; small sample size (n = 10) |
References
- Bekar, A.; Doǧan, Ş.; Abaş, F.; Caner, B.; Korfali, G.; Kocaeli, H.; Yilmazlar, S.; Korfali, E. Risk Factors and Complications of Intracranial Pressure Monitoring with a Fiberoptic Device. J. Clin. Neurosci. 2009, 16, 236–240. [Google Scholar] [CrossRef]
- Dhar, R.; Sandler, R.H.; Manwaring, K.; Kostick, N.; Mansy, H.A. Noninvasive Detection of Elevated ICP Using Spontaneous Tympanic Membrane Pulsation. Sci. Rep. 2021, 11, 21957. [Google Scholar] [CrossRef]
- Ali, M.A.; Hashmi, M.; Shamim, S.; Salam, B.; Siraj, S.; Salim, B. Correlation of Optic Nerve Sheath Diameter with Direct Measurement of Intracranial Pressure through an External Ventricular Drain. Cureus 2019, 11, e5777. [Google Scholar] [CrossRef]
- Schmidt, B.; Czosnyka, M.; Cardim, D.; Rosengarten, B. Noninvasive Intracranial Pressure Assessment in Patients with Suspected Idiopathic Intracranial Hypertension. Acta Neurochir. Suppl. 2021, 131, 325–327. [Google Scholar] [CrossRef]
- Eide, P.K.; Fremming, A.D.; Sorteberg, A. Lack of Relationship between Resistance to Cerebrospinal Fluid Outflow and Intracranial Pressure in Normal Pressure Hydrocephalus. Acta Neurol. Scand. 2003, 108, 381–388. [Google Scholar] [CrossRef]
- Srinivasan, V.M.; O’Neill, B.R.; Jho, D.; Whiting, D.M.; Oh, M.Y. The History of External Ventricular Drainage. J. Neurosurg. 2013, 120, 228–236. [Google Scholar] [CrossRef]
- Czosnyka, M.; Kirollos, R.; Van Hille, P. David Price-Pioneer of Digital ICP Monitoring, Neurosurgeon and Teacher. Br. J. Neurosurg. 2015, 29, 312–313. [Google Scholar] [CrossRef]
- Rosner, M.J.; Becker, D.P. ICP Monitoring: Complications and Associated Factors. Clin. Neurosurg. 1976, 23, 494–519. [Google Scholar] [CrossRef]
- Robba, C.; Graziano, F.; Rebora, P.; Elli, F.; Giussani, C.; Oddo, M.; Meyfroidt, G.; Helbok, R.; Taccone, F.S.; Prisco, L.; et al. Intracranial Pressure Monitoring in Patients with Acute Brain Injury in the Intensive Care Unit (SYNAPSE-ICU): An International, Prospective Observational Cohort Study. Lancet Neurol. 2021, 20, 548–558. [Google Scholar] [CrossRef]
- Heldt, T.; Zoerle, T.; Teichmann, D.; Stocchetti, N. Intracranial Pressure and Intracranial Elastance Monitoring in Neurocritical Care. Annu. Rev. Biomed. Eng. 2019, 21, 523–549. [Google Scholar] [CrossRef]
- Price, D.J. Digitised ICP over Three Decades. Acta Neurochir. Suppl. 2012, 114, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, N. Continuous Recording and Control of Ventricular Fluid Pressure in Neurosurgical Practice. Acta Psychiatr. Scand. Suppl. 1960, 36, 1–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonig, A.; Jumah, F.; Raju, B.; Patel, N.V.; Gupta, G.; Nanda, A. The Historical Evolution of Intracranial Pressure Monitoring. World Neurosurg. 2020, 138, 491–497. [Google Scholar] [CrossRef]
- Harary, M.; Dolmans, R.G.F.; Gormley, W.B. Intracranial Pressure Monitoring—Review and Avenues for Development. Sensor 2018, 18, 465. [Google Scholar] [CrossRef] [Green Version]
- Czosnyka, M.; Pickard, J.D.; Steiner, L.A. Principles of Intracranial Pressure Monitoring and Treatment. Handb. Clin. Neurol. 2017, 140, 67–89. [Google Scholar]
