Hydrogen Gas Sensing Properties of Mixed Copper–Titanium Oxide Thin Films
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brattain, B.W.H.; Bardeent, J. Properties of Germanium. Am. Teleph. Telegr. Co. 1952, 32, 1–41. [Google Scholar]
- Neri, G. First Fifty Years of Chemoresistive Gas Sensors. Chemosensors 2015, 3, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Gouma, P.; Kalyanasundaram, K.; Yun, X.; Stanaćević, M.; Wang, L. Nanosensor and Breath Analyzer for Ammonia Detection in Exhaled Human Breath. IEEE Sens. J. 2010, 10, 49–53. [Google Scholar] [CrossRef] [Green Version]
- Righettoni, M.; Amann, A.; Pratsinis, S.E. Breath Analysis by Nanostructured Metal Oxides as Chemo-Resistive Gas Sensors. Mater. Today 2015, 18, 163–171. [Google Scholar] [CrossRef]
- Zhou, C.; Shi, N.; Jiang, X.; Chen, M.; Jiang, J.; Zheng, Y.; Wu, W.; Cui, D.; Haick, H.; Tang, N. Techniques for Wearable Gas Sensors Fabrication. Sens. Actuators B Chem. 2022, 353, 131133. [Google Scholar] [CrossRef]
- Maziarz, W. TiO2/SnO2 and TiO2/CuO Thin Film Nano-Heterostructures as Gas Sensors. Appl. Surf. Sci. 2019, 480, 361–370. [Google Scholar] [CrossRef]
- Lupan, O.; Postica, V.; Ababii, N.; Hoppe, M.; Cretu, V.; Tiginyanu, I.; Sontea, V.; Pauporté, T.; Viana, B.; Adelung, R. Influence of CuO Nanostructures Morphology on Hydrogen Gas Sensing Performances. Microelectron. Eng. 2016, 164, 63–70. [Google Scholar] [CrossRef]
- Szkudlarek, A.; Kollbek, K.; Klejna, S.; Rydosz, A. Electronic Sensitization of CuO Thin Films by Cr-Doping for Enhanced Gas Sensor Response at Low Detection Limit. Mater. Res. Express 2018, 5, 126406. [Google Scholar] [CrossRef]
- Wojcieszak, D.; Obstarczyk, A.; Mańkowska, E.; Mazur, M.; Kaczmarek, D.; Zakrzewska, K.; Mazur, P.; Domaradzki, J. Thermal Oxidation Impact on the Optoelectronic and Hydrogen Sensing Properties of P-Type Copper Oxide Thin Films. Mater. Res. Bull. 2022, 147, 111646. [Google Scholar] [CrossRef]
- Park, H.J.; Choi, N.J.; Kang, H.; Jung, M.Y.; Park, J.W.; Park, K.H.; Lee, D.S. A Ppb-Level Formaldehyde Gas Sensor Based on CuO Nanocubes Prepared Using a Polyol Process. Sens. Actuators B Chem. 2014, 203, 282–288. [Google Scholar] [CrossRef]
- Zoolfakar, A.S.; Ahmad, M.Z.; Rani, R.A.; Ou, J.Z.; Balendhran, S.; Zhuiykov, S.; Latham, K.; Wlodarski, W.; Kalantar-Zadeh, K. Nanostructured Copper Oxides as Ethanol Vapour Sensors. Sens. Actuators B Chem. 2013, 185, 620–627. [Google Scholar] [CrossRef]
- Shishiyanu, S.T.; Shishiyanu, T.S.; Lupan, O.I. Novel NO2 Gas Sensor Based on Cuprous Oxide Thin Films. Sens. Actuators B Chem. 2006, 113, 468–476. [Google Scholar] [CrossRef]
