Addressing Multi-User Interference in Vehicular Visible Light Communications: A Brief Survey and an Evaluation of Optical CDMA MAC Utilization in a Multi-Lane Scenario
Abstract
:1. Introduction
2. Vehicular Visible Light Communications Multi-User Interference Issues and Solutions for Their Mitigation: State of the Art
2.1. Debate on the Necesity of a MAC Solution for Vehicular Visible Light Communications Applications
2.2. Medium Acces Control Techniques for Visible Light Communications Applications
2.3. Solutions to Address Multi-User Interference in Vehicular Visible Light Communications Applications
3. Optical Codes for Visible Light Communications Multiple Access
3.1. Random Optical Codes
3.2. Prime Codes
3.3. Pseudo Noise Codes
3.4. Optical Orthogonal Codes (OOCs)
3.5. Comparison between Codes
4. Simulation Results and Discussions
4.1. Performance Comparison of OCDMA Codes in a Single Interefence Vehicle Scenario
4.2. Performance Comparison of OCDMA Codes in a Multiple Interefence Vehicles
4.3. Comparison of Simulation Time
5. Debate on the Results This Work and Future Directions in Optical Code Design for Vehicular Visible Light Communications
5.1. Discussion on the Simulation Results and on the Lessons Learned
5.1.1. Debate on the Results and on Their Limitations
- OCDMA codes are not intended to improve resilience to optical noise or to mitigate the effects of severe weather conditions, nor to improve communication range or to compensate vehicle misalignment; therefore, evaluating them in such conditions is irrelevant; and, furthermore, information concerning techniques and solutions to address such conditions can be found in [8,17,19,20,21,22,23,24,25,26,27].
- As this article is focused on MUI effect analysis, mixing different conditions would not emphasize the cause of a lower PDR; in such circumstances, lower PDR could have been resulted from MUI or from lower SNR generated by, for example, unfriendly weather conditions.
5.1.2. Debate on the Necessity of a PDR—Latency Trade off and the Importance of Improved Code Allocation Algorithms
5.2. Discussion on the Future Challenges in Optical CDMA Design for Vehicular Visible Light Communication Applications
6. Conclusions and Final Debate on the Results and on the Findings of This Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Masini, B.M.; Bazzi, A.; Zanella, A. A Survey on the Roadmap to Mandate on Board Connectivity and Enable V2V-Based Vehicular Sensor Networks. Sensors 2018, 18, 2207. [Google Scholar] [CrossRef] [Green Version]
- Zadobrischi, E.; Dimian, M. Vehicular Communications Utility in Road Safety Applications: A Step toward Self-Aware Intelligent Traffic Systems. Symmetry 2021, 13, 438. [Google Scholar] [CrossRef]
- Zadobrischi, E.; Dimian, M.; Negru, M. The Utility of DSRC and V2X in Road Safety Applications and Intelligent Parking: Similarities, Differences, and the Future of Vehicular Communication. Sensors 2021, 21, 7237. [Google Scholar] [CrossRef] [PubMed]
- Marabissi, D.; Mucchi, L.; Caputo, S.; Nizzi, F.; Pecorella, T.; Fantacci, R.; Nawaz, T.; Seminara, M.; Catani, J. Experimental Measurements of a Joint 5G-VLC Communication for Future Vehicular Networks. J. Sens. Actuator Netw. 2020, 9, 32. [Google Scholar] [CrossRef]
