Dynamic Yarn-Tension Detection Using Machine Vision Combined with a Tension Observer
Abstract
:1. Introduction
2. Mathematical Models
2.1. Axially Moving String Model
2.2. Design of the Tension Observer
2.3. Adaptive Weighted Fusion Model
3. Machine Vision Tension Detection
3.1. Image Acquisition
3.2. Yarn Image Processing
3.2.1. Overall Image Processing Process
3.2.2. Image Segmentation Threshold Selection
3.2.3. One-Way Extreme Value Search Algorithm
4. Tension-Observer Tension Observation and Data Fusion
5. Experimental Test Platform
6. Presentation and Discussion of Test Results
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, B.; Cong, H.; Wu, G. Construction and system realization of the yarn tension model of fully fashioned flat knitting fabric. Text. Res. J. 2021, 91, 1380–1388. [Google Scholar] [CrossRef]
- Tang, Z.-X.; Wang, X.; Fraser, W.B.; Wang, L. Simulation and experimental validation of a ring spinning process. Simul. Model. Pract. Theory 2006, 14, 809–816. [Google Scholar] [CrossRef]
- Liu, X.; Miao, X. Analysis of yarn tension based on yarn demand variation on a tricot knitting machine. Text. Res. J. 2017, 87, 487–497. [Google Scholar] [CrossRef]
- Ali, M.; Ahmed, R.; Amer, M. Yarn tension control technique for improving polyester soft winding process. Sci. Rep. 2021, 11, 1060. [Google Scholar] [CrossRef]
- Lei, B.; Lu, W.; Zhu, C.; Liu, Q.; Zhang, H. A novel optimal sensitivity design scheme for yarn tension sensor using surface acoustic wave device. Ultrasonics 2014, 54, 1649–1655. [Google Scholar] [CrossRef]
- Ding, Y.; Lu, W.; Zhang, Y.; Feng, Y.; Zhou, Y. Study on the Practical Application of Surface Acoustic Wave Yarn Tension Sensor. IEEE Trans. Ind. Electron. 2021, 69, 13781–13790. [Google Scholar] [CrossRef]
- Peng, C.; Yuan, X. Enhanced Frequency Stability of SAW Yarn Tension Sensor by Using the Dual Differential Channel Surface Acoustic Wave Oscillator. Sensors 2023, 23, 464. [Google Scholar]
- Bessette, C.; Decrette, M.; Tourlonias, M.; Osselin, J.-F.; Charleux, F.; Coupé, D.; Bueno, M.-A. In-situ measurement of tension and contact forces for weaving process monitoring: Application to 3D interlock. Compos. Part A Appl. Sci. Manuf. 2019, 126, 105604. [Google Scholar] [CrossRef]
- Xiang, H.; Jiang, Y.; Qi, Y.; Li, J. Process-Induced Distortions Characterization of MBWK Fabric Reinforced Composite Helmet Shell. Materials 2020, 13, 2983. [Google Scholar] [CrossRef]
- Gauri, S.K. Improving yarn quality through multi-response optimisation of electronic yarn clearer in winding machine. Int. J. Adv. Manuf. Technol. 2011, 56, 387–396. [Google Scholar] [CrossRef]
- Ma, L. A highly precise frequency-based method for estimating the tension of an inclined cable with unknown boundary conditions. J. Sound Vib. 2017, 409, 65–80. [Google Scholar] [CrossRef]
- Bortnowski, P.; Gładysiewicz, L.; Król, R.; Ozdoba, M. Models of Transverse Vibration in Conveyor Belt—Investigation and Analysis. Energies 2021, 14, 4153. [Google Scholar] [CrossRef]
- Zhang, D.; Ma, Q.; Tan, Y.; Liao, H.; Lu, C.; Tang, F.; Liu, X.; Fu, Y.; Wang, X.; Gan, X. Non-contact detection of polyester filament yarn tension in the spinning process by the laser Doppler vibrometer method. Text. Res. J. 2022, 92, 919–928. [Google Scholar] [CrossRef]
