Recent Advances in Wayside Railway Wheel Flat Detection Techniques: A Review
Abstract
:1. Introduction
2. Structure of Wayside In-Service Flat Detection System
3. Stress-Based Wheel Flat Signal Acquisition Method
4. Sound- or Image-Based Wheel Flat Signal Acquisition Methods
4.1. Sound-Based Method
4.2. Image-Based Method
5. Summary
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cilt China. Available online: http://www.ciltchina.cn/index.php?case=archive&act=show&aid=304 (accessed on 13 January 2023).
- FRA Office of Safety Analysis. Available online: https://safetydata.fra.dot.gov/OfficeofSafety/publicsite/summary.aspx (accessed on 13 January 2023).
- Ye, Y.G.; Shi, D.C.; Poveda-Reyes, S.; Hecht, M. Quantification of the influence of rolling stock failures on track deterioration. J. Zhejiang Univ. Sci. A 2020, 21, 938. [Google Scholar] [CrossRef]
- Chong, S.Y.; Lee, J.R.; Shin, H.J. A review of health and operation monitoring technologies for trains. Smart Struct. Syst. 2010, 6, 1079–1105. [Google Scholar] [CrossRef]
- Alexandrou, G.; Kouroussis, G.; Verlinden, O. A comprehensive prediction model for vehicle/track/soil dynamic response due to wheel flats. Proc. Inst. Mech. Eng. F J. Rail Rapid Transit 2016, 230, 1088–1104. [Google Scholar] [CrossRef]
- Huang, L.W.; Li, Z.M.; Li, L.X.; An, Q. Methods to calculate accurate wheel/rail contact positions and static contact stress levels. Proc. Inst. Mech. Eng. F J. Rail Rapid Transit 2016, 230, 138–150. [Google Scholar] [CrossRef]
- Kolonits, F. Analysis of the temperature of the rail/wheel contact surface using a half-space model and a moving heat source. Proc. Inst. Mech. Eng. F J. Rail Rapid Transit 2016, 230, 502–509. [Google Scholar] [CrossRef]
- Manka, A.; Sitarz, M. Effects of a thermal load on the wheel/brake-block subsystem: The thermal conicity of railway wheels. Proc. Inst. Mech. Eng. F J. Rail Rapid Transit 2016, 230, 193–205. [Google Scholar] [CrossRef]
- Jing, L.; Han, L.L. Further study on the wheel–rail impact response induced by a single wheel flat: The coupling effect of strain rate and thermal stress. Veh. Syst. Dyn. 2017, 55, 1946–1972. [Google Scholar] [CrossRef]
- Ye, Y.G.; Shi, D.C.; Krause, P.; Tian, Q.Y.; Hecht, M. Wheel flat can cause or exacerbate wheel polygonization. Veh. Syst. Dyn. 2019, 58, 1575–1604. [Google Scholar] [CrossRef]
- Xu, J.M.; Ma, Q.T.; Zhao, S.Q.; Chen, J.Y.; Qian, Y.; Chen, R.; Wang, P. Effect of wheel flat on dynamic wheel-rail impact in railway turnouts. Veh. Syst. Dyn. 2020, 60, 1829–1848. [Google Scholar] [CrossRef]
- Wu, X.W.; Rakheja, S.; Ahmed, A.K.W.; Chi, M.R. Influence of a flexible wheelset on the dynamic responses of a high-speed railway car due to a wheel flat. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2018, 232, 1033–1048. [Google Scholar] [CrossRef]
- Han, L.L.; Jing, L.; Zhao, L.M. Finite element analysis of the wheel–rail impact behavior induced by a wheel flat for high-speed trains: The influence of strain rate. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2018, 232, 990–1004. [Google Scholar] [CrossRef]
- Bernal, E.; Spiryagin, M.; Cole, C. Wheel flat detectability for Y25 railway freight wagon using vehicle component acceleration signals. Veh. Syst. Dyn. 2019, 58, 1893–1913. [Google Scholar] [CrossRef]
- Jergeus, J. Martensite formation and residual stresses around railway wheel flats. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 1998, 212, 69–79. [Google Scholar] [CrossRef]