- Long, X.; He, J.; Zhou, J.; Fang, L.; Zhou, X.; Ren, F.; Xu, T. A review on light-emitting diode based automotive headlamps. Renew. Sustain. Energy Rev. 2015, 41, 29–41. [Google Scholar] [CrossRef]
- Dong, L.; Shang, X.; Zhao, Y.; Qin, L.; Xu, W. The Impact of LED Light Color on the Dark Adaptation of Human Vision in Tunnel Entrances. IEEE Photonics J. 2018, 10, 1–11. [Google Scholar] [CrossRef]
- Santaella, J.J.; Rodríguez-Bolívar, S.; Puga-Pedregosa, L.; González-Rico, A.; Marín-González, M.; Gómez-Campos, F.M. High-Luminance QD-LED Device with Digital and Dynamic Lighting Functions for Efficient Automotive Systems. IEEE Photonics J. 2022, 14, 1917610. [Google Scholar] [CrossRef]
- Căilean, A.M.; Dimian, M. Current Challenges for Visible Light Communications Usage in Vehicle Applications: A Survey. IEEE Commun. Surv. Tutor. 2017, 19, 2681–2703. [Google Scholar] [CrossRef]
- Matheus, L.E.M.; Vieira, A.B.; Vieira, L.F.M.; Vieira, M.A.M.; Gnawali, O. Visible Light Communication: Concepts, Applications and Challenges. IEEE Commun. Surv. Tutor. 2019, 21, 3204–3237. [Google Scholar] [CrossRef]
- Rehman, S.U.; Ullah, S.; Chong, P.H.J.; Yongchareon, S.; Komosny, D. Visible Light Communication: A System Perspective—Overview and Challenges. Sensors 2019, 19, 1153. [Google Scholar] [CrossRef] [Green Version]
- Memedi, A.; Dressler, F. Vehicular Visible Light Communications: A Survey. IEEE Commun. Surv. Tutor. 2021, 23, 161–181. [Google Scholar] [CrossRef]
- Klapež, M.; Grazia, C.A.; Casoni, M. Experimental Evaluation of IEEE 802.11p in High-Speed Trials for Safety-Related Applications. IEEE Trans. Veh. Technol. 2021, 70, 11538–11553. [Google Scholar] [CrossRef]
- Sepulcre, M.; Gonzalez-Martín, M.; Gozalvez, J.; Molina-Masegosa, R.; Coll-Perales, B. Analytical Models of the Performance of IEEE 802.11p Vehicle to Vehicle Communications. IEEE Trans. Veh. Technol. 2022, 71, 713–724. [Google Scholar] [CrossRef]
- Uçar, S.; Ergen, S.Ç.; Özkasap, Ö. Security vulnerabilities of autonomous platoons. In Proceedings of the 2017 25th Signal Processing and Communications Applications Conference (SIU), Antalya, Turkey, 15–18 May 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Cailean, A.; Cagneau, B.; Chassagne, L.; Popa, V.; Dimian, M. A survey on the usage of DSRC and VLC in communication-based vehicle safety applications. In Proceedings of the IEEE 21st Symposium on Communications and Vehicular Technology in the Benelux (SCVT), Delft, The Netherlands, 10 November 2014; pp. 69–74. [Google Scholar] [CrossRef]
- Ucar, S.; Ergen, S.C.; Ozkasap, O. IEEE 802.11p and Visible Light Hybrid Communication Based Secure Autonomous Platoon. IEEE Trans. Veh. Technol. 2018, 67, 8667–8681. [Google Scholar] [CrossRef]
- Avătămăniței, S.A.; Căilean, A.-M.; Done, A.; Dimian, M.; Prelipceanu, M. Noise Resilient Outdoor Traffic Light Visible Light Communications System Based on Logarithmic Transimpedance Circuit: Experimental Demonstration of a 50 m Reliable Link in Direct Sun Exposure. Sensors 2020, 20, 909. [Google Scholar] [CrossRef] [Green Version]
