Design of Smartphone-Assisted Point-of-Care Platform for Colorimetric Sensing of Uric Acid via Visible Light-Induced Oxidase-Like Activity of Covalent Organic Framework
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Synthesis of TpBpy COF
2.3. Characterization of TpBpy COF
2.4. Steady-State Kinetic Studies of TpBpy COF as Oxidase-Mimic
2.5. Colorimetric Detection of UA
2.6. Detection of UA by the Smartphone Mode
2.7. Determination of UA Content in Real Samples
3. Results and Discussion
3.1. Synthesis and Characterizations of TpBpy COF
3.2. Oxidase-Like Activity of TpBpy COF under Visible Light Illumination
3.3. Analytical Performance for Colorimetric UA Sensing
3.4. Smartphone Sensing Platform for UA Detection
3.5. Determination of UA Content in Human Serum and Urine Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, S.; Shi, Y.; Wu, C.; Yuan, C.; Yang, Y.; Li, Y.; Wu, T. Detection of serum uric acid using the optical polymeric enzyme biochip system. Biosens. Bioelectron. 2004, 19, 1627–1633. [Google Scholar] [CrossRef] [PubMed]
- Badoei-Dalfard, A.; Sohrabi, N.; Karami, Z.; Sargazi, G. Fabrication of an efficient and sensitive colorimetric biosensor based on Uricase/Th-MOF for uric acid sensing in biological samples. Biosens. Bioelectron. 2019, 141, 111420. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, C.; Zhuang, Z.; Li, C.; Pan, P.; Zhang, C.; Zhang, X. Bio-inspired nanoenzyme for metabolic reprogramming and anti-inflammatory treatment of hyperuricemia and gout. Sci. China Chem. 2021, 64, 616–628. [Google Scholar] [CrossRef]
- Nakagawa, T.; Kang, D.; Feig, D.; Sanchez-Lozada, L.; Srinivas, T.; Sautin, Y.; Ejaz, A.; Segal, M.; Johnson, R. Unearthing uric acid: An ancient factor with recently found significance in renal and cardiovascular disease. Kidney Int. 2006, 69, 1722–1725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srinivasan, S.; Kalaiselvi, P.; Sakthivel, R.; Pragasam, V.; Muthu, V.; Varalakshmi, P. Uric acid: An abettor or protector in calcium oxalate urolithiasis? Biochemical study in stone formers. Clin. Chim. Acta 2005, 353, 45–51. [Google Scholar] [CrossRef]
- Maramattom, B.V. Self-mutilation in the Lesch-Nyhan syndrome. Neurology 2005, 65, E25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Remane, D.; Grunwald, S.; Hoeke, H.; Mueller, A.; Roeder, S.; von Bergen, M.; Wissenbach, D. Validation of a multi-analyte HPLC-DAD method for determination of uric acid, creatinine, homovanillic acid, niacinamide, hippuric acid, indole-3-acetic acid and 2-methylhippuric acid in human urine. J. Chromatogr. B 2015, 998, 40–44. [Google Scholar] [CrossRef]
- Kong, R.; Yang, A.; Wang, Q.; Wang, Y.; Ma, L.; Qu, F. Uricase based fluorometric determination of uric acid based on the use of graphene quantum dot@silver core-shell nanocomposites. Microchim. Acta 2018, 185, 63. [Google Scholar] [CrossRef]
- Saqib, M.; Qi, L.; Hui, P.; Nsabimana, A.; Halawa, M.; Zhang, W.; Xu, G. Development of luminol-N-hydroxyphthalimide chemiluminescence system for highly selective and sensitive detection of superoxide dismutase, uric acid and Co2+. Biosens. Bioelectron. 2018, 99, 519–524. [Google Scholar] [CrossRef]
- Kumar, A.; Shanmugam, R. Simple method for simultaneous detection of uric acid, xanthine and hypoxanthine in fish samples using a glassy carbon electrode modified with as commercially received multiwalled carbon nanotubes. Anal. Methods 2011, 3, 2088–2094. [Google Scholar] [CrossRef]
- Liao, L.; Liao, C.; Liu, C.; Yang, T.; Wang, G. Evaluation of an electrochemical biosensor for uric acid measurement in human whole blood samples. Clin. Chim. Acta 2014, 436, 72–77. [Google Scholar] [CrossRef]