- Zhang, D.; Tan, Y.; Ma, Q.; Liao, H.; Lu, C.; Liu, X.; Fu, Y.; Wang, X.; Han, F.; Gan, X. Real-time tension estimation in the spinning process based on the natural frequencies extraction of the Polyester Filament Yarn. Measurement 2022, 188, 110514. [Google Scholar] [CrossRef]
- Haleem, N.; Bustreo, M.; Del Bue, A. A computer vision based online quality control system for textile yarns. Comput. Ind. 2021, 133, 103550. [Google Scholar] [CrossRef]
- Kuo, C.-F.J.; Wang, W.-R.; Barman, J. Automated Optical Inspection for Defect Identification and Classification in Actual Woven Fabric Production Lines. Sensors 2022, 22, 7246. [Google Scholar] [CrossRef]
- Fang, B.; Long, X.; Sun, F.; Liu, H.; Zhang, S.; Fang, C. Tactile-Based Fabric Defect Detection Using Convolutional Neural Network with Attention Mechanism. IEEE Trans. Instrum. Meas. 2022, 71, 1–9. [Google Scholar] [CrossRef]
- Wang, Q.; Lu, C.; Huang, R.; Pan, W.; Li, X. Computer vision for yarn microtension measurement. Appl. Opt. 2016, 55, 2393–2398. [Google Scholar] [CrossRef]
- Peng, L.; Li, Y.; Zheng, Q.; Hu, X. Measurement of axial motion yarn tension based on transverse vibration frequency. Text. Res. J. 2023, 93, 1019–1029. [Google Scholar] [CrossRef]
- Qi, B.; Shi, H.; Zhuang, Y.; Chen, H.; Chen, L. On-Board, Real-Time Preprocessing System for Optical Remote-Sensing Imagery. Sensors 2018, 18, 1328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alphonsus, E.R.; Abdullah, M.O. A review on the applications of programmable logic controllers (PLCs). Renew. Sustain. Energy Rev. 2016, 60, 1185–1205. [Google Scholar] [CrossRef]
- Hong, Q.; Shi, Y.; Chen, Z. Dynamics Modeling and Tension Control of Composites Winding System Based on ASMC. IEEE Access 2020, 8, 102795–102810. [Google Scholar] [CrossRef]
- Lu, J.-S.; Cheng, M.-Y.; Su, K.-H.; Tsai, M.-C. Wire tension control of an automatic motor winding machine—An iterative learning sliding mode control approach. Robot. Comput. Manuf. 2018, 50, 50–62. [Google Scholar] [CrossRef]
- Dai, K.; Zhu, Z.; Shen, G.; Li, X.; Tang, Y.; Wang, W. Modeling and Adaptive Tension Control of Chain Transmission System with Variable Stiffness and Random Load. IEEE Trans. Ind. Electron. 2022, 69, 8335–8345. [Google Scholar] [CrossRef]
- Hou, H.; Nian, X.; Chen, J.; Xiao, D. Decentralized coordinated control of elastic web winding systems without tension sensor. ISA Trans. 2018, 80, 350–359. [Google Scholar] [CrossRef]
- Kang, H.; Shin, K.-H. Precise tension control of a dancer with a reduced-order observer for roll-to-roll manufacturing systems. Mech. Mach. Theory 2018, 122, 75–85. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, Y.; Guo, F.; Fu, Y. Vibration control and boundary tension constraint of an axially moving string system. Nonlinear Dyn. 2017, 89, 2431–2440. [Google Scholar] [CrossRef]
- Hagedirn, P.; Dasgupta, A. Vibrations and Waves in Continuous Mechanical Systems, 3rd ed.; John Wiley & Sons: New York, NY, USA, 2008; pp. 243–288. [Google Scholar]
- Yang, Z.; Ding, Q.; Sun, X.; Zhu, H.; Lu, C. Fractional-order sliding mode control for a bearingless induction motor based on improved load torque observer. J. Frankl. Inst. 2021, 358, 3701–3725. [Google Scholar] [CrossRef]