- Islim, M.S.; Videv, S.; Safari, M.; Xie, E.; McKendry, J.J.; Gu, E.; Haas, H. The Impact of Solar Irradiance on Visible Light Communications. J. Lightwave Technol. 2018, 36, 2376–2386. [Google Scholar] [CrossRef] [Green Version]
- Avătămăniței, S.-A.; Căilean, A.-M.; Done, A.; Dimian, M.; Popa, V.; Prelipceanu, M. Design and Intensive Experimental Evaluation of an Enhanced Visible Light Communication System for Automotive Applications. Sensors 2020, 20, 3190. [Google Scholar] [CrossRef]
- Avătămăniței, S.-A.; Căilean, A.-M.; Done, A.; Dimian, M.; Popa, V. Experimental Evaluation of Traffic Light to Vehicle Visible Light Communications in Snowfall Conditions. In Proceedings of the 2020 7th International Conference on Control, Decision and Information Technologies (CoDIT), Prague, Czech Republic, 29 June–2 July 2020; pp. 693–696. [Google Scholar] [CrossRef]
- Căilean, A.-M.; Beguni, C.; Avătămăniţei, S.-A.; Dimian, M. Experimental Demonstration of a 185 meters Vehicular Visible Light Communications Link. In Proceedings of the 2021 IEEE Photonics Conference (IPC), Vancouver, BC, Canada, 18–21 October 2021; pp. 1–2. [Google Scholar] [CrossRef]
- Căilean, A.-M.; Avătămăniţei, S.-A.; Beguni, C.; Popa, V.; Dimian, M. Experimental Demonstration of a 188 meters Infrastructure-to-Vehicle Visible Light Communications Link in Outdoor Conditions. In Proceedings of the 2021 IEEE Sensors Applications Symposium (SAS), Sundsvall, Sweden, 23–25 August 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Seminara, M.; Nawaz, T.; Caputo, S.; Mucchi, L.; Catani, J. Characterization of Field of View in Visible Light Communication Systems for Intelligent Transportation Systems. IEEE Photonics J. 2020, 12, 7903816. [Google Scholar] [CrossRef]
- Shen, W.; Tsai, H. Testing vehicle-to-vehicle visible light communications in real-world driving scenarios. In Proceedings of the 2017 IEEE Vehicular Networking Conference (VNC), Torino, Italy, 27–29 November 2017; pp. 187–194. [Google Scholar]
- Avătămăniței, S.-A.; Beguni, C.; Căilean, A.-M.; Dimian, M.; Popa, V. Evaluation of Misalignment Effect in Vehicle-to-Vehicle Visible Light Communications: Experimental Demonstration of a 75 Meters Link. Sensors 2021, 21, 3577. [Google Scholar] [CrossRef]
- Căilean, A.-M.; Beguni, C.; Avătămăniței, S.-A.; Dimian, M.; Popa, V. Design, Implementation and Experimental Investigation of a Pedestrian Street Crossing Assistance System Based on Visible Light Communications. Sensors 2022, 22, 5481. [Google Scholar] [CrossRef]
- Nawaz, T.; Seminara, M.; Caputo, S.; Mucchi, L.; Cataliotti, F.S.; Catani, J. IEEE 802.15.7-Compliant Ultra-Low Latency Relaying VLC System for Safety-Critical ITS. IEEE Trans. Veh. Technol. 2019, 68, 12040–12051. [Google Scholar] [CrossRef] [Green Version]
- Plascencia, E.; Shagdar, O.; Guan, H.; Barrois, O.; Chassagne, L. Optical CDMA MAC Evaluation in Vehicle-to-Vehicle Visible Light Communications. Electronics 2022, 11, 1454. [Google Scholar] [CrossRef]