- Jergeus, J.; Odenmarck, C.; Lunden, R.; Sotkovszki, P.; Karlsson, B.; Gullers, P. Full-scale railway wheel flat experiments. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 1999, 213, 1–13. [Google Scholar] [CrossRef]
- Wu, B.; An, B.Y.; Wen, Z.F.; Wang, W.J.; Wu, T. Wheel–rail low adhesion issues and its effect on wheel–rail material damage at high speed under different interfacial contaminations. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci 2019, 233, 5477–5490. [Google Scholar] [CrossRef]
- Ling, L.; Cao, Y.B.; Xiao, X.B.; WEN, Z.F.; JIN, X.S. Effect of wheel flats on the high-speed wheel-rail contact behavior. China Railw. Soc. 2015, 37, 32–39. [Google Scholar]
- Kumar, V.; Rastogi, V.; Pathak, P.M. Dynamic analysis of vehicle-track interaction due to wheel flat using bond graph. Proc. Inst. Mech. Eng. Part K J. Multi-Body Dyn. 2018, 232, 398–412. [Google Scholar] [CrossRef]
- Brizuela, J.; Fritsch, C.; Ibanez, A. Railway wheel-flat detection and measurement by ultrasound. Transp. Res. Part C Emerg. Technol. 2011, 19, 975–984. [Google Scholar] [CrossRef]
- Matsumoto, A.; Sato, Y.; Ohno, H.; Tomeoka, M.; Matsumoto, K.; Kurihara, J.; Ogino, T.; Tanimoto, M.; Kishimoto, Y.; Sato, Y.; et al. A new measuring method of wheel–rail contact forces and related considerations. In Proceedings of the 7th International Conference on Contact Mechanics and Wear of Rail/Wheel Systems, Brisbane, Australia, 30 September 2006; pp. 1518–1525. [Google Scholar] [CrossRef]
- Matsumoto, A.; Sato, Y.; Ohno, H.; Shimizu, M.; Kurihara, J.; Saitou, T.; Michitsuji, Y.; Matsui, R.; Tanimoto, M.; Mizuno, M. Actual states of wheel/rail contact forces and friction on sharp curves—Continuous monitoring from in-service trains and numerical simulations. In Proceedings of the 9th Conference on Contact Mechanics and Wear of Rail/Wheel Systems, Chengdu, China, 15 August 2012; pp. 189–197. [Google Scholar] [CrossRef]
- Lee, M.L.; Chiu, W.K. Determination of railway vertical wheel impact magnitudes: Field trials. Struct. Health Monit. 2007, 6, 49–65. [Google Scholar] [CrossRef]
- Meixedo, A.; Goncalves, A.; Calcada, R.; Gabriel, J.; Fonscca, H.; Martins, R. Weighing in motion and wheel defect detection of rolling stock. In Proceedings of the 2015 3rd Experiment International Conference (exp.at’15), Ponta Delgada, Portugal, 2–4 June 2015; pp. 86–90. [Google Scholar] [CrossRef]
- Kanehara, H.; Fujioka, T. Measuring rail/wheel contact points of running railway vehicles. In Proceedings of the 5th International Conference on Contact Mechanics and Wear of Rail/Wheel Systems, Tokyo, Japan, 25–28 July 2000; pp. 275–283. [Google Scholar] [CrossRef]
- Mosleh, A.; Costa, P.; Calçada, R. Development of a Low-Cost Trackside System for Weighing in Motion and Wheel Defects Detection. Int. J. Railw. Res. 2020, 7, 1–9. [Google Scholar]
- Shaikh, M.Z.; Ahmed, Z.; Chowdhry, B.S.; Baro, E.N.; Hussain, T.; Uqaili, M.A.; Mehran, S.; Kumar, D.; Shah, A.A. State-of-the-art wayside condition monitoring systems for railway wheels: A comprehensive review. IEEE Access 2023, 11, 13257–13279. [Google Scholar] [CrossRef]
- Sanchis, R.; Cardona, S.; Martinez, J. Determination of the vertical vibration of a ballasted railway track to be used in the experimental detection of wheel flats in metropolitan railways. J. Vib. Acoust. 2019, 141, 021015. [Google Scholar] [CrossRef]
- Dwyer-Joyce, R.S.; Yao, C.; Lewis, R.; Brunskill, H. An ultrasonic sensor for monitoring wheel flange/rail gauge corner contact. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2013, 227, 188–195. [Google Scholar] [CrossRef] [Green Version]
