Low-Cost COTS GNSS Interference Monitoring, Detection, and Classification System †
Abstract
:1. Introduction
2. Background to Interference Monitoring
2.1. Detection
2.2. Classification
2.3. Localization
2.4. Mitigation
3. Hardware Design
3.1. Overview
3.2. Power Consumption and Optimization
- (1) minus (2): Power of web server processes (expectation: low power) = 21 mW;
- (2) minus (3): Power of WiFi and networking (expectation: medium power) = 394 mW;
- (3) minus (4): Power of ML inference processing (expectation: low power) = 99 mW;
- (5) minus (8): Power of the GNSS receiver with LNA and logging (expectation: medium power) = 463 mW;
- (6) minus (7): Power of SDR FFT features processing (expectation: high power) = 1.597 W;
- (7) minus (8): Power of SDR interface (expectation: medium power) = 1.473 W;
- (8): Raspberry Pi idle and hardware overhead (expectation: high power) = 2.219 W.
3.3. Alternative Hardware Setups
4. Software Design
5. Algorithmic Design
- Pre-processing,
- Critical snapshot detection,
- Classification of interference types,
- Post-processing based on the uncertainty of estimates.
5.1. Pipeline
5.2. Pre-Processing
5.2.1. Data Pre-Processing for Random Forest
5.2.2. Data Pre-Processing for ResNet
5.3. Processing
5.3.1. Detection vs. Classification
5.3.2. Architectures
5.4. Post-Processing
5.4.1. Visualization
6. Test Setup
- Exp-A: Static setup with one of the PPDs inside a driver cab of a van and a fixed distance of 6 m between the car and the sensor. The interference signals were activated sequentially. Only one at a time was transmitting.
- Exp-B: Static setup with one of the PPDs was placed inside the van at the driver’s side while the sensor was placed outside at distances of 3, 6, or 9 m from the vehicle. The experiment was conducted sequentially with all four interference signals, with only one interference signal transmitting at a time.
- Exp-C: To test complex real-world conditions and dynamic scenarios with moving interference, including line-of-sight (LOS), severe multipath, and non-line-of-sight (NLOS) conditions. This experiment was conducted at the L.I.N.K Halle Test Center at Fraunhofer Nürnberg. A person moved a COTS PPD across a tunnel of reflector wall, miming a typical motorway bridge in Germany. Four sensor nodes were mounted down each side of the bridge crossing.
7. Results
7.1. Results—Exp-A
RF vs. ResNet
7.2. Results—Exp-B
7.3. Results—Generalization
7.4. Results—L.I.N.K.—Lane Detection
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CN0 | carrier-to-noise density ratio |
ADS-B | automatic dependent surveillance-broadcast |
AE | autoencoder |
AGC | automatic gain control |
AI | artificial intelligence |
AOA | angle of arrival |
API | application programming interface |
ATC | automatic toll collection |
CNN | convolutional neural network |
COTS | commercial-off-the-shelf |
CPU | central processing unit |
DL | deep learning |
DME | distance measurement equipment |
DOP | dilution of precision |
DSP | digital signal processor |
DT | decision tree |
DVB | digital video broadcasting |
EM | electromagnetic |
ES | electronic support |
FDoOA | frequency difference of arrival |
FFT | fast Fourier transform |
FPGA | field-programmable gate array |
GLRT | generalized likelihood ratio test |
GNSS | global navigation satellite system |
GPIO | general purpose input/output |
GPSD | GPS service daemon |
GPU | graphics processing unit |
GUI | graphical user interface |
HIL | human-in-the-loop |
IQ | in-phase and quadrature-phase |
ISR | interference-to-signal ratio |
ISS | international space station |
LEO | low earth orbit |
LNA | low-noise amplifier |
LOS | line-of-sight |
LTE | Long-Term Evolution |
MA | moving average |
MCD | Monte Carlo dropout |
ML | machine learning |
NLOS | non-line-of-sight |
NMEA | National Marine Electronics Association |
OFDM | orthogonal frequency division multiplexing |
OOB | out-of-bag |
pHat | Raspberry Pi hat |
PNG | portable network graphic |
POI | probability of intercept |
PPD | privacy protection device |
PPS | pulse per second |
PQF | polyphase quadrature filter |
PRN | pseudo-random noise |
PSD | power spectral density |
PVT | position, velocity, and time |
RAM | random access memory |
ResNet | residual neural network |
