Use, Validity and Reliability of Inertial Movement Units in Volleyball: Systematic Review of the Scientific Literature
Abstract
:1. Introduction
2. Method
2.1. Data Extraction and Analyzed Variables
2.2. Quality of the Studies
3. Results
3.1. Identification and Selection of Studies
3.2. Methodological Quality
4. Discussion
4.1. Use of IMUs
4.2. Substantive Characteristics
4.3. Validity of IMUs in Volleyball
4.4. Reliability of IMUs in Volleyball
5. Conclusions
6. Limitations of the Paper and Future Approaches
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arlotti, J.S.; Carroll, W.O.; Afifi, Y.; Talegaonkar, P.; Albuquerque, L.; Burch, V.B.F.; Ball, J.E.; Chander, H.; Petway, A. Benefits of IMU-based Wearables in Sports Medicine: Narrative Review. Int. J. Kinesiol. Sport. Sci. 2022, 10, 36–43. [Google Scholar] [CrossRef]
- Camomilla, V.; Bergamini, E.; Fantozzi, S.; Vannozzi, G. Trends Supporting the In-Field Use of Wearable Inertial Sensors for Sport Performance Evaluation: A Systematic Review. Sensors 2018, 18, 873. [Google Scholar] [CrossRef] [Green Version]
- Boyd, L.J.; Ball, K.; Aughey, R.J. Quantifying external load in Australian football matches and training using accelerometers. Int. J. Sport. Physiol. Perform. 2013, 8, 44–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, K.; Smith, S.L.; Sands, W.A. Validation of an accelerometer for measuring sport performance. J. Strength Cond. Res. 2009, 23, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Lomond, K.V.; Turcotte, R.A.; Pearsall, D.J. Three-dimensional analysis of blade contact in an ice hockey slap shot, in relation to player skill. Sport. Eng. 2007, 10, 87–100. [Google Scholar] [CrossRef]
- Gabbett, T.J. Relationship Between Accelerometer Load, Collisions, and Repeated High-Intensity Effort Activity in Rugby League Players. J. Strength Cond. Res. 2015, 29, 3424–3431. [Google Scholar] [CrossRef]
- Wellman, A.D.; Coad, S.C.; Goulet, G.C.; McLellan, C.P. Quantification of Competitive Game Demands of NCAA Division I College Football Players Using Global Positioning Systems. J. Strength Cond. Res. 2016, 30, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Giandolini, M.; Poupard, T.; Gimenez, P.; Horvais, N.; Millet, G.Y.; Morin, J.B.; Samozino, P. A simple field method to identify foot strike pattern during running. J. Biomech. 2014, 47, 1588–1593. [Google Scholar] [CrossRef]
- Polglaze, T.; Dawson, B.; Hiscock, D.J.; Peeling, P. A comparative analysis of accelerometer and time-motion data in elite men’s hockey training and competition. Int. J. Sport. Physiol. Perform. 2015, 10, 446–451. [Google Scholar] [CrossRef]
- Charlton, P.C.; Kenneally-Dabrowski, C.; Sheppard, J.; Spratford, W. A simple method for quantifying jump loads in volleyball athletes. J. Sci. Med. Sport. 2017, 20, 241–245. [Google Scholar] [CrossRef]
- Malone, J.J.; Lovell, R.; Varley, M.C.; Coutts, A.J. Unpacking the Black Box: Applications and Considerations for Using GPS Devices in Sport. Int. J. Sport. Physiol. Perform. 2017, 12 (Suppl. S2), S218–S226. [Google Scholar] [CrossRef] [Green Version]
- Bonaiuto, V.; Boatto, P.; Lanotte, N.; Romagnoli, C.; Annino, G. A Multiprotocol Wireless Sensor Network for High Performance Sport Applications. Appl. Syst. Innov. 2018, 1, 52. [Google Scholar] [CrossRef] [Green Version]
- Van der Kruk, E.; Reijne, M.M. Accuracy of human motion capture systems for sport applications; state-of-the-art review. Eur. J. Sport. Sci. 2018, 18, 806–819. [Google Scholar] [CrossRef] [PubMed]