- Lupan, O.; Ababii, N.; Mishra, A.K.; Gronenberg, O.; Vahl, A.; Schürmann, U.; Duppel, V.; Krüger, H.; Chow, L.; Kienle, L.; et al. Single CuO/Cu2O/Cu Microwire Covered by a Nanowire Network as a Gas Sensor for the Detection of Battery Hazards. ACS Appl. Mater. Interfaces 2020, 12, 42248–42263. [Google Scholar] [CrossRef]
- Lupan, O.; Cretu, V.; Postica, V.; Ababii, N.; Polonskyi, O.; Kaidas, V.; Schütt, F.; Mishra, Y.K.; Monaico, E.; Tiginyanu, I.; et al. Enhanced Ethanol Vapour Sensing Performances of Copper Oxide Nanocrystals with Mixed Phases. Sens. Actuators B Chem. 2016, 224, 434–448. [Google Scholar] [CrossRef]
- Bang, J.H.; Mirzaei, A.; Choi, M.S.; Han, S.; Lee, H.Y.; Kim, S.S.; Kim, H.W. Decoration of Multi-Walled Carbon Nanotubes with CuO/Cu2O Nanoparticles for Selective Sensing of H2S Gas. Sens. Actuators B Chem. 2021, 344, 130176. [Google Scholar] [CrossRef]
- Zakrzewska, K. Gas Sensing Mechanism of TiO2-Based Thin Films. Vacuum 2004, 74, 335–338. [Google Scholar] [CrossRef]
- Lyson-Sypien, B.; Radecka, M.; Rekas, M.; Swierczek, K.; Michalow-Mauke, K.; Graule, T.; Zakrzewska, K. Grain-Size-Dependent Gas-Sensing Properties of TiO2 Nanomaterials. Sens. Actuators B Chem. 2015, 211, 67–76. [Google Scholar] [CrossRef]
- Zong, M.; Bai, L.; Liu, Y.; Wang, X.; Zhang, X.; Huang, X.; Hang, R.; Tang, B. Antibacterial Ability and Angiogenic Activity of Cu-Ti-O Nanotube Arrays. Mater. Sci. Eng. C 2017, 71, 93–99. [Google Scholar] [CrossRef]
- Tang, H.; Prasad, K.; Sanjinés, R.; Lévy, F. TiO2 Anatase Thin Films as Gas Sensors. Sens. Actuators B Chem. 1995, 26, 71–75. [Google Scholar] [CrossRef]
- Suh, J.M.; Shim, Y.S.; Kwon, K.C.; Jeon, J.M.; Lee, T.H.; Shokouhimehr, M.; Jang, H.W. Pd- and Au-Decorated MoS2 Gas Sensors for Enhanced Selectivity. Electron. Mater. Lett. 2019, 15, 368–376. [Google Scholar] [CrossRef]
- Tang, Q.; Hu, X.B.; He, M.; Xie, L.L.; Zhu, Z.G.; Wu, J.Q. Effect of Platinum Doping on the Morphology and Sensing Performance for CuO-Based Gas Sensor. Appl. Sci. 2018, 8, 1091. [Google Scholar] [CrossRef] [Green Version]
- Ambardekar, V.; Bhowmick, T.; Bandyopadhyay, P.P. Understanding on the Hydrogen Detection of Plasma Sprayed Tin Oxide/Tungsten Oxide (SnO2/WO3) Sensor. Int. J. Hydrogen Energy 2022, 47, 15120–15131. [Google Scholar] [CrossRef]
- Jayababu, N.; Poloju, M.; Shruthi, J.; Reddy, M.V.R. Synthesis of ZnO/NiO Nanocomposites for the Rapid Detection of Ammonia at Room Temperature. Mater. Sci. Semicond. Process. 2019, 102, 104591. [Google Scholar] [CrossRef]
- Shinde, R.S.; Khairnar, S.D.; Patil, M.R.; Adole, V.A.; Koli, P.B.; Deshmane, V.V.; Halwar, D.K.; Shinde, R.A.; Pawar, T.B.; Jagdale, B.S.; et al. Synthesis and Characterization of ZnO/CuO Nanocomposites as an Effective Photocatalyst and Gas Sensor for Environmental Remediation. J. Inorg. Organomet. Polym. Mater. 2022, 32, 1045–1066. [Google Scholar] [CrossRef]
