Graph Convolutional Network Using Adaptive Neighborhood Laplacian Matrix for Hyperspectral Images with Application to Rice Seed Image Classification
Abstract
:1. Introduction
2. Materials and Methods
Algorithm 1 Adjacency Matrix for AN-GCN |
|
Algorithm 2 Pseudo code of AN-GCN for HSI classification |
|
Datasets
3. Results
4. Discussion
4.1. Indian Pines
4.2. Houston University
4.3. Botswana
4.4. Rice Seeds
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gogineni, R.; Chaturvedi, A. Hyperspectral image classification. In Processing and Analysis of Hyperspectral Data; IntechOpen: London, UK, 2019. [Google Scholar]
- Asif, N.; Sarker, Y.; Chakrabortty, R.; Ryan, M.; Ahamed, M.; Saha, D.; Badal, F.; Das, S.; Ali, M.; Moyeen, S.; et al. Graph Neural Network: A Comprehensive Review on Non-Euclidean Space. IEEE Access 2021, 9, 60588–60606. [Google Scholar] [CrossRef]
- Miller, B.; Bliss, N.; Wolfe, P. Toward signal processing theory for graphs and non-Euclidean data. In Proceedings of the 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, Dallas, TX, USA, 14–19 March 2010; pp. 5414–5417. [Google Scholar]
- Ren, H.; Lu, W.; Xiao, Y.; Chang, X.; Wang, X.; Dong, Z.; Fang, D. Graph convolutional networks in language and vision: A survey. Knowl.-Based Syst. 2022, 251, 109250. [Google Scholar] [CrossRef]
- Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Yu, P. A Comprehensive Survey on Graph Neural Networks. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 4–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, D.; Gao, L.; Yao, J.; Zhang, B.; Plaza, A.; Chanussot, J. Graph Convolutional Networks for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote. Sens. 2021, 59, 5966–5978. [Google Scholar] [CrossRef]
- Ma, F.; Gao, F.; Sun, J.; Zhou, H.; Hussain, A. Attention Graph Convolution Network for Image Segmentation in Big SAR Imagery Data. Remote Sens. 2019, 11, 2586. [Google Scholar] [CrossRef] [Green Version]
- Wan, S.; Gong, C.; Zhong, P.; Du, B.; Zhang, L.; Yang, J. Multi-scale Dynamic Graph Convolutional Network for Hyperspectral Image Classification. arXiv 2019, arXiv:abs/1905.06133. [Google Scholar]
- Jia, S.; Jiang, S.; Zhang, S.; Xu, M.; Jia, X. Graph-in-Graph Convolutional Network for Hyperspectral Image Classification. IEEE Trans. Neural Netw. Learn. Syst. 2022, 1–15. [Google Scholar] [CrossRef]
- Qin, A.; Shang, Z.; Tian, J.; Wang, Y.; Zhang, T.; Tang, Y. Spectral–Spatial Graph Convolutional Networks for Semisupervised Hyperspectral Image Classification. IEEE Geosci. Remote. Sens. Lett. 2019, 16, 241–245. [Google Scholar] [CrossRef]
- Mou, L.; Lu, X.; Li, X.; Zhu, X. Nonlocal Graph Convolutional Networks for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote. Sens. 2020, 58, 8246–8257. [Google Scholar] [CrossRef]
- Ma, Z.; Jiang, Z.; Zhang, H. Hyperspectral Image Classification Using Feature Fusion Hypergraph Convolution Neural Network. IEEE Trans. Geosci. Remote. Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Pu, S.; Wu, Y.; Sun, X.; Sun, X. Hyperspectral Image Classification with Localized Graph Convolutional Filtering. Remote Sens. 2021, 13, 526. [Google Scholar] [CrossRef]