RF | random forest |
RFFE | radio-frequency front-end |
RHCP | right-hand circular polarized |
RSS | received signal strength |
SBC | single-board computer |
SDR | software-defined radio |
SSC | spectral separation coefficient |
STFT | short-time Fourier transform |
SVM | support vector machine |
TCN | temporal convolutional network |
TDOA | time difference of arrival |
TPU | tensor processing unit |
UART | universal asynchronous receiver-transmitter |
References
- Gabay, C. GNSS Interference Cases Handling and the Fight Against the Spread of Illegal GNSS Jammers by ANFR, the French Spectrum Management and Monitoring Authority. In Proceedings of the 2019 RFI Workshop—Coexisting with Radio Frequency Interference (RFI), Toulouse, France, 23–26 September 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Sun, C.C.; Jan, S.S. Interference characteristics for the civil airport environment using time-frequency analysis. In Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium, Myrtle Beach, SC, USA, 23–26 April 2012; pp. 347–354. [Google Scholar] [CrossRef]
- Pirazzi, G.; Cucchi, L.; Marigi, D.; Dionisio, C. A GNSS integrity monitoring station with Software Defined Radio and low cost receivers. In Proceedings of the 2012 IEEE First AESS European Conference on Satellite Telecommunications (ESTEL), Rome, Italy, 2–5 October 2012; pp. 1–6. [Google Scholar] [CrossRef]
- Pellegrini, V.; Principe, F.; Tomei, A.; Mori, M.; Natali, M.; Cioni, R. The GNSS operative monitoring equipment (GNOME): An SDR-based solution for integrity assurance. In Proceedings of the 2012 6th ESA Workshop on Satellite Navigation Technologies (Navitec 2012) European Workshop on GNSS Signals and Signal Processing, Noordwijk, The Netherlands, 5–7 December 2012; pp. 1–8. [Google Scholar] [CrossRef]
- Trinkle, M.; Cetin, E.; Thompson, R.J.; Dempster, A.G. Interference Localisation within the GNSS Environmental Monitoring System (GEMS)—Initial Field Test Results. In Proceedings of the 25th International Technical Meeting of the Satellite Division of the Institute of Navigation, Nashville, TN, USA, 17–21 September 2012; pp. 2930–2939. [Google Scholar]
- Wendel, J.; Kurzhals, C.; Houdek, M.; Samson, J. An interference monitoring system for GNSS reference stations. In Proceedings of the 2012 6th ESA Workshop on Satellite Navigation Technologies (Navitec 2012) European Workshop on GNSS Signals and Signal Processing, Noordwijk, The Netherlands, 5–7 December 2012; pp. 1–7. [Google Scholar] [CrossRef]
- van den Berg, A.; Peeters, B.; Wokke, F.; van Es, J.J. GALMONET: Galileo interference monitoring and localisation network. In Proceedings of the 2012 6th ESA Workshop on Satellite Navigation Technologies (Navitec 2012) European Workshop on GNSS Signals and Signal Processing, Noordwijk, The Netherlands, 5–7 December 2012; pp. 1–8. [Google Scholar] [CrossRef]
- Wendel, J.; Kurzhals, C.; Houdek, M.; Samson, J. An Interference Monitoring System for GNSS Reference Stations. In Proceedings of the 26th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2013), Nashville, TN, USA, 16–20 September 2013. [Google Scholar]
- Rodriguez, D.; Valera, J.; Aceros, C. A time-frequency signal analysis framework for GNSS environmental surveillance monitoring. In Proceedings of the 2014 IEEE Central America and Panama Convention (CONCAPAN XXXIV), Panama, Panama, 12–14 November 2014; pp. 1–6. [Google Scholar] [CrossRef]
- Cetin, E.; Thompson, R.J.; Trinkle, M.; Dempster, A.G. Interference Detection and Localization within the GNSS Environmental Monitoring System (GEMS)—System Update and Latest Field Test Results. In Proceedings of the 27th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS 2014), Tampa, FL, USA, 8–12 September 2014. [Google Scholar]
- Egea-Roca, D.; Seco-Granados, G.; Lopez-Salcedo, J.A. Quickest Detection Framework for Signal Integrity Monitoring in Low-Cost GNSS Receivers. In Proceedings of the 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall), Boston, MA, USA, 6–9 September 2015; pp. 1–5. [Google Scholar] [CrossRef]
- Gasbarra, M.; Altieri, A.; Morante, Q.; Viviano, S.; Bellapadrona, R.; Pantini, G.; Di Salvo, A. GNSS signal in space monitoring and interference control platform. In Proceedings of the 2016 IEEE Metrology for Aerospace (MetroAeroSpace), Florence, Italy, 22–23 June 2016; pp. 325–329. [Google Scholar] [CrossRef]