- Frankenstein, B.; Hentschel, D.; Pridoehl, E.; Schubert, F.; Meyendorf, N.; Baaklini, G.Y.; Michel, B. Hollow shaft integrated health monitoring system for railroad wheels. In Proceedings of the Conference on Advanced Sensor Technologies for Nondestructive Evaluation and Structural Health Monitoring, San Diego, CA, USA, 8–10 March 2005; pp. 46–55. [Google Scholar] [CrossRef]
- Liang, B.; Iwnicki, S.D.; Zhao, Y.; Crosbee, D. Railway wheel-flat and rail surface defect modelling and analysis by time–frequency techniques. Veh. Syst. Dyn. 2013, 51, 1403–1421. [Google Scholar] [CrossRef]
- Liang, B.; Iwnicki, S.; Ball, A.; Young, A.E. Adaptive noise cancelling and time–frequency techniques for rail surface defect detection. Mech. Syst. Signal Process 2015, 54–55, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.X.; Zhao, Z.X.; Kim, E.; Liu, H.Y.; Xu, J.; Min, H.; Cui, Y. Wheel fault diagnosis model based on multichannel attention and supervised contrastive learning. Adv. Mech. Eng. 2021, 13, 16878140211067024. [Google Scholar] [CrossRef]
- Ye, Y.G.; Huang, C.H.; Zeng, J.; Zhou, Y.C.; Li, F.S. Shock detection of rotating machinery based on activated time-domain images and deep learning: An application to railway wheel flat detection. Mech. Syst. Signal Process. 2023, 186, 109856. [Google Scholar] [CrossRef]
- Bernal, E.; Spiryagin, M.; Cole, C. Wheel flat analogue fault detector verification study under dynamic testing conditions using a scaled bogie test rig. Int. J. Rail Transp. 2022, 10, 177–194. [Google Scholar] [CrossRef]
- Amini, A.; Entezami, M.; Huang, Z.; Rowshandel, H.; Papaelias, M. Wayside detection of faults in railway axle bearings using time spectral kurtosis analysis on high-frequency acoustic emission signals. Adv. Mech. Eng. 2016, 8, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Partington, W. Wheel impact load monitoring. Proc. Inst. Civ. Eng. Transp. 1993, 100, 243–245. [Google Scholar] [CrossRef]
- Stratman, B.; Liu, Y.; Mahadevan, S. Structural health monitoring of railroad wheels using wheel impact load detectors. J. Fail. Anal. Prev. 2007, 7, 218–225. [Google Scholar] [CrossRef]
- Palo, M.; Schunnesson, H.; Kumar, U.; Larsson-Kråik, P.-O.; Galar, D. Rolling stock condition monitoring using wheel/rail forces. Insight Non-Destr. Test. Cond. Monit. 2012, 54, 451–455. [Google Scholar] [CrossRef]
- Palo, M.; Galar, D.; Nordmark, T.; Asplund, M.; Larsson, D. Condition monitoring at the wheel/rail interface for decision-making support. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2014, 228, 705–715. [Google Scholar] [CrossRef]
- Lee, K.Y.; Lee, K.K.; Ho, S.L. Exploration of using FBG sensor for derailment detector. WSEAS Trans. Top. Syst. 2004, 3, 2433–2439. [Google Scholar]
- Wei, C.L.; Lai, C.C.; Liu, S.Y.; Chung, W.H.; Ho, T.K.; Tam, H.Y.; Ho, S.L.; McCusker, A.; Kam, J.; Lee, K.Y. A Fiber Bragg Grating sensor system for train axle counting. IEEE Sens. J. 2010, 10, 1905–1912. [Google Scholar] [CrossRef] [Green Version]
- Alemi, A.; Corman, F.; Lodewijks, G. Condition monitoring approaches for the detection of railway wheel defects. Proc. Inst. Mech. Eng. F J. Rail Rapid Transit 2017, 231, 961–981. [Google Scholar] [CrossRef] [Green Version]
- Papaelias, M.; Amini, A.; Huang, Z.; Vallely, P.; Dias, D.C.; Kerkyras, S. Online condition monitoring of rolling stock wheels and axle bearings. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2014, 230, 709–723. [Google Scholar] [CrossRef]