- Ferlazzo, A.; Espro, C.; Iannazzo, D.; Moulaee, K.; Neri, G. A Novel Yttria-Doped ZrO2 Based Conductometric Sensor for Hydrogen Leak Monitoring. Int. J. Hydrog. Energy 2022, 47, 9819–9828. [Google Scholar] [CrossRef]
- Maji, B.; Barik, B.; Sahoo, S.J.; Achary, L.S.K.; Kumar Sahoo, K.; Kar, J.P.; Dash, P. Shape Selective Comprehensive Gas Sensing Study of Different Morphological Manganese-Cobalt Oxide Based Nanocomposite as Potential Room Temperature Hydrogen Gas Sensor. Sens. Actuators B Chem. 2023, 380, 133348. [Google Scholar] [CrossRef]
- Zappa, D.; Galstyan, V.; Kaur, N.; Munasinghe Arachchige, H.M.M.; Sisman, O.; Comini, E. “Metal Oxide -Based Heterostructures for Gas Sensors”—A Review. Anal. Chim. Acta 2018, 1039, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, Y.; Li, Z.; Zhang, S.; Deng, X.; Zhao, G.; Xu, X. Highly Sensitive and Low Working Temperature Detection of Trace Triethylamine Based on TiO2 Nanoparticles Decorated CuO Nanosheets Sensors. Sens. Actuators B Chem. 2019, 301, 127019. [Google Scholar] [CrossRef]
- Stankova, M.; Vilanova, X.; Calderer, J.; Llobet, E.; Brezmes, J.; Gràcia, I.; Cané, C.; Correig, X. Sensitivity and Selectivity Improvement of Rf Sputtered WO3 Microhotplate Gas Sensors. Sens. Actuators B Chem. 2006, 113, 241–248. [Google Scholar] [CrossRef]
- Miller, D.R.; Akbar, S.A.; Morris, P.A. Nanoscale Metal Oxide-Based Heterojunctions for Gas Sensing: A Review. Sens. Actuators B Chem. 2014, 204, 250–272. [Google Scholar] [CrossRef]
- Rydosz, A.; Czapla, A. CuO and CuO/TiO2-y Thin-Film Gas Sensors of H2 and NO2. In Proceedings of the 2018 XV International Scientific Conference on Optoelectronic and Electronic Sensors (COE), Warsaw, Poland, 17–20 June 2018. [Google Scholar]
- Lupan, O.; Santos-Carballal, D.; Ababii, N.; Magariu, N.; Hansen, S.; Vahl, A.; Zimoch, L.; Hoppe, M.; Pauporté, T.; Galstyan, V.; et al. TiO2/Cu2O/CuO Multi-Nanolayers as Sensors for H2 and Volatile Organic Compounds: An Experimental and Theoretical Investigation. ACS Appl. Mater. Interfaces 2021, 13, 32363–32380. [Google Scholar] [CrossRef]
- Deng, J.; Wang, L.; Lou, Z.; Zhang, T. Design of CuO-TiO2 Heterostructure Nanofibers and Their Sensing Performance. J. Mater. Chem. A 2014, 2, 9030–9034. [Google Scholar] [CrossRef]
- Park, S.; Kim, S.; Kheel, H.; Park, S.E.; Lee, C. Synthesis and Hydrogen Gas Sensing Properties of TiO2-Decorated CuO Nanorods. Bull. Korean Chem. Soc. 2015, 36, 2458–2463. [Google Scholar] [CrossRef]