- Baldini, G.; Bažec, M.; Blatnik, A.; Borio, D.; Dimc, F.; Gaberc, N.; Gioia, C.; Stern, A. Trapping the jammer: The Slovenian experiment. Coordinates 2016, 12, 12–18. [Google Scholar]
- Eliardsson, P.; Alexandersson, M.; Pattinson, M.; Hill, S.; Waern, A.; Ying, Y.; Fryganiotis, D. Results from measuring campaign of electromagnetic interference in GPS L1-band. In Proceedings of the 2017 International Symposium on Electromagnetic Compatibility—EMC EUROPE, Angers, France, 4–7 September 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Bartl, S.; Berglez, P.; Hofmann-Wellenhof, B. GNSS interference detection, classification and localization using Software-Defined Radio. In Proceedings of the 2017 European Navigation Conference (ENC), Lausanne, Switzerland, 9–12 May 2017; pp. 159–169. [Google Scholar] [CrossRef]
- Van der Merwe, J.R.; Meister, D.; Otto, C.; Stahl, M.; Rügamer, A.; Etxezarreta Martinez, J.; Felber, W. GNSS interference monitoring and characterisation station. In Proceedings of the 2017 European Navigation Conference (ENC), Lausanne, Switzerland, 9–12 May 2017; pp. 170–178. [Google Scholar] [CrossRef]
- Rügamer, A.; Meister, D.; Van der Merwe, J.R.; Otto, C.; Stahl, M.; Felber, W. Versatile and Configurable GNSS Interference Detection and Characterization Station. In Proceedings of the ION 2017 Pacific PNT Meeting, Honolulu, HI, USA, 1–4 May 2017. [Google Scholar]
- Lim, D.; Chun, S.; Heo, M.; Lee, J.; Lee, S. Results of an Interference Detection and Localization System Operation in an Airport. In Proceedings of the 2017 International Technical Meeting of The Institute of Navigation (ITM2017), Monterey, CA, USA, 30 January–2 February 2017. [Google Scholar]
- Marcos, E.P.; Caizzone, S.; Konovaltsev, A.; Cuntz, M.; Elmarissi, W.; Yinusa, K.; Meurer, M. Interference awareness and characterization for GNSS maritime applications. In Proceedings of the 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS), Monterey, CA, USA, 23–26 April 2018; pp. 908–919. [Google Scholar] [CrossRef]
- Wilde, W.D.; Sleewaegen, J.M. Effective Jammer Detection and Classification using GNSS Receivers on a Highway Overhead Structure. In Proceedings of the 31st International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2018), Miami, FL, USA, 24–28 September 2018; pp. 1299–1323. [Google Scholar]
- Murrian, M.J.; Narula, L.; Humphreys, T.E. Characterizing Terrestrial GNSS Interference from Low Earth Orbit. In Proceedings of the 32nd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2019), Miami, FL, USA, 16–20 September 2019. [Google Scholar]
- Bhuiyan, M.Z.H.; Ferrara, N.G.; Thombre, S.; Hashemi, A.; Pattinson, M.; Dumville, M.; Alexandersson, M.; Axell, E.; Eliardsson, P.; Pölöskey, M.; et al. H2020 STRIKE3: Standardization of Interference Threat Monitoring and Receiver Testing—Significant Achievements and Impact. In Proceedings of the 2019 European Microwave Conference in Central Europe (EuMCE), Prague, Czech Republic, 13–15 May 2019; pp. 311–314. [Google Scholar]
- Morrison, A.; Sokolova, N.; Ahmed, N. RFI Monitoring in Support of Safety-Critical Multi-Band GNSS-based Systems. In Proceedings of the 2019 European Navigation Conference (ENC), Warsaw, Poland, 9–12 April 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Rodningsby, A.; Morrison, A.; Sokolova, N.; Gerrard, N.; Rost, C. RFI Monitoring of GNSS Signals on Norwegian Highways. In Proceedings of the 33rd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2020), Virtual, 21–25 September 2020. [Google Scholar]
- Nikolskiy, S.; Bredenbeck, A.; Rikkinen, T.; Vallet, J.; Koivisto, M.; Honkala, S.; Bhuiyan, Z.; Thombre, S. GNSS Signal Quality Monitoring Based on a Reference Station Network. In Proceedings of the 2020 European Navigation Conference (ENC), Dresden, Germany, 23–24 November 2020; pp. 1–10. [Google Scholar] [CrossRef]
- Gerrard, N.; Rodningsby, A.; Morrison, A.; Sokolova, N.; Rost, C. GNSS RFI Monitoring and Classification on Norwegian Highways—An Authority Perspective. In Proceedings of the 34th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2021), St. Louis, MO, USA, 20–24 September 2021; pp. 864–878. [Google Scholar]