- Lu, H.; Li, J.; Zhang, M.; Wu, D.; Zhang, Q. A highly selective and sensitive colorimetric uric acid biosensor based on Cu(II)-catalyzed oxidation of 3,3′,5,5′-tetramethylbenzidine. Sens. Actuators B Chem. 2017, 244, 77–83. [Google Scholar] [CrossRef]
- Li, S.; Zhao, X.; Gang, R.; Cao, B.; Wang, H. Doping nitrogen into Q-graphene by plasma treatment toward peroxidase mimics with enhanced catalysis. Anal. Chem. 2020, 92, 5152–5157. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, F.; Ren, J.; Qu, X. A series of MOF/Ce-based nanozymes with dual enzyme-like activity disrupting biofilms and hindering recolonization of bacteria. Biomaterials 2019, 208, 21–31. [Google Scholar] [CrossRef]
- Deng, H.; Lin, X.; Liu, Y.; Li, K.; Zhuang, Q.; Peng, H.; Liu, A.; Xia, X.; Chen, W. Chitosan-stabilized platinum nanoparticles as effective oxidase mimics for colorimetric detection of acid phosphatase. Nanoscale 2017, 9, 10292–10300. [Google Scholar] [CrossRef]
- He, W.; Liu, Y.; Yuan, J.; Yin, J.; Wu, X.; Hu, X.; Zhang, K.; Liu, J.; Chen, C.; Ji, Y. Au@Pt nanostructures as oxidase and peroxidase mimetics for use in immunoassays. Biomaterials 2011, 32, 1139–1147. [Google Scholar] [CrossRef] [PubMed]
- Pal, J.; Pal, T. Enzyme mimicking inorganic hybrid Ni@MnO2 for colorimetric detection of uric acid in serum samples. RSC Adv. 2016, 6, 83738–83747. [Google Scholar] [CrossRef]
- Xia, M.; Chu, S.; Wang, S.; Dong, X.; Chen, C.; Jiang, Y.; Li, Z.; Lu, Y. Platinum nanoparticles confined in metal-organic frameworks as excellent peroxidase-like nanozymes for detection of uric acid. Anal. Bioanal. Chem. 2022, 415, 649–658. [Google Scholar] [CrossRef]
- Wang, A.; Guan, C.; Shan, G.; Chen, Y.; Wang, C.; Liu, Y. A nanocomposite prepared from silver nanoparticles and carbon dots with peroxidase mimicking activity for colorimetric and SERS-based determination of uric acid. Microchim. Acta 2019, 186, 644. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Wang, W. Covalent organic frameworks (COFs): From design to applications. Chem. Soc. Rev. 2013, 42, 548–568. [Google Scholar] [CrossRef]
- Pachfule, P.; Acharjya, A.; Roeser, J.; Sivasankaran, R.; Ye, M.; Bruckner, A.; Schmidt, J.; Thomas, A. Donor-acceptor covalent organic frameworks for visible light induced free radical polymerization. Chem. Sci. 2019, 10, 8316–8322. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Tian, W.; Zhong, C.; Yang, Y.; Lin, Z. Construction of donor-acceptor heteroporous covalent organic frameworks as photoregulated oxidase-like nanozymes for sensing signal amplification. ACS Appl. Mater. Interfaces 2022, 14, 21750–21757. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wei, J.; Chen, X. Light-responsive sulfone-based covalent organic framework as metal-free nanoenzyme for visual colorimetric determination of uranium. Chemosensors 2022, 10, 248. [Google Scholar] [CrossRef]
- Xu, L.; Chen, Y.; Yu, M.; Hou, M.; Gong, G.; Tan, H.; Li, N.; Xu, J. NIR light-induced rapid self-healing hydrogel toward multifunctional applications in sensing. Nano Energy 2023, 107, 108119. [Google Scholar] [CrossRef]
- Luo, Y.; Yu, M.; Zhang, Y.; Wang, Y.; Long, L.; Tan, H.; Li, N.; Xu, L.; Xu, J. Highly sensitive strain sensor and self-powered triboelectric nanogenerator using a fully physical crosslinked double-network conductive hydrogel. Nano Energy 2023, 104, 107955. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, H.; Guo, Z.; Zhang, C.; Tan, H.; Gong, G.; Yu, M.; Xu, L. Fully physical crosslinked BSA-based conductive hydrogels with high strength and fast self-recovery for human motion and wireless electrocardiogram sensing. Nano Energy 2023, 230, 123195. [Google Scholar] [CrossRef]
- He, Y.; Qi, F.; Niu, X.; Zhang, W.; Zhang, X.; Pan, J. Uricase-free on-demand colorimetric biosensing of uric acid enabled by integrated CoP nanosheet arrays as a monolithic peroxidase mimic. Anal. Chim. Acta 2018, 1021, 113–120. [Google Scholar] [CrossRef]