- Wei, C.L.; Xin, Q.; Chung, W.H.; Liu, S.Y.; Tam, H.Y.; Ho, S.L. Real-time train wheel condition monitoring by Fiber Bragg Grating sensors. Int. J. Distrib. Sens. Netw. 2012, 22, 409048. [Google Scholar] [CrossRef]
- Filograno, M.L.; Guillén, P.C.; Rodriguez-Barrios, A.; Martín-López, S.; Rodríguez-Plaza, M.; Andrés-Alguacil, Á.; González-Herráez, M. Real-time monitoring of railway traffic using Fiber Bragg Grating sensors. IEEE Sens. J. 2012, 12, 85–92. [Google Scholar] [CrossRef]
- Li, C.S.; Luo, S.H.; Cole, C.; Spiryagin, M. An overview: Modern techniques for railway vehicle on-board health monitoring systems. Veh. Syst. Dyn. 2017, 55, 1045–1070. [Google Scholar] [CrossRef]
- Gallikova, J.; Poprocky, P.; Volna, P. Implementation of FMEA method in maintenance of semi-trailer combination. Diagnostvka 2016, 17, 85–92. [Google Scholar]
- Kasiar, L.; Zvolensky, P.; Barta, D.; Bavlna, L.; Mikolajčík, M.; Droździel, P. Diagnostics of electric motor of locomotive series 757. Diagnostwka 2016, 17, 95–101. [Google Scholar]
- McGonigal, S. Defect Detectors Looking for Trouble in All the Right Places. Available online: https://trn.trains.com/railroads/abcs-of-railroading/2006/05/defect-detectors (accessed on 13 January 2023).
- Liu, X.Z.; Xu, C.; Ni, Y.Q. Wayside detection of wheel minor defects in high-speed trains by a Bayesian blind source separation method. Sensors 2019, 19, 3981. [Google Scholar] [CrossRef] [Green Version]
- Cui, K.; Qin, X.T. Numerical computation of wheel-rail impact noises with considering wheel flats based on the boundary element method. J. Vibroeng. 2016, 18, 3930–3940. [Google Scholar] [CrossRef] [Green Version]
- Mishra, S.; Sharan, P.; Saara, K. Real time implementation of fiber Bragg grating sensor in monitoring flat wheel detection for railways. Eng. Fail. Anal. 2022, 138, 106376. [Google Scholar] [CrossRef]
- Shi, D.C.; Ye, Y.G.; Gillwald, M.; Hecht, M. Designing a lightweight 1D convolutional neural network with Bayesian optimization for wheel flat detection using carbody accelerations. Int. J. Rail Transp. 2021, 9, 311–341. [Google Scholar] [CrossRef]
- Goncalves, V.; Mosleh, A.; Vale, C.; Montenegro, P.A. Wheel Out-of-Roundness Detection Using an Envelope Spectrum Analysis. Sensors 2023, 23, 2138. [Google Scholar] [CrossRef]
- Peng, X.Y.; Zeng, J.; Wang, J.B.; Wang, Q.S.; Li, D.D.; Liang, S.K. Wayside wheel-rail vertical contact force continuous detecting method and its application. Measurement 2022, 193, 110975. [Google Scholar] [CrossRef]
- Erdozain, I.; Alonso, A.; Blanco, B. Wheel-track interaction in the presence of flats: Dynamic modelling and experimental correlation. In Proceedings of the International Conference on Noise and Vibration Engineering (ISMA)/International Conference on Uncertainty in Structural Dynamics (USD), Leuven, Belgium, 7–9 September 2020; pp. 2575–2584. [Google Scholar]
- Mohammadi, M.; Mosleh, A.; Vale, C.; Ribeiro, D.; Montenegro, P.; Meixedo, A. An Unsupervised Learning Approach for Wayside Train Wheel Flat Detection. Sensors 2023, 23, 1910. [Google Scholar] [CrossRef]
- Yang, K.; Peng, J.P.; Gao, X.R.; Peng, C.Y.; Zhang, Y.; Wang, Z.Y.; Zhao, Q.K.; Dai, L.X. Research on the detecting method of CRH wheel flat at low speed. In Proceedings of the 2016 18th International Wheelset Congress (IWC), Chengdu, China, 7–10 November 2016; pp. 126–129. [Google Scholar] [CrossRef]