- Connor, S.O.; McCaffrey, N.; Whyte, E.; Moran, K. The novel use of a SenseCam and accelerometer to validate training load and training information in a self-recall training diary. J. Sport. Sci. 2016, 34, 303–310. [Google Scholar] [CrossRef]
- Gomes, B.B.; Ramos, N.V.; Conceição, F.A.V.; Sanders, R.H.; Vaz, M.A.; Vilas-Boas, J.P. Paddling Force Profiles at Different Stroke Rates in Elite Sprint Kayaking. J. Appl. Biomech. 2015, 31, 258–263. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.B.; Mellifont, R.B.; Burkett, B.J. The use of a single inertial sensor to identify stride, step, and stance durations of running gait. J. Sci. Med. Sport. 2010, 13, 270–273. [Google Scholar] [CrossRef] [PubMed]
- Garrett, J.; Graham, S.R.; Eston, R.G.; Burgess, D.J.; Garrett, L.J.; Jakeman, J.; Norton, K. A Novel Method of Assessment for Monitoring Neuromuscular Fatigue in Australian Rules Football Players. Int. J. Sport. Physiol. Perform. 2019, 14, 598–605. [Google Scholar] [CrossRef]
- Budig, M.; Höltke, V.; Keiner, M. Accuracy of optical heart rate measurement and distance measurement of a fitness tracker and their consequential use in sports. Ger. J. Exerc. Sport. Res. 2019, 49, 402–409. [Google Scholar] [CrossRef]
- Rago, V.; Brito, J.; Figueiredo, P.; Costa, J.; Barreira, D.; Krustrup, P.; Rebelo, A. Methods to collect and interpret external training load using microtechnology incorporating GPS in professional football: A systematic review. Res. Sport. Med. 2020, 28, 437–458. [Google Scholar] [CrossRef]
- Praz, C.; Fasel, B.; Vuistiner, P.; Aminian, K.; Kayser, B. Optimal slopes and speeds in uphill ski mountaineering: A laboratory study. Eur. J. Appl. Physiol. 2016, 116, 1011–1019. [Google Scholar] [CrossRef]
- Kyprianou, E.; Di Salvo, V.; Lolli, L.; Al Haddad, H.; Villanueva, A.M.; Gregson, W.; Matthew, W. To Measure Peak Velocity in Soccer, Let the Players Sprint. J. Strength Cond. Res. 2022, 36, 273–276. [Google Scholar] [CrossRef] [PubMed]
- Roell, M.; Roecker, K.; Gehring, D.; Mahler, H.; Gollhofer, A. Player Monitoring in Indoor Team Sports: Concurrent Validity of Inertial Measurement Units to Quantify Average and Peak Acceleration Values. Front. Physiol. 2018, 9, 141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-de-Alcaraz, A.; Ramírez-Campillo, R.; Rivera-Rodríguez, M.; Romero-Moraleda, B. Analysis of jump load during a volleyball season in terms of player role. J. Sci. Med. Sport. 2020, 23, 973–978. [Google Scholar] [CrossRef] [PubMed]
- Skazalski, C.; Whiteley, R.; Bahr, R. High jump demands in professional volleyball-large variability exists between players and player positions. Scand. J. Med. Sci. Sport. 2018, 28, 2293–2298. [Google Scholar] [CrossRef] [PubMed]
- Lima, R.F.; Palao, J.M.; Clemente, F.M. Jump Performance During Official Matches in Elite Volleyball Players: A Pilot Study. J. Hum. Kinet. 2019, 67, 259–269. [Google Scholar] [CrossRef] [Green Version]
- Rantalainen, T.; Finni, T.; Walker, S. Jump height from inertial recordings: A tutorial for a sports scientist. Scand. J. Med. Sci. Sport. 2020, 30, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Brooks, E.R.; Benson, A.C.; Bruce, L.M. Novel technologies found to be valid and reliable for the measurement of vertical jump height with jump-and-reach testing. J. Strength Cond. Res. 2018, 32, 2838–2845. [Google Scholar] [CrossRef]