- Liu, B.; Gao, K.; Yu, A.; Guo, W.; Wang, R.; Zuo, X. Semisupervised graph convolutional network for hyperspectral image classification. J. Appl. Remote. Sens. 2020, 14, 026516. [Google Scholar] [CrossRef]
- Bai, J.; Ding, B.; Xiao, Z.; Jiao, L.; Chen, H.; Regan, A. Hyperspectral Image Classification Based on Deep Attention Graph Convolutional Network. IEEE Trans. Geosci. Remote. Sens. 2022, 60, 1–16. [Google Scholar] [CrossRef]
- Wan, S.; Gong, C.; Zhong, P.; Pan, S.; Li, G.; Yang, J. Hyperspectral Image Classification With Context-Aware Dynamic Graph Convolutional Network. IEEE Trans. Geosci. Remote. Sens. 2021, 59, 597–612. [Google Scholar] [CrossRef]
- Huang, Y.; Zhou, X.; Xi, B.; Li, J.; Kang, J.; Tang, S.; Chen, Z.; Hong, W. Diverse-Region Hyperspectral Image Classification via Superpixelwise Graph Convolution Technique. Remote Sens. 2022, 14, 2907. [Google Scholar] [CrossRef]
- Li, Z.; Chen, J.; Rahardja, S. Graph construction for hyperspectral data unmixing. In Hyperspectral Imaging in Agriculture, Food and Environment; IntechOpen: London, UK, 2018. [Google Scholar]
- Hu, Y.; An, R.; Wang, B.; Xing, F.; Ju, F. Shape adaptive neighborhood information-based semi-supervised learning for hyperspectral image classification. Remote Sens. 2020, 12, 2976. [Google Scholar] [CrossRef]
- Fabiyi, S.; Vu, H.; Tachtatzis, C.; Murray, P.; Harle, D.; Dao, T.; Andonovic, I.; Ren, J.; Marshall, S. Varietal Classification of Rice Seeds Using RGB and Hyperspectral Images. IEEE Access 2020, 8, 22493–22505. [Google Scholar] [CrossRef]
- Thu Hong, P.; Thanh Hai, T.; Lan, L.; Hoang, V.; Hai, V.; Nguyen, T. Comparative Study on Vision Based Rice Seed Varieties Identification. In Proceedings of the 2015 Seventh International Conference on Knowledge and Systems Engineering (KSE), Ho Chi Minh City, Vietnam, 8–10 October 2015; pp. 377–382. [Google Scholar]
- Liu, Z.; Cheng, F.; Ying, Y.; Rao, X. Identification of rice seed varieties using neural network. J. Zhejiang-Univ.-Sci. B 2005, 6, 1095–1100. [Google Scholar] [CrossRef] [Green Version]
- Gao, T.; Chandran, A.; Paul, P.; Walia, H.; Yu, H. HyperSeed: An End-to-End Method to Process Hyperspectral Images of Seeds. Sensors 2021, 21, 8184. [Google Scholar] [CrossRef]
- Lu, B.; Dao, P.; Liu, J.; He, Y.; Shang, J. Recent advances of hyperspectral imaging technology and applications in agriculture. Remote Sens. 2020, 12, 2659. [Google Scholar] [CrossRef]
- Johnson, B.; Xie, Z. Unsupervised image segmentation evaluation and refinement using a multi-scale approach. ISPRS J. Photogramm. Remote Sens. 2011, 66, 473–483. [Google Scholar] [CrossRef]
- Hammond, D.; Vandergheynst, P.; Gribonval, R. Wavelets on graphs via spectral graph theory. Appl. Comput. Harmon. Anal. 2011, 30, 129–150. [Google Scholar] [CrossRef] [Green Version]
- Kipf, T.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907. [Google Scholar]