- Yau, Y.; Piper, I.; Contant, C.; Citerio, G.; Kiening, K.; Enblad, P.; Nilsson, P.; Ng, S.; Wasserberg, J.; Kiefer, M.; et al. Multi-Centre Assessment of the Spiegelberg Compliance Monitor: Interim Results. Acta Neurochir. Suppl. 2002, 81, 167–170. [Google Scholar] [CrossRef]
- Hawryluk, G.W.J.; Citerio, G.; Hutchinson, P.; Kolias, A.; Meyfroidt, G.; Robba, C.; Stocchetti, N.; Chesnut, R. Intracranial Pressure: Current Perspectives on Physiology and Monitoring. Intensive Care Med. 2022, 48, 1471–1481. [Google Scholar] [CrossRef]
- Canac, N.; Jalaleddini, K.; Thorpe, S.G.; Thibeault, C.M.; Hamilton, R.B. Review: Pathophysiology of Intracranial Hypertension and Noninvasive Intracranial Pressure Monitoring. Fluids Barriers CNS 2020, 17, 40. [Google Scholar] [CrossRef]
- Rubiano, A.M.; Figaji, A.; Hawryluk, G.W. Intracranial Pressure Management: Moving beyond Guidelines. Curr. Opin. Crit. Care 2022, 28, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Chesnut, R.M.; Temkin, N.; Carney, N.; Dikmen, S.; Rondina, C.; Videtta, W.; Petroni, G.; Lujan, S.; Pridgeon, J.; Barber, J.; et al. A Trial of Intracranial-Pressure Monitoring in Traumatic Brain Injury. N. Engl. J. Med. 2012, 367, 2471–2481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marmarou, A.; Shulman, K.; Rosende, R.M. A Nonlinear Analysis of the Cerebrospinal Fluid System and Intracranial Pressure Dynamics. J. Neurosurg. 1978, 48, 332–344. [Google Scholar] [CrossRef] [PubMed]
- Raboel, P.H.; Bartek, J.; Andresen, M.; Bellander, B.M.; Romner, B. Intracranial Pressure Monitoring: Invasive versus Non-Invasive Methods-A Review. Crit. Care Res. Pract. 2012, 2012, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Kim, B.; Meng, E.; Yu, L.; Kim, B.J.; Meng, E. Chronically Implanted Pressure Sensors: Challenges and State of the Field. Sensors 2014, 14, 20620–20644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatia, A.; Gupta, A.K. Neuromonitoring in the Intensive Care Unit. Part I. Intracranial Pressure and Cerebral Blood Flow Monitoring. In Applied Physiology in Intensive Care Medicine 1: Physiological Notes—Technical Notes—Seminal Studies in Intensive Care, 3rd ed.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; ISBN 9783642282706. [Google Scholar]
- Koskinen, L.O.D.; Grayson, D.; Olivecrona, M. The Complications and the Position of the Codman MicroSensorTM ICP Device: An Analysis of 549 Patients and 650 Sensors. Acta Neurochir. 2013, 155, 2141–2148. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Dujovny, M.; Park, H.K.; Perez, E.; Perlin, A.R.; Diaz, F.G. Advances in ICP Monitoring Techniques. Neurol. Res. 2003, 25, 339–350. [Google Scholar] [CrossRef]
- Norager, N.H.; Lilja-Cyron, A.; Bjarkam, C.R.; Duus, S.; Juhler, M. Telemetry in Intracranial Pressure Monitoring: Sensor Survival and Drift. Acta Neurochir. 2018, 160, 2137–2144. [Google Scholar] [CrossRef]
- Evensen, K.B.; Eide, P.K. Measuring Intracranial Pressure by Invasive, Less Invasive or Non-Invasive Means: Limitations and Avenues for Improvement. Fluids Barriers CNS 2020, 17, 1–33. [Google Scholar] [CrossRef]
- Akbik, O.S.; Carlson, A.P.; Yonas, H. The Roles of Ventricular and Parenchymal Intracranial Pressure Monitoring. Curr. Neurobiol. 2016, 7, 1–6. [Google Scholar] [CrossRef]
- Bhatia, A.; Gupta, A.K. Neuromonitoring in the Intensive Care Unit. I. Intracranial Pressure and Cerebral Blood Flow Monitoring. Intensive Care Med. 2007, 33, 1263–1271. [Google Scholar] [CrossRef]