- Oliveira, L.D.S.; Moura, T.B.M.A.; Rodacki, A.L.F.; Tilp, M.; Okazaki, V.H.A. A systematic review of volleyball spike kinematics: Implications for practice and research. Int. J. Sport. Sci. Coach. 2020, 15, 239–255. [Google Scholar] [CrossRef]
- Fuchs, P.X.; Menzel, H.J.K.; Guidotti, F.; Bell, J.; von Duvillard, S.P.; Wagner, H. Spike jump biomechanics in male versus female elite volleyball players. J. Sport. Sci. 2019, 37, 2411–2419. [Google Scholar] [CrossRef] [Green Version]
- Clemente, F.; Badicu, G.; Hasan, U.C.; Akyildiz, Z.; Pino-Ortega, J.; Silva, R.; Rico-González, M. Validity and reliability of inertial measurement units for jump height estimations: A systematic review. Hum. Mov. 2022, 23, 1–20. [Google Scholar] [CrossRef]
- Ato, M.; López, J.J.; Benavente, A. Un sistema de clasificación de los diseños de investigación en psicología. Anales de Psicología 2013, 29, 1038–1059. [Google Scholar] [CrossRef] [Green Version]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Rico-González, M.; Pino-Ortega, J.; Clemente, F.; Arcos, A.L. Guidelines for performing systematic reviews in sports science. Biol. Sport. 2021, 39, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015, 4, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Reilly, M.; Caulfield, B.; Ward, T.; Johnston, W.; Doherty, C. Wearable Inertial Sensor Systems for Lower Limb Exercise Detection and Evaluation: A Systematic Review. Sport. Med. 2018, 48, 1221–1246. [Google Scholar] [CrossRef] [Green Version]
- Borges, T.O.; Moreira, A.; Bacchi, R.; Finotti, R.L.; Ramos, M.; Lopes, C.R.; Aoki, M.S. Validation of the VERT wearable jump monitor device in elite youth volleyball players. Biol. Sport 2017, 34, 239–242. [Google Scholar] [CrossRef] [Green Version]
- Damji, F.; MacDonald, K.; Hunt, M.A.; Taunton, J.; Scott, A. Using the VERT wearable device to monitor jumping loads in elite volleyball athletes. PLoS ONE 2021, 16, e0245299. [Google Scholar] [CrossRef]
- De Leeuw, A.W.; van der Zwaard, S.; van Baar, R.; Knobbe, A. Personalized machine learning approach to injury monitoring in elite volleyball players. Eur. J. Sport. Sci. 2022, 22, 511–520. [Google Scholar] [CrossRef]
- Gageler, H.W.; Wearing, S.; James, A.D. Automatic jump detection method for athlete monitoring and performance in volleyball. Int. J. Perform. Anal. Sport 2015, 15, 284–296. [Google Scholar] [CrossRef]
- Gielen, J.; Mehuys, E.; Berckmans, D.; Meeusen, R.; Aerts, J.M. Monitoring Internal and External Load During Volleyball Competition. Int. J. Sport. Physiol. Perform. 2022, 17, 640–645. [Google Scholar] [CrossRef]
- Jarning, J.M.; Mok, K.M.; Hansen, B.H.; Bahr, R. Application of a tri-axial accelerometer to estimate jump frequency in volleyball. Sport. Biomech. 2015, 14, 95–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- João, P.V.; Medeiros, A.; Ortigão, H.; Lee, M.; Mota, M.P. Global position analysis during official elite female beach volleyball competition: A pilot study. Appl. Sci. 2021, 11, 9382. [Google Scholar] [CrossRef]
- Kupperman, N.; Curtis, M.A.; Saliba, S.A.; Hertel, J. Quantification of Workload and Wellness Measures in a Women’s Collegiate Volleyball Season. Front. Sport. Act. Living 2021, 3, 702419. [Google Scholar] [CrossRef] [PubMed]
- Lima, R.F.; Andrés, J.M.P.; Castro, H.; Clemente, F. Measuring the training external jump load of elite male volleyball players: An exploratory study in Portuguese League. Retos Nuevas Tend. En Educ. Física Deporte Y Recreación 2019, 36, 454–458. [Google Scholar] [CrossRef]