- Alev, O.; Şennik, E.; Öztürk, Z.Z. Improved Gas Sensing Performance of P-Copper Oxide Thin Film/n-TiO2 Nanotubes Heterostructure. J. Alloys Compd. 2018, 749, 221–228. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, J.H.; Kim, S.S. CuO–TiO2 p–n Core–Shell Nanowires: Sensing Mechanism and p/n Sensing-Type Transition. Appl. Surf. Sci. 2018, 448, 489–497. [Google Scholar] [CrossRef]
- Lim, C.H.; Kim, H.S.; Yu, Y.T.; Park, J.S. CO Gas-Sensing Properties of CuO-TiN and CuO-TiO2 Prepared via an Oxidizing Process of a Cu-TiN Composite Synthesized by a Mechanically Induced Gas-Solid Reaction. Met. Mater. Int. 2014, 20, 323–328. [Google Scholar] [CrossRef]
- Nakate, U.T.; Patil, P.; Na, S.I.; Yu, Y.T.; Suh, E.K.; Hahn, Y.B. Fabrication and Enhanced Carbon Monoxide Gas Sensing Performance of P-CuO/n-TiO2 Heterojunction Device. Colloids Surfaces A Physicochem. Eng. Asp. 2021, 612, 125962. [Google Scholar] [CrossRef]
- Wang, G.; Fu, Z.; Wang, T.; Lei, W.; Sun, P.; Sui, Y.; Zou, B. A Rational Design of Hollow Nanocages Ag@CuO-TiO2 for Enhanced Acetone Sensing Performance. Sens. Actuators B Chem. 2019, 295, 70–78. [Google Scholar] [CrossRef]
- Barreca, D.; Carraro, G.; Comini, E.; Gasparotto, A.; MacCato, C.; Sada, C.; Sberveglieri, G.; Tondello, E. Novel Synthesis and Gas Sensing Performances of CuO-TiO2 Nanocomposites Functionalized with Au Nanoparticles. J. Phys. Chem. C 2011, 115, 10510–10517. [Google Scholar] [CrossRef]
- Torrisi, A.; Horák, P.; Vacík, J.; Cannavò, A.; Ceccio, G.; Yatskiv, R.; Kupcik, J.; Fara, J.; Fitl, P.; Vlcek, J.; et al. Preparation of Heterogenous Copper-Titanium Oxides for Chemiresistor Applications. Mater. Today Proc. 2019, 33, 2512–2516. [Google Scholar] [CrossRef]
- Torrisi, A.; Ceccio, G.; Cannav, A.; Lavrentiev, V.; Hor, P.; Yatskiv, R.; Vaniš, J.; Grym, J.; Fišer, L.; Hruška, M. Chemiresistors Based on Li-Doped CuO-TiO2 Films. Chemosensors 2021, 9, 246. [Google Scholar] [CrossRef]
- Mańkowska, E.; Mazur, M.; Domaradzki, J.; Wojcieszak, D. P-Type (CuTi)Ox Thin Films Deposited by Magnetron Co—Sputtering and Their Electronic and Hydrogen Sensing Properties. Coatings 2023, 13, 220. [Google Scholar] [CrossRef]
- PDF Card 04-0836; Powder Diffraction File. Joint Commiittee on Powder Diffraction Standards. ASTM: Philadelphia, PA, USA, 2008.
- PDF Card 65-3288; Powder Diffraction File. Joint Commiittee on Powder Diffraction Standards. ASTM: Philadelphia, PA, USA, 2005.
- PDF Card 65-2309; Powder Diffraction File. Joint Commiittee on Powder Diffraction Standards. ASTM: Philadelphia, PA, USA, 2005.
- PDF Card 65-2900; Powder Diffraction File. Joint Commiittee on Powder Diffraction Standards. ASTM: Philadelphia, PA, USA, 2005.
- PDF Card 21-1272; Powder Diffraction File. Joint Commiittee on Powder Diffraction Standards. ASTM: Philadelphia, PA, USA, 1969.