- Bartl, S.; Kadletz, M.; Berglez, P.; Dusa, T. Findings from Interference Monitoring at a European Airport. In Proceedings of the 34th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2021), St. Louis, MO, USA, 20–24 September 2021; pp. 3683–3697. [Google Scholar]
- Bergstrom, S.; Fors, K.; Linder, S. Long-term Evaluation of Noise and Interference Statistics in GPS L1-band. In Proceedings of the 34th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2021), St. Louis, MO, USA, 20–24 September 2021; pp. 4316–4322. [Google Scholar]
- Fors, K.; Stenberg, N.; Nilsson, T. Using the Swedish CORS Network SWEPOS for GNSS Interference Detection. In Proceedings of the 34th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2021), St. Louis, MO, USA, 20–24 September 2021; pp. 4323–4333. [Google Scholar]
- Bhuiyan, M.Z.H.; Ferrara, N.G.; Hashemi, A.; Thombre, S.; Pattinson, M.; Dumville, M. Impact Analysis of Standardized GNSS Receiver Testing against Real-World Interferences Detected at Live Monitoring Sites. Sensors 2019, 19, 1276. [Google Scholar] [CrossRef] [Green Version]
- Mitch, R.H.; Dougherty, R.C.; Psiaki, M.L.; Powell, S.P.; O’Hanlon, B.W.; Bhatti, J.A.; Humphreys, T.E. Signal characteristics of civil GPS jammers. In Proceedings of the 24th International Technical Meeting of the Satellite Division of The Institute of Navigation, Portland, OR, USA, 20–23 September 2011. [Google Scholar]
- van der Merwe, J.R.; Cortés, I.n.; Garzia, F.; Rügamer, A.; Felber, W. Exotic FMCW waveform mitigation with an advanced multi-parameter adaptive notch filter (MPANF). In Proceedings of the International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2022), Denver, CO, USA, 19–23 September 2022. [Google Scholar]
- Van der Merwe, J.R.; Rügamer, A.; Garzia, F.; Felber, W.; Wendel, J. Evaluation of mitigation methods against COTS PPDs. In Proceedings of the 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS), Monterey, CA, USA, 23–26 April 2018; pp. 920–930. [Google Scholar] [CrossRef]
- Gao, G.X. DME/TACAN Interference and its Mitigation in L5/E5 Bands. In Proceedings of the 20th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2007), Fort Worth, TX, USA, 25–28 September 2007. [Google Scholar]
- Gabrielsson, B.; Fors, K.; Eliardsson, P.; Alexandersson, M.; Stenumgaard, P. A portable system for autonomous detection and classification of electromagnetic interference in the GPS band. In Proceedings of the 2014 International Symposium on Electromagnetic Compatibility, Gothenburg, Sweden, 1–4 September 2014; pp. 152–157. [Google Scholar] [CrossRef]
- van der Merwe, J.R.; Franco, D.C.; Jdidi, D.; Feigl, T.; Rügamer, A.; Felber, W. Low-cost COTS GNSS interference detection and classification platform: Initial results. In Proceedings of the International Conference on Localization and GNSS (ICL-GNSS), Tampere, Finland, 7–9 June 2022; pp. 1–8. [Google Scholar]
- Kaplan, E.D.; Hegarty, C.J. Understanding GPS: Principles and Applications, 2nd ed.; Artech House Mobile Communications Series; Artech House: London, UK, 2006. [Google Scholar]
- Calcagno, R.; Fazio, S.; Savasta, S.; Dovis, F. An interference detection algorithm for COTS GNSS receivers. In Proceedings of the 2010 5th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing (NAVITEC), Noordwijk, The Netherlands, 8–10 December 2010; pp. 1–8. [Google Scholar] [CrossRef]
- Van der Merwe, J.R.; Rügamer, A.; Felber, W. Simultaneous Jamming and Navigation Pseudolite System. In Proceedings of the 2020 International Conference on Localization and GNSS (ICL-GNSS), Tampere, Finland, 2–4 June 2020; pp. 1–7. [Google Scholar]
- Valles, E.; Yu, C.; Elasmar, R. Interference Detection Algorithms for GNSS-enabled Android Devices. In Proceedings of the 28th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS 2015), Tampa, FL, USA, 14–18 September 2015. [Google Scholar]
- Miralles, D.; Moghadam, M.S.; Akos, D.M. GNSS Threat Monitoring and Reporting with the Android Raw GNSS Measurements and STRIKE3. In Proceedings of the 32nd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2019), Miami, FL, USA, 16–20 September 2019. [Google Scholar]
- Lee, D.K.; Lee, Y.; Akos, D.; Park, S.H.; Park, S.G.; Park, B. GNSS Fault Monitoring using Android Devices. In Proceedings of the 34th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2021), St. Louis, MO, USA, 20–24 September 2021; pp. 4128–4140. [Google Scholar]