- Lima, R.F.; Silva, A.; Afonso, J.; Castro, H.; Clemente, F.M. External and internal Load and their Effects on Professional Volleyball Training. Int. J. Sport. Med. 2020, 41, 468–474. [Google Scholar] [CrossRef] [PubMed]
- Marković, S.; Dopsaj, M.; Tomažič, S.; Kos, A.; Nedeljković, A.; Umek, A. Can IMU Provide an Accurate Vertical Jump Height Estimate? Appl. Sci. 2021, 11, 12025. [Google Scholar] [CrossRef]
- MacDonald, K.; Bahr, R.; Baltich, J.; Whittaker, J.L.; Meeuwisse, W.H. Validation of an inertial measurement unit for the measurement of jump count and height. Phys. Ther. Sport. 2017, 25, 15–19. [Google Scholar] [CrossRef]
- Montoye, A.H.; Mitrzyk, J. Validity of the blast athletic performance monitor for assessing vertical jump height in female volleyball players. Meas. Phys. Educ. Exerc. Sci. 2019, 23, 99–109. [Google Scholar] [CrossRef]
- Piatti, M.; Ambrosi, E.; Dedda, G.; Omeljaniuk, R.J.; Turati, M.; Bigoni, M.; Gaddi, D. Jump performance during a season in elite volleyball players. J. Sport. Med. Phys. Fit. 2022, 62, 602–608. [Google Scholar] [CrossRef]
- Schleitzer, S.; Wirtz, S.; Julian, R.; Eils, E. Development and evaluation of an inertial measurement unit (IMU) system for jump detection and jump height estimation in beach volleyball. Ger. J. Exerc. Sport Res. 2022, 52, 228–236. [Google Scholar] [CrossRef]
- Schmidt, M.; Meyer, E.; Jaitner, T. Quantifying jump-specific loads in beach volleyball by an inertial measurement device. Int. J. Sport. Sci. Coach. 2021, 16, 391–397. [Google Scholar] [CrossRef]
- Setuain, I.; Berriel, G.P.; Lanz, D.; Schons, P.; Oliveira, H.B.; Grazioli, R.; Peyré-Tartaruga, L.A.; Garcia-Tabar, I.; Cadore, E.L. Jump performance and mechanics after a regular training bout in elite volleyball players. J. Sport. Med. Phys. Fit. 2022, 62, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Skazalski, C.; Whiteley, R.; Hansen, C.; Bahr, R. A valid and reliable method to measure jump-specific training and competition load in elite volleyball players. Scand. J. Med. Sci. Sport. 2018, 28, 1578–1585. [Google Scholar] [CrossRef] [PubMed]
- Vlantes, T.G.; Readdy, T. Using Microsensor Technology to Quantify Match Demands in Collegiate Women’s Volleyball. J. Strength Cond. Res. 2017, 31, 3266–3278. [Google Scholar] [CrossRef] [PubMed]
- Slim, K.; Nini, E.; Forestier, D.; Kwiatkowski, F.; Panis, Y.; Chipponi, J. Methodological index for non-randomized studies (minors): Development and validation of a new instrument. ANZ J. Surg. 2003, 73, 712–716. [Google Scholar] [CrossRef]
- Kim, S.Y.; Park, J.E.; Lee, Y.J.; Seo, H.J.; Sheen, S.S.; Hahn, S.; Jang, B.H.; Son, H.J. Testing a tool for assessing the risk of bias for nonrandomized studies showed moderate reliability and promising validity. J. Clin. Epidemiol. 2013, 66, 408–414. [Google Scholar] [CrossRef]
- Jiménez-Olmedo, J.M.; Penichet-Tomás, A. Injuries and pathologies in beach volleyball players: A systematic review. J. Hum. Sport Exerc. 2015, 10, 936–948. [Google Scholar] [CrossRef] [Green Version]
- Pereira, L.A.; Freitas, T.T.; Marín-Cascales, E.; Bishop, C.; McGuigan, M.R.; Loturco, I. Effects of training on sand or hard surfaces on sprint and jump performance of team-sport players: A systematic review with meta-analysis. Strength Cond. J. 2021, 43, 56–66. [Google Scholar] [CrossRef]