- Barreca, D.; Carraro, G.; Gasparotto, A.; MacCato, C.; Cruz-Yusta, M.; Gómez-Camer, J.L.; Morales, J.; Sada, C.; Sánchez, L. On the Performances of CuxO-TiO2 (x = 1, 2) Nanomaterials as Innovative Anodes for Thin Film Lithium Batteries. ACS Appl. Mater. Interfaces 2012, 4, 3610–3619. [Google Scholar] [CrossRef] [PubMed]
- Biesinger, M.C.; Lau, L.W.M.; Gerson, A.R.; Smart, R.S.C. Resolving Surface Chemical States in XPS Analysis of First Row Transition Metals, Oxides and Hydroxides: Sc, Ti, V., Cu and Zn. Appl. Surf. Sci. 2010, 257, 887–898. [Google Scholar] [CrossRef]
- Peng, W.C.; Chen, Y.C.; He, J.L.; Ou, S.L.; Horng, R.H.; Wuu, D.S. Tunability of P- and n-Channel TiOx Thin Film Transistors. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Wojcieszak, D.; Mazur, M.; Kalisz, M.; Grobelny, M. Influence of Cu, Au and Ag on Structural and Surface Properties of Bioactive Coatings Based on Titanium. Mater. Sci. Eng. C 2017, 71, 1115–1121. [Google Scholar] [CrossRef] [PubMed]
- Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D. Handbook of X-ray Photoelectron Spectroscopy; Chastain, J., King, R.C.J., Eds.; Physical Electronics, Inc.: Chanhassen, MN, USA, 1992; ISBN 0-9648124-1X. [Google Scholar]
- Lee, S.Y.; Mettlach, N.; Nguyen, N.; Sun, Y.M.; White, J.M. Copper Oxide Reduction through Vacuum Annealing. Appl. Surf. Sci. 2003, 206, 102–109. [Google Scholar] [CrossRef]
- Pauly, N.; Tougaard, S.; Yubero, F. Determination of the Cu 2p Primary Excitation Spectra for Cu, Cu2O and CuO. Surf. Sci. 2014, 620, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Biesinger, M.C. Advanced Analysis of Copper X-ray Photoelectron Spectra. Surf. Interface Anal. 2017, 49, 1325–1334. [Google Scholar] [CrossRef]
- Wang, G.; Li, J.; Lv, K.; Zhang, W.; Ding, X.; Yang, G.; Liu, X.; Jiang, X. Surface Thermal Oxidation on Titanium Implants to Enhance Osteogenic Activity and In Vivo Osseointegration. Sci. Rep. 2016, 6, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Gattinoni, C.; Michaelides, A. Atomistic Details of Oxide Surfaces and Surface Oxidation: The Example of Copper and Its Oxides. Surf. Sci. Rep. 2015, 70, 424–447. [Google Scholar] [CrossRef] [Green Version]
- Platzman, I.; Brener, R.; Haick, H.; Tannenbaum, R. Oxidation of Polycrystalline Copper Thin Films at Ambient Conditions. J. Phys. Chem. C 2008, 112, 1101–1108. [Google Scholar] [CrossRef]
- Saruhan, B.; Fomekong, R.L.; Nahirniak, S. Review: Influences of Semiconductor Metal Oxide Properties on Gas Sensing Characteristics. Front. Sens. 2021, 2, 1–24. [Google Scholar] [CrossRef]
- Nunes, D.; Pimentel, A.; Goncalves, A.; Pereira, S.; Branquinho, R.; Barquinha, P.; Fortunato, E.; Martins, R. Metal Oxide Nanostructures for Sensor Applications. Semicond. Sci. Technol. 2019, 34, 43001. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.J.; Lee, J.H. Highly Sensitive and Selective Gas Sensors Using P-Type Oxide Semiconductors: Overview. Sens. Actuators B Chem. 2014, 192, 607–627. [Google Scholar] [CrossRef]