- Sahuquillo, J.; Poca, M.A.; Arribas, M.; Garnacho, A.; Rubio, E. Interhemispheric Supratentorial Intracranial Pressure Gradients in Head-Injured Patients: Are They Clinically Important? J. Neurosurg. 1999, 90, 16–26. [Google Scholar] [CrossRef] [Green Version]
- Stephensen, H.; Tisell, M.; Wikkelsö, C.; Hodge, C.J.; Gjerris, F.; Børgesen, S.E.; Bech-Azeddine, R.; Sutton, L.N.; McComb, J.G.; Pickard, J.D. There Is No Transmantle Pressure Gradient in Communicating or Noncommunicating Hydrocephalus. Neurosurgery 2002, 50, 763–771. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Shallwani, H.; Khan, M.; Shamim, M. Noninvasive Monitoring Intracranial Pressure—A Review of Available Modalities. Surg. Neurol. Int. 2017, 8, 51. [Google Scholar] [CrossRef]
- Allin, D.; Czosnyka, M.; Czosnyka, Z. Laboratory Testing of the Pressio Intracranial Pressure Monitor. Neurosurgery 2008, 62, 1158–1161. [Google Scholar] [CrossRef] [PubMed]
- Weinstabl, C.; Richling, B.; Plainer, B.; Czech, T.; Spiss, C.K. Comparative Analysis between Epidural (Gaeltec) and Suboural (Camino) Intracranial Pressure Probes. J. Clin. Monit. 1992, 8, 116–120. [Google Scholar] [CrossRef]
- Darrow, D.; Lee-Norris, A.; Larson, A.; Samadani, U.; Netoff, T.I. Discrepancy Between Internal and External Intracranial Pressure Transducers: Quantification of an Old Source of Error in EVDs? World Neurosurg. 2020, 133, e18–e25. [Google Scholar] [CrossRef] [PubMed]
- Pratt, K.A.; Peacock, S.H.; Yost, K.D.; Freeman, W.D.; Collins, C.I.; McLaughlin, D.C. Zero-Calibrating External Ventricular Drains: Exploring Practice. J. Neurosci. Nurs. 2022, 54, 2–5. [Google Scholar] [CrossRef]
- Olson, D.W.M.; Ortega Peréz, S.; Ramsay, J.; Venkatasubba Rao, C.P.; Suarez, J.I.; McNett, M.; Aiyagari, V. Differentiate the Source and Site of Intracranial Pressure Measurements Using More Precise Nomenclature. Neurocrit. Care 2019, 30, 239–243. [Google Scholar] [CrossRef] [Green Version]
- Beidler, P.G.; Novokhodko, A.; Prolo, L.M.; Browd, S.; Lutz, B.R. Fluidic Considerations of Measuring Intracranial Pressure Using an Open External Ventricular Drain. Cureus 2021, 13, e15324. [Google Scholar] [CrossRef]
- Czosnyka, M.; Czosnyka, Z.; Pickard, J.D. Laboratory Testing of the Spiegelberg Brain Pressure Monitor: A Technical Report. J. Neurol. Neurosurg. Psychiatry 1997, 63, 732–735. [Google Scholar] [CrossRef]
- Czosnyka, M.; Czosnyka, Z.; Pickard, J.D. Laboratory Testing of Three Intracranial Pressure Microtransducers: Technical Report. Neurosurgery 1996, 38, 219–224. [Google Scholar] [CrossRef]
- Morgalla, M.H.; Mettenleiter, H.; Bitzer, M.; Fretschner, R.; Grote, E.H. ICP Measurement Control: Laboratory Test of 7 Types of Intracranial Pressure Transducers. J. Med. Eng. Technol. 1999, 23, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Morgalla, M.H.; Dietz, K.; Deininger, M.; Grote, E.H. The Problem of Long-Term ICP Drift Assessment: Improvement by Use of the ICP Drift Index. Acta Neurochir. 2002, 144, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Al-Tamimi, Y.Z.; Helmy, A.; Bavetta, S.; Price, S.J. Assessment of Zero Drift in the Codman Intracranial Pressure Monitor: A Study from 2 Neurointensive Care Units. Neurosurgery 2009, 64, 94–98. [Google Scholar] [CrossRef]