- Huang, J.; Gates, A.J.; Sinatra, R.; Barabási, A.L. Historical comparison of gender inequality in scientific careers across countries and disciplines. Proc. Natl. Acad. Sci. USA 2020, 117, 4609–4616. [Google Scholar] [CrossRef] [Green Version]
- Pawlik, D.; Mroczek, D. Fatigue and Training Load Factors in Volleyball. Int. J. Environ. Res. Public Health 2022, 19, 11149. [Google Scholar] [CrossRef]
- De Leeuw, A.W.; van Baar, R.; Knobbe, A.; van der Zwaard, S. Modeling Match Performance in Elite Volleyball Players: Importance of Jump Load and Strength Training Characteristics. Sensors 2022, 22, 7996. [Google Scholar] [CrossRef] [PubMed]
- Heishman, A.D.; Curtis, M.A.; Saliba, E.; Hornett, R.J.; Malin, S.K.; Weltman, A.L. Noninvasive Assessment of Internal and External Player Load: Implications for Optimizing Athletic Performance. J. Strength Cond. Res. 2018, 32, 1280–1287. [Google Scholar] [CrossRef] [PubMed]
- Hughes, T.; Jones, R.K.; Starbuck, C.; Sergeant, J.C.; Callaghan, M.J. The value of tibial mounted inertial measurement units to quantify running kinetics in elite football (soccer) players. A reliability and agreement study using a research orientated and a clinically orientated system. J. Electromyogr. Kinesiol. 2019, 44, 156–164. [Google Scholar] [CrossRef]
- Daly, E.; Esser, P.; Griffin, A.; Costello, D.; Servis, J.; Gallagher, D.; Ryan, L. Development of a Novel Coaching Platform to Improve Tackle Technique in Youth Rugby Players: A Proof of Concept. Sensors 2022, 22, 3315. [Google Scholar] [CrossRef] [PubMed]
- Bahr, M.A.; Bahr, R. Jump frequency may contribute to risk of jumper’s knee: A study of interindividual and sex differences in a total of 11,943 jumps video recorded during training and matches in young elite volleyball players. Br. J. Sport. Med. 2014, 48, 1322–1326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, J.R.; Martin, P.; Etnier, J.; Silverman, S.J. Research Methods in Physical Activity; Human Kinetics: Champaign, IL, USA, 2022; p. 505. [Google Scholar]
- Anguera, M.T.; Hernández-Mendo, A. Advances in mixed methods observational studies in sports sciences. Cuadernos de Psicología del Deporte 2016, 16, 17–30. [Google Scholar]
- Buckthorpe, M.; Morris, J.; Folland, J.P. Validity of vertical jump measurement devices. J. Sport. Sci. 2012, 30, 63–69. [Google Scholar] [CrossRef]
- Petrigna, L.; Karsten, B.; Marcolin, G.; Paoli, A.; D’Antona, G.; Palma, A.; Bianco, A. A Review of Countermovement and Squat Jump Testing Methods in the Context of Public Health Examination in Adolescence: Reliability and Feasibility of Current Testing Procedures. Front. Physiol. 2019, 10, 1384. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, W.G. Measures of reliability in sports medicine and science. Sport. Med. 2000, 30, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Soler-López, A.; García-de-Alcaraz, A.; Moreno-Villanueva, A.; Pino-Ortega, J. Concurrent Validity and Reliability of Devices to Measure Jump Height in Men’s Handball Players. Sensors 2022, 22, 9070. [Google Scholar] [CrossRef]
- Özdemir, A.T.; Barshan, B. Detecting falls with wearable sensors using machine learning techniques. Sensors 2014, 14, 10691–10708. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Wang, L.; Younis, M.I. Multi-Threshold Inertial Switch with Acceleration Direction Detection Capability. IEEE Trans. Ind. Electron. 2022, 70, 4226–4235. [Google Scholar] [CrossRef]