- Raichur, N.L.; Brieger, T.; Jdidi, D.; Feigl, T.; van der Merwe, J.R.; Ghimire, B.; Ott, F.; Rügamer, A.; Felber, W. Machine Learning-assisted GNSS Interference Monitoring through Crowdsourcing. In Proceedings of the 35th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2022), Denver, CO, USA, 19–23 September 2022. [Google Scholar]
- Kazmierczak, J.; Joseph, A.; Cook, G. Aviation GNSS Interference Analysis Based on ADS-B Out Data. In Proceedings of the 34th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2021), St. Louis, MO, USA, 20–24 September 2021; pp. 1108–1121. [Google Scholar]
- Stader, J.; Gunawardena, S. Leveraging Worldwide, Publicly-Available Data to Create an Automated Satnav Interference Detection System. In Proceedings of the 2021 International Technical Meeting of The Institute of Navigation (ITM2021), Virtual, 25–28 January 2021. [Google Scholar]
- Kay, S.M. Fundamentals of Statistical Signal Processing: Detection Theory; Prentice-Hall Signal Processing Series; Prentice Hall: Hoboken, NJ, USA, 1998; Volume 2. [Google Scholar]
- Wesson, K.D.; Gross, J.N.; Humphreys, T.E.; Evans, B.L. GNSS Signal Authentication Via Power and Distortion Monitoring. IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 739–754. [Google Scholar] [CrossRef] [Green Version]
- Alves, P.; Himmelfarb, M. Interference Mapping Using Received Power. In Proceedings of the 31st International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2018), Miami, FL, USA, 24–28 September 2018; pp. 1338–1349. [Google Scholar]
- Strizic, L.; Akos, D.M.; Lo, S. Crowdsourcing GNSS Jammer Detection and Localization. In Proceedings of the 2018 International Technical Meeting of The Institute of Navigation (ITM2018), Reston, VA, USA, 29 January–1 February 2018. [Google Scholar]
- Kay, S.M. Modern Spectral Estimation: Theory and Application; Prentice-Hall Signal Processing Series; Prentice Hall: Hoboken, NJ, USA, 1999. [Google Scholar]
- Tani, A.; Fantacci, R. Performance Evaluation of a Precorrelation Interference Detection Algorithm for the GNSS Based on Nonparametrical Spectral Estimation. IEEE Syst. J. 2008, 2, 20–26. [Google Scholar] [CrossRef]
- Bajic, B. Dynamics of the heterodyne spectrum analyzer with rectangular bandpass filter. IEEE Trans. Instrum. Meas. 1981, IM-30, 157–160. [Google Scholar] [CrossRef]
- Neri, F. Introduction to Electronic Defense Systems; SciTech: Anaheim, CA, USA, 2006. [Google Scholar]
- Jayaweera, S.K. Signal Processing for Cognitive Radios; Wiley Telecom: Hoboken, NJ, USA, 2015. [Google Scholar]
- Scott, L. Interference. In Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil Applications; Wiley-IEEE Press: Hoboken, NJ, USA, 2021; pp. 619–653. [Google Scholar] [CrossRef]
- Nguyen, H.L.; Troglia Gamba, M.; Falletti, E.; Ta, T.H. Situational Awareness: Mapping Interference Sources in Real-Time Using a Smartphone App. Sensors 2018, 18, 4130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brieger, T.; Raichur, N.L.; Jdidi, D.; Ott, F.; Feigl, T.; van der Merwe, J.R.; Rügamer, A.; Felber, W. Multimodal Learning for Reliable Interference Classification in GNSS Signals. In Proceedings of the International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2022), Denver, CO, USA, 19–23 September 2022. [Google Scholar]
- Jdidi, D.; Brieger, T.; Feigl, T.; Contreras Franco, D.; van der Merwe, J.R.; Rügamer, A.; Seitz, J.; Felber, W. Unsupervised Disentanglement for Post- Identification of GNSS Interference in the Wild. In Proceedings of the International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2022), Denver, CO, USA, 19–23 September 2022. [Google Scholar]
- Yang, J.H.; Kang, C.H.; Kim, S.Y.; Park, C.G. Intentional GNSS interference detection and characterization algorithm using AGC and adaptive IIR notch filter. Intl. J. Aeronaut. Space Sci. 2012, 13, 491–498. [Google Scholar] [CrossRef] [Green Version]
- Feigl, T.; Kram, S.; Woller, P.; Siddiqui, R.H.; Philippsen, M.; Mutschler, C. RNN-aided Human Velocity Estimation from a Single IMU. Sensors 2020, 13, 3656. [Google Scholar] [CrossRef]