- Ma, X.; Xu, W.; Liang, X.; Qiu, J. Low-temperature and gram-scale synthesis of chemically stable covalent organic frameworks in an aqueous medium. New J. Chem. 2022, 46, 4558–4561. [Google Scholar] [CrossRef]
- Shinde, D.; Aiyappa, H.; Bhadra, M.; Biswal, B.; Wadge, P.; Kandambeth, S.; Garai, B.; Kundu, T.; Kurungot, S.; Banerjee, R. A mechanochemically synthesized covalent organic framework as a proton-conducting solid electrolyte. J. Mater. Chem. A 2016, 4, 2682–2690. [Google Scholar] [CrossRef]
- Kaczmarek, A.; Liu, Y.; Kaczmarek, M.; Liu, H.; Artizzu, F.; Carlos, L.; Van Der Voort, P. Developing luminescent ratiometric thermometers based on a covalent organic framework (COF). Angew. Chem. Int. Ed. 2020, 59, 1932–1940. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Xu, Q.; Qian, J.; Li, X.; Sun, Y. Bimetallic covalent organic frameworks for constructing multifunctional Electrocatalyst. Chem. Eur. J. 2019, 25, 3105–3111. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Gu, Z.; Zhang, J. Chiral-induced ultrathin covalent organic frameworks nanosheets with tunable circularly polarized luminescence. J. Am. Chem. Soc. 2022, 144, 7245–7252. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Huang, X.; Li, X.; Hai, G.; Li, B.; Wang, G. Covalent-organic frameworks with keto-enol tautomerism for efficient photocatalytic oxidative coupling of amines to imines under visible light. Sci. China Chem. 2021, 64, 2169–2179. [Google Scholar] [CrossRef]
- Wang, X.; Tang, C.; Liu, J.; Zhang, H.; Wang, J. Ultra-small CuS nanoparticles as peroxidase mimetics for sensitive and colorimetric detection of uric acid in human serum. Chin. J. Anal. Chem. 2018, 46, E1825–E1831. [Google Scholar] [CrossRef]
- Wu, Y.; Ma, Y.; Xu, G.; Wei, F.; Ma, Y.; Song, Q.; Wang, X.; Tang, T.; Song, Y.; Shi, M. Metal-organic framework coated Fe3O4 magnetic nanoparticles with peroxidase-like activity for colorimetric sensing of cholesterol. Sens. Actuators B Chem. 2017, 249, 195–202. [Google Scholar] [CrossRef]
- Lu, Q.; Deng, J.; Hou, Y.; Wang, H.; Li, H.; Zhang, Y. One-step electrochemical synthesis of ultrathin graphitic carbon nitride nanosheets and their application to the detection of uric acid. ChemComm 2015, 51, 12251–12253. [Google Scholar] [CrossRef]
- Tripathi, A.; Harris, K.; Elias, A. Peroxidase-like behavior of Ni thin films deposited by glancing angle deposition for enzyme-free uric acid sensing. ACS Omega 2020, 5, 9123–9130. [Google Scholar] [CrossRef] [Green Version]
- Fang, A.; Wu, Q.; Lu, Q.; Chen, H.; Li, H.; Liu, M.; Zhang, Y.; Yao, S. Upconversion ratiometric fluorescence and colorimetric dual-readout assay for uric acid. Biosens. Bioelectron. 2016, 86, 664–670. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, G.; Cao, W.; Liu, Z.; Pan, C.; Hu, W.; Zhao, W.; Sun, J. A novel ratiometric fluorescent probe for the detection of uric acid in human blood based on H2O2-mediated fluorescence quenching of gold/silver nanoclusters. Talanta 2018, 191, 46–53. [Google Scholar] [CrossRef]
- Yao, D.; Vlessidis, A.; Evmiridis, N. Microdialysis sampling and monitoring of uric acid in vivo by a chemiluminescence reaction and an enzyme on immobilized chitosan support membrane. Anal. Chim. Acta 2003, 478, 23–30. [Google Scholar] [CrossRef]
- dos Santos, P.; Katic, V.; Toledo, K.; Bonacin, J. Photochemical one-pot synthesis of reduced graphene oxide/prussian blue nanocomposite for simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid. Sens. Actuators B Chem. 2018, 255, 2437–2447. [Google Scholar]
- International Telecommunication Union. Studio Encoding Parameters of Digital Television for Standard 4:3 and Wide-Screen 16:9 Aspect Ratios. Available online: https://www.itu.int/pub/R-REC/en (accessed on 31 March 2023).