- Banister, K.; Chambers, I.R.; Siddique, M.S.; Fernandes, H.M.; Mendelow, A.D. Intracranial Pressure and Clinical Status: Assessment of Two Intracranial Pressure Transducers. Physiol. Meas. 2000, 21, 473–479. [Google Scholar] [CrossRef] [PubMed]
- Koskinen, L.O.D.; Olivecrona, M. Clinical Experience with the Intraparenchymal Intracranial Pressure Monitoring Codman Microsensor System. Neurosurgery 2005, 56, 693–698. [Google Scholar] [CrossRef]
- Eide, P.K. Comparison of Simultaneous Continuous Intracranial Pressure (ICP) Signals from a Codman and a Camino ICP Sensor. Med. Eng. Phys. 2006, 28, 542–549. [Google Scholar] [CrossRef]
- Eide, P.K.; Bakken, A. The Baseline Pressure of Intracranial Pressure (ICP) Sensors Can Be Altered by Electrostatic Discharges. Biomed. Eng. Online 2011, 10, 75. [Google Scholar] [CrossRef] [Green Version]
- Chambers, K.R.; Kane, P.J.; Choksey, M.S.; Mendelow, A.D. An Evaluation of the Camino Ventricular Bolt System in Clinical Practice. Neurosurgery 1993, 33, 866–868. [Google Scholar]
- Schickner, D.J.; Young, R.F. Intracranial Pressure Monitoring: Fiberoptic Monitor Compared with the Ventricular Catheter. Surg. Neurol. 1992, 37, 251–254. [Google Scholar] [CrossRef]
- Lenfeldt, N.; Koskinen, L.O.D.; Bergenheim, A.T.; Malm, J.; Eklund, A. CSF Pressure Assessed by Lumbar Puncture Agrees with Intracranial Pressure. Neurology 2007, 68, 155–158. [Google Scholar] [CrossRef]
- Lang, J.M.; Beck, J.; Zimmermann, M.; Seifert, V.; Raabe, A.; Kelly, D.F.; Bergsneider, M.; Grossman, R.G.; Milhorat, T.H.; Czosnyka, M. Clinical Evaluation of Intraparenchymal Spiegelberg Pressure Sensor. Neurosurgery 2003, 52, 1455–1459. [Google Scholar] [CrossRef] [PubMed]
- Gray, W.P.; Palmer, J.D.; Gill, J.; Gardner, M.; Iannotti, F. A Clinical Study of Parenchymal and Subdural Miniature Strain-Gauge Transducers for Monitoring Intracranial Pressure. Neurosurgery 1996, 39, 927–932. [Google Scholar] [CrossRef] [PubMed]
- Lilja, A.; Andresen, M.; Hadi, A.; Christoffersen, D.; Juhler, M. Clinical Experience with Telemetric Intracranial Pressure Monitoring in a Danish Neurosurgical Center. Clin. Neurol. Neurosurg. 2014, 120, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Mañas, R.M.; Santamarta, D.; De Campos, J.M.; Ferrer, E. Camino® Intracranial Pressure Monitor: Prospective Study of Accuracy and Complications. J. Neurol. Neurosurg. Psychiatry 2000, 69, 82–86. [Google Scholar] [CrossRef] [Green Version]
- Piper, I.; Barnes, A.; Smith, D.; Dunn, L. The Camino Intracranial Pressure Sensor: Is It Optimal Technology? An Internal Audit with a Review of Current Intracranial Pressure Monitoring Technologies. Neurosurgery 2001, 49, 1158–1165. [Google Scholar] [CrossRef]
- Ganslandt, O.; Mourtzoukos, S.; Stadlbauer, A.; Sommer, B.; Rammensee, R. Evaluation of a Novel Noninvasive ICP Monitoring Device in Patients Undergoing Invasive ICP Monitoring: Preliminary Results. J. Neurosurg. 2017, 128, 1653–1660. [Google Scholar] [CrossRef] [Green Version]
- Citerio, G.; Piper, I.; Cormio, M.; Galli, D.; Cazzaniga, S.; Enblad, P.; Nilsson, P.; Contant, C.; Chambers, I. Bench Test Assessment of the New Raumedic Neurovent-P ICP Sensor: A Technical Report by the BrainIT Group. Acta Neurochir. 2004, 146, 1221–1226. [Google Scholar] [CrossRef]