- Kim, Y.; Bae, Y.H.; Eom, D.-S.; Choi, B.D. Performance Analysis of a MAC Protocol Consisting of EDCA on the CCH and a Reservation on the SCHs for the IEEE 802.11p/1609.4 WAVE. IEEE Trans. Veh. Technol. 2017, 66, 5160–5175. [Google Scholar] [CrossRef]
- Chang, C.-Y.; Yen, H.-C.; Deng, D.-J. V2V QoS Guaranteed Channel Access in IEEE 802.11p VANETs. IEEE Trans. Dependable Secur. Comput. 2016, 13, 5–17. [Google Scholar] [CrossRef]
- Wijesiri, G.P.; Haapola, N.B.A.J.; Samarasinghe, T. The Effect of Concurrent Multi-Priority Data Streams on the MAC Layer Performance of IEEE 802.11p and C-V2X Mode 4. IEEE Trans. Commun. 2022, 70, 592–605. [Google Scholar] [CrossRef]
- Plascencia, E.; Shagdar, O.; Guan, H.; Chassagne, L. Study on multi-users interference in vehicle to vehicle visible light communications. Proc. Veh. 2020, 1–7. [Google Scholar]
- Khoder, R.; Naja, R.; Tohme, S. Impact of Interference on Visible Light Communication Performance in a Vehicular Platoon. In Proceedings of the 2020 International Wireless Communications and Mobile Computing (IWCMC), Limassol, Cyprus, 15–19 June 2020; pp. 1935–1939. [Google Scholar] [CrossRef]
- Bazzi, A.; Masini, B.M.; Zanella, A.; Calisti, A. Visible light communications in vehicular networks for cellular offloading. In Proceedings of the 2015 IEEE International Conference on Communication Workshop (ICCW), London, UK, 8–12 June 2015; pp. 1416–1421. [Google Scholar] [CrossRef]
- Plascencia, E.; Guan, H.; Chassagne, L.; Barrois, O.; Shagdar, O.; Căilean, A.-M. A Comprehensive Investigation on Multi-User Interference Effects in Vehicular Visible Light Communications. Sensors 2023, 23, 2553. [Google Scholar] [CrossRef]
- Karbalayghareh, M.; Miramirkhani, F.; Eldeeb, H.B.; Kizilirmak, R.C.; Sait, S.M.; Uysal, M. Channel Modelling and Performance Limits of Vehicular Visible Light Communication Systems. IEEE Trans. Veh. Technol. 2020, 69, 6891–6901. [Google Scholar] [CrossRef]
- Alsalami, F.M.; Aigoro, N.; Mahmoud, A.A.; Ahmad, Z.; Haigh, P.A.; Haas, O.C.; Rajbhandari, S. Impact of Vehicle Headlights Radiation Pattern on Dynamic Vehicular VLC Channel. J. Light. Technol. 2021, 39, 3162–3168. [Google Scholar] [CrossRef]
- Memedi, A.; Sommer, C.; Dressler, F. On the need for coordinated access control for vehicular visible light communication. In Proceedings of the 2018 14th Annual Conference on Wireless On-demand Network Systems and Services (WONS), Isola, France, 6–8 February 2018; pp. 121–124. [Google Scholar] [CrossRef]
- Tomaš, B.; Tsai, H.-M.; Boban, M. Simulating vehicular visible light communication: Physical radio and MAC modeling. In Proceedings of the 2014 IEEE Vehicular Networking Conference (VNC), Paderborn, Germany, 3–5 December 2014; pp. 222–225. [Google Scholar] [CrossRef]
- Makvandi, A.; Kavian, Y.S.; Namjoo, E. Experimental demonstration of hidden node problem in visible light communication networks. J. Opt. Commun. Netw. 2022, 14, 691–701. [Google Scholar] [CrossRef]
- Marshoud, H.; Sofotasios, P.C.; Muhaidat, S.; Karagiannidis, G.K. Multi-user techniques in visible light communications: A survey. In Proceedings of the 2016 International Conference on Advanced Communication Systems and Information Security (ACOSIS), Marrakesh, Morocco, 17–19 October 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Al-Ahmadi, S.; Maraqa, O.; Uysal, M.; Sait, S.M. Multi-User Visible Light Communications: State-of-the-Art and Future Directions. IEEE Access 2018, 6, 70555–70571. [Google Scholar] [CrossRef]