- Salehi, M.; Bagherzadeh, S.A.; Fakhari, M. Experimental detection of train wheel defects using wayside vibration signal processing. Struct. Health Monit. 2023, 14759217221149614. [Google Scholar] [CrossRef]
- Guedes, A.; Silva, R.; Ribeiro, D.; Vale, C.; Mosleh, A.; Montenegro, P.; Meixedo, A. Detection of wheel polygonization based on wayside monitoring and artificial intelligence. Sensors 2023, 23, 2188. [Google Scholar] [CrossRef]
- Bureika, G.; Levinzon, M.; Dailydka, S.; Steisunas, S.; Zygiene, R. Evaluation criteria of wheel/rail interaction measurement results by trackside control equipment. Int. J. Heavy Veh. Syst. 2019, 26, 747–764. [Google Scholar] [CrossRef]
- Kilinc, O.; Vágner, J. Vibration based diagnosis of wheel defects of metro train sets using one period analysis on the wayside. Vibroeng. Procedia 2017, 11, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Rivero, A.; Vanheeghe, P.; Grabe, H.; Duflos, E. Rolling stock monitoring with wayside train-monitoring systems using fiber optic cords. J. Infrastruct. Syst. 2021, 27, 04021040. [Google Scholar] [CrossRef]
- Rombach, K.; Michau, G.; Ratnasabapathy, K.; Ancu, L.; Burzle, W.; Koller, S.; Fink, O. Contrastive feature learning for fault detection and diagnostics in railway applications. arXiv 2022, arXiv:2208.13288. [Google Scholar] [CrossRef]
- Asplund, M.; Palo, M.; Famurewa, S.; Rantatalo, M. A study of railway wheel profile parameters used as indicators of an increased risk of wheel defects. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2016, 230, 323–334. [Google Scholar] [CrossRef]
- Baeza, L.; Roda, A.; Carballeira, J.; Giner, E. Railway train-track dynamics for wheel flats with improved contact models. Nonlinear Dyn. 2006, 45, 385–397. [Google Scholar] [CrossRef]
- Nielsen, J.C.O.; Johansson, A. Out-of-round railway wheels-a literature survey. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2000, 214, 79–91. [Google Scholar] [CrossRef]
- International Union of Railways. Atlas of Wheel and Rail Defects; International Union of Railways: Paris, France, 2004; pp. 36–37. [Google Scholar]
- Nowakowski, T.; Komorski, P.; Szymanski, G.M.; Tomaszewski, F. Wheel-flat detection on trams using envelope analysis with Hilbert transform. Lat. Am. J. Solids Struct. 2019, 16, e148. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.Z.; Ni, Y.Q. Wheel tread defect detection for high-speed trains using FBG-based online monitoring techniques. Smart Struct. Syst. 2018, 21, 687–694. [Google Scholar] [CrossRef]
- Krummenacher, G.; Ong, C.S.; Koller, S.; Kobayashi, S.; Buhmann, J.M. Wheel defect detection with machine learning. IEEE Trans. Intell. Transp. 2018, 19, 1176–1187. [Google Scholar] [CrossRef]
- Gao, R.; He, Q.X.; Feng, Q.B. Railway wheel flat detection system based on a parallelogram mechanism. Sensors 2019, 19, 3614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, W.J.; Zhang, S.L.; Bertola, N.J.; Smith, I.F.C.; Koh, C.G. Time series data interpretation for ‘wheel-flat’ identification including uncertainties. Struct. Health Monit. 2019, 22, 3–18. [Google Scholar] [CrossRef]
- Alemi, A.; Corman, F.; Pang, Y.S.; Lodewijks, G. Reconstruction of an informative railway wheel defect signal from wheel–rail contact signals measured by multiple wayside sensors. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2019, 233, 49–62. [Google Scholar] [CrossRef] [Green Version]
- Alemi, A.; Corman, F.; Pang, Y.S.; Lodewijks, G. Evaluation of the influential parameters contributing to the reconstruction of railway wheel defect signals. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2020, 234, 1005–1016. [Google Scholar] [CrossRef]