- Feigl, T.; Mutschler, C.; Philippsen, M. Supervised Learning for Yaw Orientation Estimation. In Proceedings of the International Conference Indoor Positioning and Indoor Navigation (IPIN), Nantes, France, 24–27 September 2018; pp. 1–10. [Google Scholar] [CrossRef]
- Morales Ferre, R.; de la Fuente, A.; Lohan, E.S. Jammer Classification in GNSS Bands Via Machine Learning Algorithms. Sensors 2019, 19, 4841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swinney, C.J.; Woods, J.C. GNSS Jamming Classification via CNN, Transfer Learning & the Novel Concatenation of Signal Representations. In Proceedings of the International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA), Dublin, Ireland, 14–18 June 2021; pp. 1–9. [Google Scholar]
- Voigt, J.M. Classification of GNSS Jammers Using Machine Learning. Master’s Thesis, University of Agder, Grimstad, Norway, 2021. [Google Scholar]
- Mehr, I.E.; Dovis, F. Detection and Classification of GNSS Jammers Using Convolutional Neural Networks. In Proceedings of the International Conference on Localization and GNSS (ICL-GNSS), Tampere, Finland, 7–9 June 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Li, W.; Huang, Z.; Lang, R.; Qin, H.; Zhou, K.; Cao, Y. A Real-Time Interference Monitoring Technique for GNSS Based on a Twin Support Vector Machine Method. Sensors 2016, 16, 329. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Ying, S.; Li, H. GPS Interference Signal Recognition Based on Machine Learning. Mob. Netw. Appl. 2020, 25, 2336–2350. [Google Scholar] [CrossRef]
- Maynard, L.L. GPS Spoofing Detection Using Machine Learning and Singular Value Decomposition. In Proceedings of the International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2022), Denver, CO, USA, 19–23 September 2022. [Google Scholar]
- Kim, Y.S.; Mokaya, F.; Chen, E.; Tague, P. All your jammers belong to us: Localization of wireless sensors under jamming attack. In Proceedings of the IEEE International Conference on Communications (ICC), Ottawa, ON, Canada, 10–15 June 2012; pp. 949–954. [Google Scholar] [CrossRef]
- Borio, D.; Gioia, C.; Štern, A.; Dimc, F.; Baldini, G. Jammer localization: From crowdsourcing to synthetic detection. In Proceedings of the International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS), Portland, OR, USA, 12–16 September 2016. [Google Scholar]
- Dempster, A.G.; Cetin, E. Interference Localization for Satellite Navigation Systems. Proc. IEEE 2016, 104, 1318–1326. [Google Scholar] [CrossRef]
- Biswas, S.K.; Cetin, E. Particle Filter based Approach for GNSS Interference Source Tracking: A Feasibility Study. In Proceedings of the 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science, Rome, Italy, 29 August–5 September 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Feigl, T.; Eberlein, E.; Kram, S.; Mutschler, C. Robust ToA-Estimation using Convolutional Neural Networks on Randomized Channel Models. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN), Lloret de Mar, Spain, 29 November–2 December 2021; pp. 1–8. [Google Scholar] [CrossRef]
- Stahlke, M.; Yammine, G.; Feigl, T.; Eskofier, B.M.; Mutschler, C. Indoor Localization with Robust Global Channel Charting: A Time-Distance-Based Approach. arXiv 2022, arXiv:2210.06294. [Google Scholar] [CrossRef]
- Dovis, F. GNSS Interference Threats and Countermeasures; Artech House GNSS Technology and Applications Series GNSS Interference, Threats, and Countermeasures; Artech House: London, UK, 2015. [Google Scholar]
- van der Merwe, J.R.; Garzia, F.; Rügamer, A.; Felber, W. Advanced and versatile signal conditioning for GNSS receivers using the high-rate DFT-based data manipulator (HDDM). Navig. J. Inst. Navig. 2021, 68, 779–797. [Google Scholar] [CrossRef]
- Garzia, F.; van der Merwe, J.R.; Rügamer, A.; Urquijo, S.; Felber, W. HDDM Hardware Evaluation for Robust Interference Mitigation. Sensors 2020, 20, 6492. [Google Scholar] [CrossRef]
- Borio, D.; Closas, P. Robust transform domain signal processing for GNSS. Navig. J. Inst. Navig. 2019, 66, 305–323. [Google Scholar] [CrossRef] [Green Version]
- Ayibiowu, A. Sparkfun Launches the ZED-F9R GPS Dead Reckoning Raspberry Pi M for Mobile Robots. 2020. Available online: https://www.cnx-software.com/2020/07/18/sparkfun-zed-f9r-gps-dead-reckoning-raspberry-pi-phat-for-mobile-robots/ (accessed on 6 October 2022).