- Yue, J.; Song, L.; Wang, Y.; Yang, P.; Ma, Y.; Tang, B. Fluorescence/colorimetry/smartphone triple-mode sensing of dopamine by a cof-based peroxidase-mimic platform. Anal. Chem. 2022, 94, 14419–14425. [Google Scholar] [CrossRef] [PubMed]
Method | Sensitivity | Selectivity | Rapidity | Precision | Complex Sample Preparation Process | Expensive Instruments | Low Cost |
---|---|---|---|---|---|---|---|
Colorimetry | √ | √ | √ | х | х | х | √ |
HPLC | √ | √ | √ | √ | √ | √ | х |
Fluorescence | √ | √ | √ | √ | х | √ | √ |
Chemiluminescence | √ | х | √ | √ | √ | х | √ |
Electrochemistry | √ | √ | √ | √ | √ | х | √ |
Catalyst | Km (mM) | Vm (10−6 M min−1) | Ref. |
---|---|---|---|
TpBpy COF | 0.0948 | 4.31 × 10−6 | This work |
PtNPs@ZIF | 0.15 | 7.26 × 10−6 | [18] |
CuSNPs | 0.216 | 1.45 × 10−5 | [34] |
Fe3O4@MIL-100 (Fe) | 0.112 | 6.85 × 10−6 | [35] |
HRP | 0.4340 | 6.00 × 10−6 | [23] |
Material | Linear Range (μM) | LOD (μM) | Ref. |
---|---|---|---|
TpBpy COF | 5–80 | 1.7 | This work |
Uricase/graphitic carbon nitride | 10–100 | 8.9 | [36] |
Ni glancing angle deposition film | 0–6 | 3.3 | [37] |
Lanthanide-doped upconversion nanoparticles | 10–1000 | 2.86 | [38] |
Au/Ag nanoclusters | 5–50 | 5.1 | [39] |
TCPO-H2O2-rubrene | 10–1000 | 5 | [40] |
Photochemically reduced graphene oxide | 40–415 | 8 | [41] |
Sample | Added (μM) | Colorimetric Determination (μM) | Recovery (%) | RSD (%, n = 3) | Smartphone Determination (μM) | Recovery (%) | RSD (%, n = 3) |
---|---|---|---|---|---|---|---|
Urine | 0 | 24.3 ± 1.2 | 4.8 | 23.3 ± 0.8 | 3.3 | ||
10.0 | 34.7 ± 2.0 | 103.6 ± 2.0 | 5.6 | 34.1 ± 0.6 | 107.1 ± 5.6 | 1.6 | |
30.0 | 55.0 ± 1.1 | 102.3 ± 3.5 | 1.9 | 55.7 ± 0.6 | 107.8 ± 2.0 | 1.1 | |
50.0 | 73.0 ± 0.7 | 97.2 ± 1.3 | 0.9 | 73.8 ± 1.6 | 100.8 ± 3.2 | 2.3 | |
Serum | 0 | 4.5 ± 0.2 | 3.6 | 4.6 ± 0.1 | 2.4 | ||
10.0 | 14.3 ± 0.4 | 98.8 ± 3.5 | 2.7 | 14.3 ± 0.9 | 97.1 ± 0.8 | 5.9 | |
30.0 | 33.9 ± 0.4 | 98.1 ± 1.4 | 1.3 | 33.6 ± 0.4 | 96.6 ± 1.4 | 1.2 | |
50.0 | 54.5 ± 0.4 | 100.1 ± 0.9 | 0.7 | 54.7 ± 0.8 | 100.2 ± 1.6 | 1.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, Q.; Xu, Y.; Chen, X. Design of Smartphone-Assisted Point-of-Care Platform for Colorimetric Sensing of Uric Acid via Visible Light-Induced Oxidase-Like Activity of Covalent Organic Framework. Sensors 2023, 23, 3881. https://doi.org/10.3390/s23083881
Kang Q, Xu Y, Chen X. Design of Smartphone-Assisted Point-of-Care Platform for Colorimetric Sensing of Uric Acid via Visible Light-Induced Oxidase-Like Activity of Covalent Organic Framework. Sensors. 2023; 23(8):3881. https://doi.org/10.3390/s23083881
Chicago/Turabian StyleKang, Qi, Yulong Xu, and Xuwei Chen. 2023. "Design of Smartphone-Assisted Point-of-Care Platform for Colorimetric Sensing of Uric Acid via Visible Light-Induced Oxidase-Like Activity of Covalent Organic Framework" Sensors 23, no. 8: 3881. https://doi.org/10.3390/s23083881
APA StyleKang, Q., Xu, Y., & Chen, X. (2023). Design of Smartphone-Assisted Point-of-Care Platform for Colorimetric Sensing of Uric Acid via Visible Light-Induced Oxidase-Like Activity of Covalent Organic Framework. Sensors, 23(8), 3881. https://doi.org/10.3390/s23083881