- Bhutani, M.; Lall, B.; Agrawal, M. Optical Wireless Communications: Research Challenges for MAC Layer. IEEE Access 2022, 10, 126969–126989. [Google Scholar] [CrossRef]
- Turan, B.; Narmanlioglu, O.; Ergen, S.C.; Uysal, M. On the Performance of MIMO OFDM-Based Intra-Vehicular VLC Networks. In Proceedings of the 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall), Montreal, QC, Canada, 18–21 September 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Zhang, X.; Babar, Z.; Petropoulos, P.; Haas, H.; Hanzo, L. The Evolution of Optical OFDM. IEEE Commun. Surv. Tutor. 2021, 23, 1430–1457. [Google Scholar] [CrossRef]
- Javed, M.A.; Khan, J.Y.; Ngo, D.T. Joint space-division multiple access and adaptive rate control for basic safety messages in VANETs. In Proceedings of the 2014 IEEE Wireless Communications and Networking Conference (WCNC), Istanbul, Turkey, 20 November 2014; pp. 2688–2693. [Google Scholar] [CrossRef]
- Tebruegge, C.; Memedi, A.; Dressler, F. Reduced Multiuser-Interference for Vehicular VLC Using SDMA and Matrix Headlights. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Memedi, A.; Dressler, F. A Location-Aware Cross-Layer MAC Protocol for Vehicular Visible Light Communications. In Proceedings of the 2021 17th International Conference on Mobility, Sensing and N`etworking (MSN), Exeter, UK, 13–15 December 2021; pp. 536–542. [Google Scholar] [CrossRef]
- Naser, S.; Sofotasios, P.C.; Bariah, L.; Jaafar, W.; Muhaidat, S.; Al-Qutayri, M.; Dobre, O.A. Rate-Splitting Multiple Access: Unifying NOMA and SDMA in MISO VLC Channels. IEEE Open J. Veh. Technol. 2020, 1, 393–413. [Google Scholar] [CrossRef]
- Soua, R.; Turcanu, I.; Adamsky, F.; Führer, D.; Engel, T. Multi-Access Edge Computing for Vehicular Networks: A Position Paper. In Proceedings of the 2018 IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Matsushima, T.K.; Yamasaki, S.; Ono, K.; Tanaka, H. Visible-Light CDMA Communications Using Inverted Spread Sequences. Electronics 2022, 11, 1823. [Google Scholar] [CrossRef]
- Mao, Q.; Yue, P.; Xu, M.; Ji, Y.; Cui, Z. OCTMAC: A VLC based MAC protocol combining optical CDMA with TDMA for VANETs. In Proceedings of the 2017 International Conference on Computer, Information and Telecommunication Systems (CITS), Dalian, China, 21–23 July 2017; pp. 234–238. [Google Scholar] [CrossRef]
- Eldeeb, H.B.; Yanmaz, E.; Uysal, M. MAC Layer Performance of Multi-Hop Vehicular VLC Networks with CSMA/CA. In Proceedings of the 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), Porto, Portugal, 20–22 July 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Singh, G.; Srivastava, A.; Bohara, V.A.; Liu, Z.; Noor-A-Rahim, M.; Ghatak, G. Heterogeneous Visible Light and Radio Communication for Improving Safety Message Dissemination at Road Intersection. IEEE Trans. Intell. Transp. Syst. 2022, 23, 17607–17619. [Google Scholar] [CrossRef]