Study | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Quality |
---|---|---|---|---|---|---|---|---|---|---|---|
Borges, 2017 [36] | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | Low |
Charlton et al., 2017 [10] | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | Low |
Damji, 2021 [37] | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | High |
de Leeuw, 2022 [38] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | High |
Gageler, 2015 [39] | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | High |
Gielen, 2022 [40] | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | Low |
Jarning, 2015 [41] | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | Low |
Joao, 2021 [42] | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | High |
Kupperman, 2021 [43] | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | High |
Lima, 2019a [25] | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | High |
Lima, 2019b [44] | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | High |
Lima, 2020 [45] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | High |
Markovic, 2021 [46] | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | Low |
McDonald, 2017 [47] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | High |
Montoye, 2018 [48] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | High |
Piatti et al., 2022 [49] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | High |
Schleitzer, 2022 [50] | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | High |
Schmidt, 2021 [51] | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | Low |
Setuain, 2021 [52] | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | High |
Skazalski, 2018 [24] | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | High |
Skazalski, 2018b [53] | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | Low |
Vlantes, 2017 [54] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | High |
Study | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Borges, 2017 [36] | 2 | 2 | 1 | 2 | 2 | 2 | 2 | - | - | - | - | 1 | 14/16 |
Charlton et al., 2017 [10] | 2 | 2 | 1 | 2 | 2 | 2 | 2 | - | - | - | - | 1 | 14/16 |
Damji, 2021 [37] | 2 | 2 | 2 | 2 | 1 | 2 | 2 | - | - | - | - | 2 | 15/16 |
de Leeuw, 2022 [38] | 2 | 2 | 2 | 2 | 1 | 2 | 2 | - | - | - | - | 2 | 15/16 |
Gageler, 2015 [39] | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 0 | 2 | 2 | 1 | 1 | 18/24 |
Gielen, 2022 [40] | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 0 | 2 | 1 | 2 | 2 | 20/24 |
Jarning, 2015 [41] | 2 | 2 | 1 | 1 | 0 | 2 | 2 | 0 | 2 | 2 | 1 | 2 | 17/24 |
Joao, 2021 [42] | 1 | 2 | 2 | 1 | 2 | 1 | 2 | - | - | - | - | 1 | 12/16 |
Kupperman, 2021 [43] | 2 | 2 | 2 | 2 | 0 | 2 | 2 | 0 | 2 | 0 | 1 | 1 | 16/24 |
Lima, 2019a [25] | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 0 | 2 | 1 | 0 | 1 | 14/24 |
Lima, 2019b [44] | 2 | 2 | 2 | 2 | 1 | 0 | 2 | - | - | - | - | 1 | 12/16 |
Lima, 2020 [45] | 2 | 2 | 2 | 2 | 1 | 2 | 2 | - | - | - | - | 2 | 15/16 |
Markovic, 2021 [46] | 2 | 2 | 2 | 2 | 1 | 2 | 2 | - | - | - | - | 2 | 15/16 |
McDonald, 2017 [47] | 2 | 2 | 2 | 2 | 1 | 2 | 2 | - | - | - | - | 1 | 14/16 |
Montoye, 2018 [48] | 2 | 2 | 2 | 2 | 1 | 1 | 2 | - | - | - | - | 1 | 13/16 |
Piatti et al., 2022 [49] | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 0 | 2 | 2 | 2 | 2 | 20/24 |
Schleitzer, 2022 [50] | 2 | 2 | 2 | 2 | 0 | 1 | 2 | - | - | - | - | 2 | 13/16 |
Schmidt, 2021 [51] | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 0 | 2 | 2 | 1 | 1 | 18/24 |