- Polder, G.; Heijden, G.; Keizer, L.; Young, I. Calibration and Characterisation of Imaging Spectrographs. J. Near Infrared Spectrosc. 2003, 11, 193–210. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, J.; Yao, K. Global Random Graph Convolution Network for Hyperspectral Image Classification. Remote Sens. 2021, 13, 2285. [Google Scholar] [CrossRef]
- Zhang, M.; Luo, H.; Song, W.; Mei, H.; Su, C. Spectral-Spatial Offset Graph Convolutional Networks for Hyperspectral Image Classification. Remote Sens. 2021, 13, 4342. [Google Scholar] [CrossRef]
- Wan, S.; Pan, S.; Zhong, P.; Chang, X.; Yang, J.; Gong, C. Dual Interactive Graph Convolutional Networks for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote. Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Chen, R.; Li, G.; Dai, C. DRGCN: Dual Residual Graph Convolutional Network for Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
Scenes | Threshold Value |
---|---|
Indian Pine | 0.16 |
University of Houston | 0.25 |
Botswana | 0.026 |
Rice seeds | 0.16 |
Scene | Spatial Size (Pixels) | Spatial Resolution | Spectral Size (Bands) | Spectral Resolution (nm) | Sensor |
---|---|---|---|---|---|
Indian Pines | 145 × 145 | 20 m pixels | 200 | 400–2500 | AVIRIS |
Houston University | 349 × 1905 | 2.5 m pixels | 144 | 380–1050 | ITRES-CASI |
Botswana | 1476 × 256 | 30 m pixels | 145 | 400–2500 | HYPERION EO-1 |
Rice seed | 150 × 900 | 1100–1600 pixels | 268 | 600–1700 | Micro-HyperspecImaging |
Class No. | Class Name | Training | Testing |
---|---|---|---|
1 | Corn Notill | 50 | 1384 |
2 | Corn Mintill | 50 | 784 |
3 | Corn | 50 | 184 |
4 | Grass pasture | 50 | 447 |
5 | Grass trees | 50 | 697 |
6 | Hay Windrowed | 50 | 439 |
7 | Soybean Notill | 50 | 918 |
8 | Soybean Mintill | 50 | 2418 |
9 | Soybean clean | 50 | 564 |
10 | Wheat | 50 | 162 |
11 | Woods | 50 | 1244 |
12 | Buildings Grass Trees Drives | 50 | 330 |
13 | Stone Steel Towers | 50 | 45 |
14 | Alfalfa | 15 | 39 |
15 | Grass Pasture Mowed | 15 | 11 |
16 | Oats | 15 | 5 |
total | 695 | 9671 |
Class No. | Class Name | Training | Testing |
---|---|---|---|
1 | Healthy grass | 198 | 1053 |
2 | Stressed grass | 190 | 1064 |
3 | Synthetic grass | 192 | 505 |
4 | Tree | 188 | 1056 |
5 | Soil | 186 | 1056 |
6 | Water | 182 | 143 |
7 | Residential | 196 | 1072 |
8 | Commercial | 191 | 1053 |
9 | Road | 193 | 1059 |
10 | Highway | 191 | 1036 |
11 | Railway | 181 | 1054 |
12 | Parking lot 1 | 192 | 1041 |
13 | Parking lot 2 | 184 | 285 |
14 | tennis court | 181 | 247 |
15 | Running track | 187 | 473 |
Total | 2832 | 12,197 |
Treatment Class | Day/Night Temperature C |
---|---|
Control | 28/23 |
HDNT2 (High day night temperature 2) | 36/28 |
HDNT1 (High day night temperature 1) | 36/32 |
HDT (High day temperature) | 36/23 |
HNT (High night temperature) | 30/28 |
K-Nearest Neighbors | OA (%) | AA (%) | Kappa Score |
---|---|---|---|
k = 4 | 82.71 | 87.12 | 0.8003 |
k = 8 | 79.14 | 85.53 | 0.7568 |
k = 12 | 78.91 | 83.49 | 0.7555 |
k = 20 | 75.47 | 76.62 | 0.7121 |
Adaptive Neighborhood | 88.36 | 91.13 | 0.8453 |
Class No. | MIniGCN [29] | GCN [27] | MiniGCN [30] | GCN [12] | Non-Local GCN [11] | MiniGCN [6] | AN-GCN |
---|---|---|---|---|---|---|---|
1 | 79.12 ± 7.04 | 56.71 ± 4.42 | 68.07 | 53.54 | 89.03 | 72.54 | 85.04 |