- Amjad, M.; Qureshi, H.K.; Hassan, S.A.; Ahmad, A.; Jangsher, S. Optimization of MAC Frame Slots and Power in Hybrid VLC/RF Networks. IEEE Access 2020, 8, 21653–21664. [Google Scholar] [CrossRef]
- Mehr, K.A.; Nobar, S.K.; Niya, J.M. IEEE 802.15. 7 MAC under unsaturated traffic: Performance analysis and queue modeling. J. Opt. Commun. Netw. 2015, 7, 875–884. [Google Scholar] [CrossRef]
- IEEE Standard for Local and metropolitan area networks—Part 15.7: Short-Range Optical Wireless Communications. IEEE Std 2019, 1–407. [CrossRef]
- Aljunid, S.A.; Ismail, M.; Ramli, A.R.; Ali, B.M.; Abdullah, M.K. A new family of optical code sequences for spectral-amplitude-coding optical CDMA systems. IEEE Photonics Technol. Lett. 2004, 16, 2383–2385. [Google Scholar] [CrossRef]
- Noshad, M.; Brandt-Pearce, M. Hadamard-Coded Modulation for Visible Light Communications. IEEE Trans. Commun. 2016, 64, 1167–1175. [Google Scholar] [CrossRef] [Green Version]
- Matsushima, T.K.; Sasaki, S.; Kakuyama, M.; Yamasaki, S.; Murata, Y.; Teramachi, Y. A visible-light communication system using optical CDMA with inverted MPSC. In Proceedings of the 6th International Workshop on Signal Design and Its Applications in Communications, Tokyo, Japan, 27 October–1 November 2013; pp. 52–55. [Google Scholar] [CrossRef]
- Pal, M.; Chattopadhyay, S. A novel orthogonal minimum cross-correlation spreading code in CDMA system. In INTERACT-2010; IEEE: Chennai, India, 2010; pp. 80–84. [Google Scholar] [CrossRef]
- Mollah, M.B.; Islam, M.R. Comparative analysis of Gold Codes with PN codes using correlation property in CDMA technology. In Proceedings of the 2012 International Conference on Computer Communication and Informatics, Coimbatore, India, 10–12 January 2012; pp. 1–6. [Google Scholar] [CrossRef]
- Chung, F.R.K.; Salehi, J.A.; Wei, V.K. Optical orthogonal codes: Design, analysis and applications. IEEE Trans. Inf. Theory 1989, 35, 595–604. [Google Scholar] [CrossRef]
- Salehi, J.A. Code division multiple-access techniques in optical fiber networks. I. Fundamental principles. IEEE Trans. Commun. 1989, 37, 824–833. [Google Scholar] [CrossRef]
- Kahn, J.M.; Barry, J.R. Wireless infrared communications. Proc. IEEE 1997, 85, 265–298. [Google Scholar] [CrossRef] [Green Version]
- Zaki, R.W.; Fayed, H.A.; Abd El Aziz, A.; Aly, M.H. Outdoor Visible Light Communication in Intelligent Transportation Systems: Impact of Snow and Rain. Appl. Sci. 2019, 9, 5453. [Google Scholar] [CrossRef] [Green Version]
- Căilean, A.-M.; Dimian, M. Toward Environmental-Adaptive Visible Light Communications Receivers for Automotive Applications: A Review. IEEE Sens. J. 2016, 16, 2803–2811. [Google Scholar] [CrossRef]
- Căilean, A.-M.; Dimian, M.; Popa, V. Noise-Adaptive Visible Light Communications Receiver for Automotive Applications: A Step Toward Self-Awareness. Sensors 2020, 20, 3764. [Google Scholar] [CrossRef]
Code | Value |
---|---|
ROC1 | 0110010000 |
ROC2 | 1010000001 |
ROC3 | 0001001100 |
ROC4 | 0101000001 |
ROC5 | 1000100010 |
Code | nc | Nc | Value |
---|---|---|---|
PC1 | 0 | 0 | 1000 1000 1000 1000 |
PC2 | 1 | 0100 0100 0100 0100 | |