- Citerio, G.; Piper, I.; Chambers, I.R.; Galli, D.; Enblad, P.; Kiening, K.; Ragauskas, A.; Sahuquillo, J.; Gregson, B. Multicenter Clinical Assessment of the Raumedic Neurovent-P Intracranial Pressure Sensor: A Report by the BrainIT Group. Neurosurgery 2008, 63, 1152–1158. [Google Scholar] [CrossRef] [Green Version]
- Gelabert-González, M.; Ginesta-Galan, V.; Sernamito-García, R.; Allut, A.G.; Bandin-Diéguez, J.; Rumbo, R.M. The Camino Intracranial Pressure Device in Clinical Practice. Assessment in a 1000 Cases. Acta Neurochir. 2006, 148, 435–441. [Google Scholar] [CrossRef]
- Brean, A.; Eide, P.K.; Stubhaug, A. Comparison of Intracranial Pressure Measured Simultaneously within the Brain Parenchyma and Cerebral Ventricles. J. Clin. Monit. Comput. 2006, 20, 411–414. [Google Scholar] [CrossRef]
- Eide, P.K.; Holm, S.; Sorteberg, W. Simultaneous Monitoring of Static and Dynamic Intracranial Pressure Parameters from Two Separate Sensors in Patients with Cerebral Bleeds: Comparison of Findings. Biomed. Eng. Online 2012, 11, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruder, N.; N’Zoghe, P.; Graziani, N.; Pelissier, D.; Grisoli, F.; François, G. A Comparison of Extradural and Intraparenchymatous Intracranial Pressures in Head Injured Patients. Intensive Care Med. 1995, 21, 850–852. [Google Scholar] [CrossRef] [PubMed]
- Chambers, I.R.; Siddique, M.S.; Banister, K.; Mendelow, A.D. Clinical Comparison of the Spiegelberg Parenchymal Transducer and Ventricular Fluid Pressure. J. Neurol. Neurosurg. Psychiatry 2001, 71, 383–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Childs, C.; Shen, L. Regional Pressure and Temperature Variations across the Injured Human Brain: Comparisons between Paired Intraparenchymal and Ventricular Measurements. Crit. Care 2015, 19, 267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crutchfield, J.S.; Narayan, R.K.; Robertson, C.S.; Michael, L.H. Evaluation of a Fiberoptic Intracranial Pressure Monitor. J. Neurosurg. 2009, 72, 482–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gopinath, S.P.; Robertson, C.S.; Contant, C.F.; Narayan, R.K.; Grossman, R.G. Clinical Evaluation of a Miniature Strain-Gauge Transducer for Monitoring Intracranial Pressure. Neurosurgery 1995, 36, 1137–1141. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pelah, A.I.; Zakrzewska, A.; Calviello, L.A.; Forcht Dagi, T.; Czosnyka, Z.; Czosnyka, M. Accuracy of Intracranial Pressure Monitoring—Single Centre Observational Study and Literature Review. Sensors 2023, 23, 3397. https://doi.org/10.3390/s23073397
Pelah AI, Zakrzewska A, Calviello LA, Forcht Dagi T, Czosnyka Z, Czosnyka M. Accuracy of Intracranial Pressure Monitoring—Single Centre Observational Study and Literature Review. Sensors. 2023; 23(7):3397. https://doi.org/10.3390/s23073397
Chicago/Turabian StylePelah, Adam I., Agnieszka Zakrzewska, Leanne A. Calviello, Teodoro Forcht Dagi, Zofia Czosnyka, and Marek Czosnyka. 2023. "Accuracy of Intracranial Pressure Monitoring—Single Centre Observational Study and Literature Review" Sensors 23, no. 7: 3397. https://doi.org/10.3390/s23073397
APA StylePelah, A. I., Zakrzewska, A., Calviello, L. A., Forcht Dagi, T., Czosnyka, Z., & Czosnyka, M. (2023). Accuracy of Intracranial Pressure Monitoring—Single Centre Observational Study and Literature Review. Sensors, 23(7), 3397. https://doi.org/10.3390/s23073397