2 | 56.13 ± 6.46 | 51.50 ± 2.56 | 53.97 | 53.01 | 100.00 | 55.99 | 81.76 |
3 | 22.16 ± 16.37 | 84.64 ± 3.16 | 66.84 | 87.77 | 93.51 | 92.93 | 95.65 |
4 | 91.80 ± 1.10 | 83.71 ± 3.20 | 77.37 | 90.89 | 94.12 | 92.62 | 88.59 |
5 | 98.68 ± 0.69 | 94.03 ± 2.11 | 93.38 | 87.95 | 98.18 | 94.98 | 96.84 |
6 | 99.64 ± 0.36 | 96.61 ± 1.86 | 98.36 | 97.97 | 78.78 | 98.63 | 99.54 |
7 | 75.57 ± 5.67 | 77.47 ± 1.24 | 69.52 | 53.81 | 99.38 | 64.71 | 91.94 |
8 | 81.29 ± 5.56 | 56.56 ± 1.53 | 63.04 | 54.99 | 94.94 | 68.78 | 81.39 |
9 | 57.35 ± 4.07 | 58.29 ± 6.58 | 64.64 | 38.28 | 97.27 | 69.33 | 90.07 |
10 | 60.00 ± 37.42 | 100 ± 0.00 | 98.06 | 98.05 | 100.00 | 98.77 | 100.00 |
11 | 93.93 ± 2.04 | 80.03 ± 3.93 | 86.17 | 84.58 | 97.44 | 87.78 | 94.61 |
12 | 56.67 ± 8.12 | 69.55 ± 6.66 | 69.64 | 65.80 | 100.00 | 50.00 | 90.61 |
13 | — | 98.41 ± 0.00 | 90.70 | 97.85 | 100.00 | 100.00 | 100.00 |
14 | — | 95.00 ± 2.80 | 17.57 | 91.30 | 83.09 | 48.72 | 100.00 |
15 | — | 92.31 ± 0.00 | 100.00 | 85.71 | 88.24 | 72.73 | 100.00 |
16 | — | 100 ± 0.00 | 80.00 | 100.00 | 86.70 | 80.00 | 100.00 |
OA(%) | 80.19 ± 0.57 | 69.24 ± 1.56 | 71.33 | 65.97 | 87.92 | 75.11 | 88.51 |
AA (%) | 72.70 ± 3.76 | 80.93 ± 1.71 | 74.83 | 77.54 | 93.79 | 78.03 | 93.50 |
Kappa | 0.7631 ± 0.065 | 65.27 ± 1.80 | 67.42 | 0.6184 | 0.8625 | 0.7164 | 0.8692 |
Class No. | MiniGCN [31] | DIGCN [31] | DRGCN [32] | GCN [27] | CAD- GCN [16] | MiniGCN [6] | AN-GCN |
---|---|---|---|---|---|---|---|
1 | 94.85 ± 3.58 | 93.07 ± 2.73 | 82.8 | 88.16 ± 1.90 | 94.45 ± 3.49 | 98.39 | 100.00 |
2 | 98.35 ± 1.71 | 94.17 ± 2.93 | 93.38 | 97.20 ± 0.48 | 96.43 ± 2.83 | 92.11 | 98.34 |
3 | 98.09 ± 1.74 | 95.00 ± 1.68 | 98.95 | 97.91 ± 0.13 | 95.17 ± 4.11 | 99.6 | 100.00 |
4 | 95.60 ± 2.13 | 90.47 ± 4.09 | 90.03 | 96.55 ± 0.41 | 94.82 ± 2.38 | 96.78 | 99.62 |
5 | 98.64 ± 0.72 | 100.00 ± 0.00 | 97.02 | 89.79 ± 0.71 | 98.91 ± 1.51 | 97.73 | 100.00 |
6 | 96.58 ± 1.80 | 94.10 ± 3.86 | 98.3 | 98.21 ± 1.15 | 97.48 ± 3.48 | 95.1 | 100.00 |
7 | 76.05 ± 1.53 | 96.06 ± 2.80 | 88.77 | 73.67 ± 1.94 | 91.58 ± 3.16 | 57.28 | 95.94 |
8 | 77.28 ± 3.75 | 73.36 ± 5.63 | 80.06 | 65.71 ± 4.64 | 74.63 ± 4.82 | 68.09 | 97.06 |
9 | 78.98 ± 2.24 | 94.33 ± 3.33 | 94.18 | 70.27 ± 3.03 | 86.75 ± 3.58 | 53.92 | 91.76 |
10 | 82.92 ± 3.80 | 88.76 ± 7.63 | 99.66 | 74.71 ± 2.32 | 94.24 ± 3.34 | 77.41 | 99.23 |
11 | 70.07 ± 3.69 | 90.68 ± 4.32 | 97.42 | 75.36 ± 2.37 | 94.65 ± 2.73 | 84.91 | 97.97 |
12 | 85.87 ± 3.99 | 87.08 ± 4.25 | 91.93 | 79.29 ± 4.80 | 89.55 ± 1.93 | 77.23 | 97.98 |
13 | 80.93 ± 2.57 | 92.79 ± 4.34 | 84.51 | 12.09 ± 2.68 | 96.80 ± 3.68 | 50.88 | 90.88 |
14 | 97.73 ± 1.87 | 100.00 ± 0.00 | 100 | 86.03 ± 3.31 | 100 ± 0.00 | 98.38 | 100.00 |
15 | 99.04 ± 0.76 | 97.90 ± 1.62 | 95.07 | 95.29 ± 1.67 | 98.02 ± 1.42 | 98.52 | 100.00 |
OA(%) | 87.00 ± 0.71 | 91.72 ± 0.64 | 92.15 | 80.35 ± 0.61 | 92.51 ± 0.73 | 81.71 | 97.88 |
AA (%) | 88.73 ± 0.58 | 92.52 ± 0.16 | 92.8 | 80.02 ± 0.46 | 93.57 ± 0.60 | 83.09 | 97.92 |
Kappa | 0.8594 ± 0.077 | 0.9103 ± 0.069 | 0.9151 | 0.7872 ± 0.066 | 0.9189 ± 0.078 | 0.8018 | 0.9770 |
Class Name | Training | Testing | Class No. | GCN [12] | S2GCN [10] | AN-GCN |