PC3 | 2 | 0010 0010 0010 0010 | |
PC4 | 3 | 0001 0001 0001 0001 | |
PC5 | 1 | 0 | 1000 0100 0010 0001 |
PC6 | 1 | 0100 1000 0001 0010 | |
PC7 | 2 | 0010 0001 1000 0100 | |
PC8 | 3 | 0001 0010 0100 1000 | |
PC9 | 2 | 0 | 1000 0010 0001 0100 |
PC10 | 1 | 0100 0001 0010 1000 | |
PC11 | 2 | 0010 1000 0100 0001 | |
PC12 | 3 | 0001 0100 1000 0010 | |
PC13 | 3 | 0 | 1000 0001 0100 0010 |
PC14 | 1 | 0100 0010 1000 0001 | |
PC15 | 2 | 0010 0100 0001 1000 | |
PC16 | 3 | 0001 1000 0010 0100 |
Code | Value |
---|---|
PN1 | 100 000 100 |
PN2 | 001 100 010 |
PN3 | 100 111 101 |
PN4 | 000 111 001 |
PN5 | 001 011 011 |
PN6 | 101 100 110 |
PN7 | 101 011 111 |
Code | Value |
---|---|
OOC1 | 1100100 0000000 1000000 0000000 0000000 0000000 0000000 |
OOC2 | 1010000 1000000 0000000 0000010 0000000 0000000 0000000 |
OOC3 | 1000001 0000000 0000100 0000000 0000010 0000000 0000000 |
OOC4 | 1000000 0100000 0001000 0000000 1000000 0000000 0000000 |
Code | LSC | NC | Min Cross-Correlation | Max Cross-Correlation |
---|---|---|---|---|
OOC | 49 | 4 | 0.25 | 0.25 |
PC | 16 | 16 | 0.25 | 1 |
PN | 9 | 7 | 0.16 | 0.83 |
ROC | 10 | 5 | 0.33 | 0.66 |
Parameter | Value |
---|---|
PD reference | AFH-206 k |
PD active area | 7.02 mm2 |
PD responsivity | 0.62 A/W |
PD capacitance | 72 pF/m2 |
VLC receiver FOV (2ψ) | ±60° |
VLC transmitter half angle | 20° |
Vehicle width | 2 m |
VLC trasmitter transmission power | 2 Watt |
Transmission frequency | 500 kHz |
Pachet size | 256 bits |
Number of lanes | 2 or 5 |
Numer of interfering vehicles | 1 or 4 |
Lane width (Lw) | 3.7 m |
Code | Transmission Time | Transmission Frequency | Packet Size |
---|---|---|---|
OOC | 49 ms | 500 kHz | 256 bits |
PC | 16 ms | 500 kHz | 256 bits |
ROC | 10 ms | 500 kHz | 256 bits |
PN | 9 ms | 500 kHz | 256 bits |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plascencia, E.; Guan, H.; Chassagne, L.; Căilean, A.-M.; Barrois, O.; Shagdar, O. Addressing Multi-User Interference in Vehicular Visible Light Communications: A Brief Survey and an Evaluation of Optical CDMA MAC Utilization in a Multi-Lane Scenario. Sensors 2023, 23, 3831. https://doi.org/10.3390/s23083831
Plascencia E, Guan H, Chassagne L, Căilean A-M, Barrois O, Shagdar O. Addressing Multi-User Interference in Vehicular Visible Light Communications: A Brief Survey and an Evaluation of Optical CDMA MAC Utilization in a Multi-Lane Scenario. Sensors. 2023; 23(8):3831. https://doi.org/10.3390/s23083831
Chicago/Turabian StylePlascencia, Emmanuel, Hongyu Guan, Luc Chassagne, Alin-Mihai Căilean, Olivier Barrois, and Oyunchimeg Shagdar. 2023. "Addressing Multi-User Interference in Vehicular Visible Light Communications: A Brief Survey and an Evaluation of Optical CDMA MAC Utilization in a Multi-Lane Scenario" Sensors 23, no. 8: 3831. https://doi.org/10.3390/s23083831
APA StylePlascencia, E., Guan, H., Chassagne, L., Căilean, A. -M., Barrois, O., & Shagdar, O. (2023). Addressing Multi-User Interference in Vehicular Visible Light Communications: A Brief Survey and an Evaluation of Optical CDMA MAC Utilization in a Multi-Lane Scenario. Sensors, 23(8), 3831. https://doi.org/10.3390/s23083831