- Zhou, C.Y.; Gao, L.; Xiao, H.; Hou, B.W. Railway wheel flat recognition and precise positioning method based on multisensor arrays. Appl. Sci. 2020, 10, 1297. [Google Scholar] [CrossRef] [Green Version]
- Gao, R.; He, Q.X.; Feng, Q.B.; Cui, J.Y. In-service detection and quantification of railway wheel flat by the reflective optical position sensor. Sensors 2020, 20, 4969. [Google Scholar] [CrossRef] [PubMed]
- Barman, J.; Hazarika, D. Linear and quadratic time-frequency analysis of vibration for fault detection and identification of NFR trains. IEEE Trans. Instrum. Meas. 2020, 69, 8902–8909. [Google Scholar] [CrossRef]
- Mosleh, A.; Montenegro, P.; Costa, P.A.; Calcada, R. An approach for wheel flat detection of railway train wheels using envelope spectrum analysis. Struct. Infrastruct. Eng. 2021, 17, 1710–1729. [Google Scholar] [CrossRef]
- Mosleh, A.; Montenegro, P.A.; Costa, P.A.; Calcada, R. Railway vehicle wheel flat detection with multiple records using spectral kurtosis analysis. Appl. Sci. 2021, 11, 4002. [Google Scholar] [CrossRef]
- Ni, Y.Q.; Zhang, Q.H. A Bayesian machine learning approach for online detection of railway wheel defects using track-side monitoring. Struct. Health. Monit. 2021, 20, 1536–1550. [Google Scholar] [CrossRef]
- Mu, J.; Zeng, J.; Wang, Q.S.; Sang, H.T. Determination of mapping relation between wheel flat and wheel/rail contact force for railway freight wagon using dynamic simulation. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2022, 236, 545–556. [Google Scholar] [CrossRef]
- Mosleh, A.; Meixedo, A.; Ribeiro, D.; Montenegro, P.; Calcada, R. Early wheel flat detection: An automatic data-driven wavelet-based approach for railways. Veh. Syst. Dyn. 2022, 1–30. [Google Scholar] [CrossRef]
- Sun, Z.L.; Lu, J.G. An ultrasonic signal denoising method for EMU wheel trackside fault diagnosis system based on improved threshold function. IEEE Access 2021, 9, 96244–96256. [Google Scholar] [CrossRef]
- Kukenas, V.; Jasevicius, R.; Petrenko, V.; Kilikevicius, A.; Vainorius, D. Analysis of Sound Power Level Changes Caused by Wheel with Flat Spot Using Numerical and Physical Experiment. Appl. Sci. 2021, 11, 2141. [Google Scholar] [CrossRef]
- Lv, S.; Zhou, F.Q.; Wei, Z.Z. Train wheel tread defects detection based on image registration. In Proceedings of the 2017 IEEE International Conference on Imaging Systems and Techniques (IST), Beijing, China, 18–20 October 2017. [Google Scholar] [CrossRef]
- Onur, K.; Jakub, V. Condition monitoring of metro wheelsets using wayside vibration and acoustic sensors. SSRN 2022, 1556–5068, 20220296971. [Google Scholar]
- Komorski, P.; Nowakowski, T.; Szymanski, G.M.; Tomaszewski, F. Application of Time-Frequency Analysis of Acoustic Signal to Detecting Flat Places on the Rolling Surface of a Tram Wheel. In Proceedings of the 14th International Conference on Dynamical Systems—Theory and Applications (DSTA)—Recent Developments in Mathematical Modelling of Dynamical Systems, Lodz, Poland, 11–14 December 2017; pp. 205–215. [Google Scholar] [CrossRef]
- Komorski, P.; Szymanski, G.M.; Nowakowski, T.; Orczyk, M. Advanced acoustic signal analysis used for wheel-flat detection. Lat. Am. J. Solids Struct. 2021, 18, e338. [Google Scholar] [CrossRef]
- Aktas, M.; Gunel, E.H.; Yilmazer, P.; Akgun, T. Detection of wheel flatten defect on the moving train with acoustic emission sensor. In Proceedings of the 29th IEEE Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Bologna, Italy, 9–12 September 2018; pp. 386–390. [Google Scholar]