- Sa’d, J. mosaicHAT: A GNSS HAT for Raspberry PI. Available online: https://github.com/septentrio-gnss/mosaichat/ (accessed on 6 October 2022).
- Williams, E. The Pi Zero 2 W Is the Most Efficient Pi. 2021. Available online: https://hackaday.com/2021/11/01/the-pi-zero-2-w-is-the-most-efficient-pi/ (accessed on 6 October 2022).
- Lee, Y.C.; Koo, V.C.; Chan, Y.K. Design and development of FPGA-based FFT Co-processor for Synthetic Aperture Radar (SAR). In Proceedings of the 2017 Progress in Electromagnetics Research Symposium—Fall (PIERS—FALL), Singapore, 19–22 November 2017; pp. 1760–1766. [Google Scholar] [CrossRef]
- Liang, M.; Chen, J. A DSP-coprocessor architecture for image/video applications [coding/decoding]. In Proceedings of the 7th International Conference on Solid-State and Integrated Circuits Technology, Beijing, China, 18–21 October 2004; Volume 3, pp. 1601–1604. [Google Scholar] [CrossRef]
- Kulkarni, A.; Page, A.; Attaran, N.; Jafari, A.; Malik, M.; Homayoun, H.; Mohsenin, T. An Energy-Efficient Programmable Manycore Accelerator for Personalized Biomedical Applications. IEEE Trans. Very Large Scale Integr. VLSI Syst. 2018, 26, 96–109. [Google Scholar] [CrossRef]
- Hosseininoorbin, S.; Layeghy, S.; Kusy, B.; Jurdak, R.; Portmann, M. Scaling Spectrogram Data Representation for Deep Learning on Edge TPU. In Proceedings of the 2021 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops), Kassel, Germany, 22–26 March 2021; pp. 572–578. [Google Scholar] [CrossRef]
- Lu, T.; Chen, Y.F.; Hechtman, B.; Wang, T.; Anderson, J. Large-Scale Discrete Fourier Transform on TPUs. IEEE Access 2021, 9, 93422–93432. [Google Scholar] [CrossRef]
- Nikolić, G.S.; Dimitrijević, B.R.; Nikolić, T.R.; Stojcev, M.K. A Survey of Three Types of Processing Units: CPU, GPU and TPU. In Proceedings of the 2022 57th International Scientific Conference on Information, Communication and Energy Systems and Technologies (ICEST), Ohrid, North Macedonia, 16–18 June 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Geerling, J. You Can’t Buy a Raspberry Pi Right Now. Available online: https://www.jeffgeerling.com/blog/2022/you-cant-buy-raspberry-pi-right-now (accessed on 8 October 2022).
- Morelo, D. 10 Cheap Raspberry Pi Alternatives (Updated 2022). Available online: https://linuxhint.com/cheap_raspberry_pi_alternatives/ (accessed on 8 October 2022).
- Expatrio. Mobile Phone Rates in Germany. Available online: https://www.expatrio.com/mobile-phone-rates-germany (accessed on 8 October 2022).
- Dietmayer, K.; Duong, P.B.; van der Merwe, J.R.; Ghimire, B.; Seitz, J. Network-assistance to improve joint 5G and GNSS positioning for GNSS anti-spoofing. In Proceedings of the 35th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2022), Denver, CO, USA, 19–23 September 2022. [Google Scholar]
- Shahjalal, M.; Hasan, M.K.; Islam, M.M.; Alam, M.M.; Ahmed, M.F.; Jang, Y.M. An Overview of AI-Enabled Remote Smart- Home Monitoring System Using LoRa. In Proceedings of the 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Fukuoka, Japan, 19–21 February 2020; pp. 510–513. [Google Scholar] [CrossRef]
- SDR-Radio. Radios. Available online: https://www.sdr-radio.com/radios (accessed on 8 October 2022).