- Lin, Y.K.; Chiang, Y.J.; Hsu, Y.J. Metal-Cu2O Core-Shell Nanocrystals for Gas Sensing Applications: Effect of Metal Composition. Sens. Actuators B Chem. 2014, 204, 190–196. [Google Scholar] [CrossRef]
- Holi, A.M.; AL-Sajad, G.A.; Al-Zahrani, A.A.; Najm, A.S. Enhancement in NO2 and H2-Sensing Performance of CuxO/TiO2 Nanotubes Arrays Sensors Prepared by Electrodeposition Synthesis. Nano Biomed. Eng. 2022, 14, 7–14. [Google Scholar] [CrossRef]
- Ruiz-Cañas, M.C.; Quintero, H.I.; Corredor, L.M.; Manrique, E.; Romero Bohórquez, A.R. New Nanohybrid Based on Hydrolyzed Polyacrylamide and Silica Nanoparticles: Morphological, Structural and Thermal Properties. Polymers 2020, 12, 1152. [Google Scholar] [CrossRef] [PubMed]
- Ayiania, M.; Smith, M.; Hensley, A.J.R.; Scudiero, L.; McEwen, J.-S.; Garcia-Perez, M. Deconvoluting the XPS spectra for nitrogen-doped chars: An analysis from first principles. Carbon 2020, 162, 528. [Google Scholar] [CrossRef]
As-Deposited Thin Film | Cu 2p3/2 | Modified Auger Parameter (eV) | CuO Content in the Mixture of Copper Oxides | |
---|---|---|---|---|
Cu+ (eV) | Cu2+ (eV) | |||
(Cu0.23Ti0.77)Ox | 932.3 | 934.0 | 1849.1 | 55% |
(Cu0.41Ti0.59)Ox | 932.3 | 934.0 | 1849.5 | 31% |
(Cu0.56Ti0.44)Ox | 932.3 | 934.0 | 1849.0 | 68% |
(Cu0.77Ti0.23)Ox | 932.3 | 934.0 | 1849.2 | 64% |
CuxO | 932.3 | 934.0 | 1849.1 | 34% |
Heterostructure | Hydrogen Concentration (ppm) | Sensor Response at 473 K | Equation of SR | Reference |
---|---|---|---|---|
(CuTi)Ox thin films | 1000 | 1.86 | Rgas/Rair | This work |
CuO-TiO2 nanocomposite | 1000 | 2.0 | Rgas/Rair | [40] |
CuO thin film on TiO2 nanotube | 1000 | 2.0 | (Igas − Iair)/Iair | [35] |
CuO-TiO2 nanocages | 800 | 150% (at 523 K) | (Rgas − Rair)/Rair | [38] |
TiO2/CuxO | 100 | 10% | (Rgas − Rair)/Rair | [32] |
TiO2/CuxO | 100 | 43% | Rair/Rgas | [64] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mańkowska, E.; Mazur, M.; Domaradzki, J.; Mazur, P.; Kot, M.; Flege, J.I. Hydrogen Gas Sensing Properties of Mixed Copper–Titanium Oxide Thin Films. Sensors 2023, 23, 3822. https://doi.org/10.3390/s23083822
Mańkowska E, Mazur M, Domaradzki J, Mazur P, Kot M, Flege JI. Hydrogen Gas Sensing Properties of Mixed Copper–Titanium Oxide Thin Films. Sensors. 2023; 23(8):3822. https://doi.org/10.3390/s23083822
Chicago/Turabian StyleMańkowska, Ewa, Michał Mazur, Jarosław Domaradzki, Piotr Mazur, Małgorzata Kot, and Jan Ingo Flege. 2023. "Hydrogen Gas Sensing Properties of Mixed Copper–Titanium Oxide Thin Films" Sensors 23, no. 8: 3822. https://doi.org/10.3390/s23083822
APA StyleMańkowska, E., Mazur, M., Domaradzki, J., Mazur, P., Kot, M., & Flege, J. I. (2023). Hydrogen Gas Sensing Properties of Mixed Copper–Titanium Oxide Thin Films. Sensors, 23(8), 3822. https://doi.org/10.3390/s23083822