- Liang, R.Y.; Ding, Y.Q.; Zhang, X.W.; Chen, J.S.; Guo, M.Z.; Zhao, L.; Wang, L.P. Copper strip surface defects inspection based on SVM-RBF. In Proceedings of the 4th International Conference on Natural Computation (ICNC 2008), Jinan, China, 18–20 October 2008; pp. 41–45. [Google Scholar] [CrossRef]
- Zhang, X.G.; Xu, J.J.; Ge, G.Y. Defects recognition on X-ray images for weld inspection using SVM. In Proceedings of the International Conference on Machine Learning and Cybernetics, Shanghai, China, 26–29 August 2004; pp. 3721–3725. [Google Scholar]
- Deilamsalehy, H.; Havens, T.C.; Lautala, P. Detection of sliding wheels and hot bearings using wayside thermal cameras. In Proceedings of the ASME 2016 Joint Rail Conference, Columbia, SC, USA, 12–15 April 2016; pp. 1–7. [Google Scholar]
- Deilamsalehy, H.; Havens, T.C.; Lautala, P.; Medici, E.; Davis, J. An automatic method for detecting sliding railway wheels and hot bearings using thermal imagery. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2017, 231, 690–700. [Google Scholar] [CrossRef]
- Guo, G.Y.; Peng, J.P.; Yang, K.; Xie, L.M.; Song, W.W. Wheel tread defects inspection based on SVM. In Proceedings of the 2017 Far East NDT New Technology & Application Forum (FENDT), Xi’an, China, 22–24 June 2017; pp. 251–253. [Google Scholar]
- Li, T.L.; Guo, J.X.; Tan, Y.G.; Zhou, Z.D. Recent Advances and Tendency in Fiber Bragg Grating-based Vibration Sensor: A Review. IEEE Sens. J. 2020, 20, 12074–12087. [Google Scholar] [CrossRef]
- Ran, Y.F.; He, Q.X.; Feng, Q.B.; Cui, J.Y. High-Accuracy On-Site Measurement of Wheel Tread Geometric Parameters by Line-Structured Light Vision Sensor. IEEE Access 2021, 9, 52590–52600. [Google Scholar] [CrossRef]
- Zheng, F.J.; Zhang, B.; Gao, R.; Feng, Q.B. A high-precision method for dynamically measuring train wheel diameter using three laser displacement transducers. Sensors 2019, 19, 4148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Method | Advantages | Disadvantages |
---|---|---|
Stress-based method | Related technologies are more mature | It can only detect the condition of the wheel–rail contact area |
Simple installation and maintenance | ||
Low cost | Quantitative measurement is difficult | |
Sound-based method | Acoustic emission method can realize repeated period measurement | Quantitative measurement is difficult |
Low cost Easy to use | Relative technology application is less | |
Image-based method | Quantitatively measurable, Non-contact measurement, Long life | High cost |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, W.; He, Q.; Feng, Q.; Li, J.; Zheng, F.; Zhang, B. Recent Advances in Wayside Railway Wheel Flat Detection Techniques: A Review. Sensors 2023, 23, 3916. https://doi.org/10.3390/s23083916
Fu W, He Q, Feng Q, Li J, Zheng F, Zhang B. Recent Advances in Wayside Railway Wheel Flat Detection Techniques: A Review. Sensors. 2023; 23(8):3916. https://doi.org/10.3390/s23083916
Chicago/Turabian StyleFu, Wenjie, Qixin He, Qibo Feng, Jiakun Li, Fajia Zheng, and Bin Zhang. 2023. "Recent Advances in Wayside Railway Wheel Flat Detection Techniques: A Review" Sensors 23, no. 8: 3916. https://doi.org/10.3390/s23083916
APA StyleFu, W., He, Q., Feng, Q., Li, J., Zheng, F., & Zhang, B. (2023). Recent Advances in Wayside Railway Wheel Flat Detection Techniques: A Review. Sensors, 23(8), 3916. https://doi.org/10.3390/s23083916