---|---|---|---|---|---|---|
Water | 30 | 250 | 1 | 100.00 | 100.00 | 100.00 |
Hippo grass | 30 | 81 | 2 | 98.02 | 100.00 | 100.00 |
Floodplain grasses 1 | 30 | 226 | 3 | 98.01 | 100.00 | 100.00 |
Floodplain grasses 2 | 30 | 190 | 4 | 97.67 | 100.00 | 98.38 |
Reeds | 30 | 244 | 5 | 80.67 | 89.97 | 93.72 |
Riparian | 30 | 244 | 6 | 65.43 | 92.97 | 98.74 |
Firescar | 30 | 234 | 7 | 96.14 | 96.60 | 100.00 |
Island interior | 30 | 178 | 8 | 98.03 | 92.59 | 100.00 |
Acacia woodlands | 30 | 289 | 9 | 80.25 | 100.00 | 100.00 |
Acacia shrublands | 30 | 223 | 10 | 94.76 | 77.78 | 98.17 |
Acacia grasslands | 30 | 280 | 11 | 86.89 | 100.00 | 100.00 |
short mopane | 30 | 156 | 12 | 86.74 | 85.11 | 100.00 |
Mixed mopane | 30 | 243 | 13 | 91.42 | 100.00 | 100.00 |
Exposed soils | 30 | 70 | 14 | 82.11 | 100.00 | 100.00 |
Total | 420 | 2908 | AA (%) | 89.22 | 94.45 | 99.22 |
OA (%) | 89.72 | 95.36 | 99.11 | |||
Kappa | 0.8745 | 0.9399 | 0.9904 |
Class No | Treatments | 168 h | 180 h | 204 h | 216 h | 228 h | 240 h |
---|---|---|---|---|---|---|---|
1 | HDT | 0.95 | 0.99 | 0.97 | 1.00 | 0.98 | 0.98 |
2 | HDNT1 | 0.95 | 0.95 | 0.98 | 0.86 | 0.93 | 0.97 |
3 | HDNT2 | 0.81 | 0.86 | 0.94 | 0.94 | 0.98 | 0.90 |
4 | HNT | 0.95 | 0.81 | 0.96 | 0.89 | 0.98 | 0.65 |
5 | Control | 0.98 | 0.99 | 0.97 | 1.00 | 0.95 | 0.94 |
OA | 0.93 | 0.92 | 0.96 | 0.93 | 0.96 | 0.91 | |
AA | 0.93 | 0.92 | 0.96 | 0.94 | 0.96 | 0.89 | |
Kappa score | 0.92 | 0.90 | 0.95 | 0.91 | 0.95 | 0.89 |
Class No | Exposure Time (Hours) | HDT | HDNT1 | HDNT2 | HNT |
---|---|---|---|---|---|
1 | 168 | 0.99 | 0.74 | 0.83 | 0.92 |
2 | 180 | 0.98 | 0.84 | 0.90 | 0.96 |
3 | 204 | 0.98 | 0.97 | 0.89 | 0.89 |
4 | 216 | 0.95 | 0.71 | 0.84 | 0.79 |
5 | 228 | 0.88 | 0.74 | 0.88 | 0.98 |
6 | 240 | 0.96 | 0.97 | 0.97 | 0.95 |
OA | 0.96 | 0.81 | 0.88 | 0.91 | |
AA | 0.96 | 0.83 | 0.88 | 0.91 | |
Kappa score | 0.96 | 0.77 | 0.86 | 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orozco, J.; Manian, V.; Alfaro, E.; Walia, H.; Dhatt, B.K. Graph Convolutional Network Using Adaptive Neighborhood Laplacian Matrix for Hyperspectral Images with Application to Rice Seed Image Classification. Sensors 2023, 23, 3515. https://doi.org/10.3390/s23073515
Orozco J, Manian V, Alfaro E, Walia H, Dhatt BK. Graph Convolutional Network Using Adaptive Neighborhood Laplacian Matrix for Hyperspectral Images with Application to Rice Seed Image Classification. Sensors. 2023; 23(7):3515. https://doi.org/10.3390/s23073515
Chicago/Turabian StyleOrozco, Jairo, Vidya Manian, Estefania Alfaro, Harkamal Walia, and Balpreet K. Dhatt. 2023. "Graph Convolutional Network Using Adaptive Neighborhood Laplacian Matrix for Hyperspectral Images with Application to Rice Seed Image Classification" Sensors 23, no. 7: 3515. https://doi.org/10.3390/s23073515
APA StyleOrozco, J., Manian, V., Alfaro, E., Walia, H., & Dhatt, B. K. (2023). Graph Convolutional Network Using Adaptive Neighborhood Laplacian Matrix for Hyperspectral Images with Application to Rice Seed Image Classification. Sensors, 23(7), 3515. https://doi.org/10.3390/s23073515