- Raphika, P.M.; Abdulla, P.; Jasmine, P.M. Compact lowpass filter with a sharp roll-off using patch resonators. Microw. Opt. Technol. Lett. 2014, 56, 2534–2536. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, C. Robust Low-Rank Analysis with Adaptive Weighted Tensor for Image Denoising. Displays 2022, 73, 102200. [Google Scholar] [CrossRef]
- Gonçalves, N.; Carvalho, V.; Belsley, M.; Vasconcelos, R.M.; Soares, F.O.; Machado, J. Yarn features extraction using image processing and computer vision—A study with cotton and polyester yarns. Measurement 2015, 68, 1–15. [Google Scholar] [CrossRef]
- Li, W.-B.; Lu, C.-H.; Zhang, J.-C. A local annular contrast based real-time inspection algorithm for steel bar surface defects. Appl. Surf. Sci. 2012, 258, 6080–6086. [Google Scholar] [CrossRef]
- Ma, L.; Chen, J.; Tang, W.; Yin, Z. Vibration-based estimation of tension for an axially travelling web in roll-to-roll manufacturing. Meas. Sci. Technol. 2017, 29, 015102. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Li, A.; Li, Y.; Liu, J.; Shen, H.; Li, G. Microtension control for a yarn winding system with an IMC PID controller. Mech. Ind. 2019, 20, 609. [Google Scholar] [CrossRef] [Green Version]
- Minor, B.D.; Doppa, J.R.; Cook, D.J. Learning Activity Predictors from Sensor Data: Algorithms, Evaluation, and Applications. IEEE Trans. Knowl. Data Eng. 2017, 29, 2744–2757. [Google Scholar] [CrossRef] [PubMed]
Tension Measured Using Tension Sensor (cN) | Tension Estimated Using Machine Vision (cN) | Relative Error (%) |
---|---|---|
19.57 | 20.94 | 7.00 |
21.09 | 18.79 | −10.91 |
19.71 | 20.12 | 2.08 |
19.84 | 21.55 | 8.62 |
19.65 | 22.30 | 13.49 |
19.00 | 20.30 | 6.84 |
21.13 | 19.62 | −7.15 |
19.24 | 20.13 | 4.63 |
20.40 | 18.10 | −11.28 |
Tension Measured Using Tension Sensor (cN) | Tension Obtained Using the Observer (cN) | Relative Error (%) |
---|---|---|
27.43 | 23.95 | −12.69 |
21.12 | 24.14 | 14.30 |
20.19 | 20.52 | 1.63 |
20.12 | 22.65 | 12.45 |
17.73 | 20.40 | 15.06 |
18.74 | 18.10 | −3.42 |
18.87 | 22.07 | 16.90 |
23.89 | 26.13 | 9.38 |
24.07 | 20.30 | −5.66 |
19.29 | 21.87 | 13.37 |
Tension Measured Using Tension Sensor (cN) | Tension Obtained Using Data Fusion Method (cN) | Relative Error (%) |
---|---|---|
20.42 | 21.62 | 5.88 |
18.78 | 18.44 | −1.81 |
22.12 | 21.24 | −3.98 |
18.46 | 18.43 | −0.16 |
17.74 | 18.51 | 4.34 |
21.39 | 23.34 | 9.12 |
17.85 | 16.68 | −6.55 |
20.54 | 20.22 | −1.56 |
19.58 | 19.55 | −0.15 |
20.14 | 21.70 | 7.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, Y.; Ma, J.; Zhou, Z.; Li, J.; Song, L. Dynamic Yarn-Tension Detection Using Machine Vision Combined with a Tension Observer. Sensors 2023, 23, 3800. https://doi.org/10.3390/s23083800
Ji Y, Ma J, Zhou Z, Li J, Song L. Dynamic Yarn-Tension Detection Using Machine Vision Combined with a Tension Observer. Sensors. 2023; 23(8):3800. https://doi.org/10.3390/s23083800
Chicago/Turabian StyleJi, Yue, Jiedong Ma, Zhanqing Zhou, Jinyi Li, and Limei Song. 2023. "Dynamic Yarn-Tension Detection Using Machine Vision Combined with a Tension Observer" Sensors 23, no. 8: 3800. https://doi.org/10.3390/s23083800
APA StyleJi, Y., Ma, J., Zhou, Z., Li, J., & Song, L. (2023). Dynamic Yarn-Tension Detection Using Machine Vision Combined with a Tension Observer. Sensors, 23(8), 3800. https://doi.org/10.3390/s23083800