- Hanse, J.; van der Merwe, J.R.; Contreras Franco, D.; Feigl, T.; Brieger, T.; Jdidi, D.; Rügamer, A.; Felber, W. Initial Results of a Low-Cost GNSS Interference Monitoring Network. In Proceedings of the DGON POSNAV 2022, Berlin, Germany, 3–4 November 2022. [Google Scholar]
- Nicola, M.; Falco, G.; Morales Ferre, R.; Lohan, E.S.; de la Fuente, A.; Falletti, E. Collaborative Solutions for Interference Management in GNSS-Based Aircraft Navigation. Sensors 2020, 20, 4085. [Google Scholar] [CrossRef]
- van der Merwe, J.R.; Garzia, F.; Rügamer, A.; Urquijo, S.; Contreras Franco, D.; Felber, W. Wide-Band Interference Mitigation in GNSS Receivers Using Sub-Band Automatic Gain Control. Sensors 2022, 22, 679. [Google Scholar] [CrossRef]
- Pounder, L. Raspberry Pi OS 64-Bit Exits Lengthy Beta. Available online: https://www.tomshardware.com/news/raspberry-pi-64-bit-os-released (accessed on 9 October 2022).
- Gal, Y.; Ghahramani, Z. Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In Proceedings of the International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016; pp. 1050–1059. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Chinchor, N.; Sundheim, B.M. MUC-5 evaluation metrics. In Proceedings of the Fifth Message Understanding Conference (MUC-5), Baltimore, MD, USA, 25–27 August 1993. [Google Scholar]
- Kaiming, H.; Xiangyu, Z.; Shaoqing, R.; Jian, S. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385. [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Lea, C.; Flynn, M.D.; Vidal, R.; Reiter, A.; Hager, G.D. Temporal convolutional networks for action segmentation and detection. In Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 156–165. [Google Scholar]
No. | Description | Web Serv. | WiFi | ML | GNSS Log | SDR Proc | SDR Only | Mean [W] | Peak [W] |
---|---|---|---|---|---|---|---|---|---|
1 | Full—debug | x | x | x | x | x | x | 6.107 | 7.510 |
2 | Full—op. | x | x | x | x | x | 6.086 | 7.325 | |
3 | Full no link | x | x | x | x | 5.692 | 7.145 | ||
4 | External ML | x | x | x | 5.593 | 6.932 | |||
5 | Only GNSS | x | 2.682 | 4.059 | |||||
6 | Only SDR | x | x | 5.289 | 6.514 | ||||
7 | No SDR proc | x | 3.692 | 4.137 | |||||
8 | Only RP | 2.219 | 2.526 |
AI Model | Training Time for the Whole Model * | Inference Time per Sample * | Accuracy | Score |
---|---|---|---|---|
RF (1000 trees) | 17.2 s | 0.071 ms | 0.949 | 0.948 |
ResNet18 (32 epochs) | 29:56 min = 1796 s | 19.16 ms | 0.960 | 0.959 |
No. of Sensors | Interference Types | Var. | |
---|---|---|---|
1 (purple) | 76.3 | 7.5 | |
2 (front) | 93.4 | 7.3 | |
2 (back) | 7 interference types | 91.7 | 6.8 |
2 (purple, yellow) | with a total of 33 subclasses: Chirp, | 87.1 | 4.8 |
2 (purple, blue) | Noise, Multitone, … | 85.8 | 5.7 |
3 (2 front, blue) | 81.9 | 7.2 | |
4 (2 front, 2 back) | 82.5 | 6.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van der Merwe, J.R.; Contreras Franco, D.; Hansen, J.; Brieger, T.; Feigl, T.; Ott, F.; Jdidi, D.; Rügamer, A.; Felber, W. Low-Cost COTS GNSS Interference Monitoring, Detection, and Classification System. Sensors 2023, 23, 3452. https://doi.org/10.3390/s23073452
van der Merwe JR, Contreras Franco D, Hansen J, Brieger T, Feigl T, Ott F, Jdidi D, Rügamer A, Felber W. Low-Cost COTS GNSS Interference Monitoring, Detection, and Classification System. Sensors. 2023; 23(7):3452. https://doi.org/10.3390/s23073452
Chicago/Turabian Stylevan der Merwe, Johannes Rossouw, David Contreras Franco, Jonathan Hansen, Tobias Brieger, Tobias Feigl, Felix Ott, Dorsaf Jdidi, Alexander Rügamer, and Wolfgang Felber. 2023. "Low-Cost COTS GNSS Interference Monitoring, Detection, and Classification System" Sensors 23, no. 7: 3452. https://doi.org/10.3390/s23073452
APA Stylevan der Merwe, J. R., Contreras Franco, D., Hansen, J., Brieger, T., Feigl, T., Ott, F., Jdidi, D., Rügamer, A., & Felber, W. (2023). Low-Cost COTS GNSS Interference Monitoring, Detection, and Classification System. Sensors, 23(7), 3452. https://doi.org/10.3390/s23073452