Setuain, 2021 [52] | 2 | 2 | 2 | 2 | 1 | 2 | 2 | - | - | - | - | 1 | 14/16 |
Skazalski, 2018 [24] | 2 | 2 | 2 | 1 | 0 | 2 | 2 | - | - | - | - | 2 | 13/16 |
Skazalski, 2018b [53] | 1 | 2 | 2 | 2 | 0 | 1 | 2 | - | - | - | - | 1 | 11/16 |
Vlantes, 2017 [54] | 2 | 2 | 2 | 2 | 1 | 2 | 2 | - | - | - | - | 2 | 15/16 |
Study | Modality | Subjects | Level | Sex/Age | IMU | Placement | Context | Variables |
---|---|---|---|---|---|---|---|---|
Borges, 2017 [36] | Indoor | 112 | Brazilian National team | M/17.8 | Vert Classic | Iliac crest | Laboratory | Height |
Charlton et al., 2017 [10] | Indoor | 18 | Elite junior | M/16.94 | Vert Classic | Iliac crest | Training Laboratory Competitions | Frequency Height Derivatives |
Damji, 2021 [37] | Indoor | 14 | University of Canada | M-F/20.9 | G-Vert Shimmer3 | Iliac crest | Laboratory | Landing impacts |
de Leeuw, 2022 [38] | Indoor | 14 | International level | M/27 | G-Vert | Iliac crest | Competition Training | FrequencyHeight |
Gageler, 2015 [39] | Indoor | 12 7 | National level | M-F/16.20 | GPSports Systems | T10 vertebra | Competition Training Laboratory | Frequency Flight times |
Gielen, 2022 [40] | Indoor | 8 | Belgian first and second division | M/19.75 | Zephyr BioHarness 3.0 | Sternum | Competition | Jumps, accelerations and FC |
Jarning, 2015 [41] | Indoor | 12 | Norwegian National team | M/22.5 | ActiGraph GT3X+ | Lumbosacral vertebra | Structured practice | Acceleration Frequency Displacements |
Joao, 2021 [42] | Beach | 12 | Professionals Portugal | F/27.6 | Minimax S4, Catapult | C7 and T2 vertebrae | Competition | Distances, meters, speed, acceleration /desac, jumps, Derivatives |
Kupperman, 2021 [43] | Indoor | 11 | División I NCAA, USA | F/19.36 | Clearsky T6; Catapult | Between scapulae | Competition Training | Distances, meters, speed, accel /desac, jumps, COD, Derivatives |
Lima, 2019a [25] | Indoor | 7 | Portuguese First Division Professionals | M/26.7 | Vert Classic | Iliac crest | Competition | Frequency Height Derivatives |
Lima, 2019b [44] | Indoor | 5 | Portuguese First Division Professionals | M/26.7 | Vert Classic | Iliac crest | Training | Frequency Height Derivatives |
Lima, 2020 [45] | Indoor | 8 | Portuguese First Division Professionals | M/23.0 | Vert Classic | Iliac crest | Training | Frequency Derivatives |
Markovic, 2021 [46] | Indoor | 13 | Serbia National Team | F/24.6 | LSM6DS33 | Metatarsus | Laboratory | Height |
McDonald, 2017 [47] | Indoor | 13 | Elite Calgary, Canada | M/16.1 | Vert Classic 2.0 | Iliac crest | Laboratory Structured practice Competition | Frequency Height Displacements |
Montoye, 2018 [48] | Indoor | 20 | NCAA Division III Varsity University | F/18.9 | Blast Athletic Performance Modelo B0113 | Lumbosacral vertebra | Structured practice | Height |
Piatti et al., 2022 [49] | Indoor | 12 | Elite | M/25.8 | Vert | Iliac crest | Competition Training | Frequency Height |
Schleitzer, 2022 [50] | Beach | 20 5 | Students Regional level | M-F/- | Suunto movesense original | Sternum Malleolus | Laboratory Structured practice | Frequency Height |
Schmidt, 2021 [51] | Beach | 8 11 | German National Team different levels | F/18.4 M/24.3 | Vert TM Classic | Iliac crest | Competition Laboratory | Frequency Height |
Setuain, 2021 [52] | Indoor | 12 | Brazilian first division | M/23.7 | Vert Classic | TThird lumbar vertebra | Training | Jump Biomechanics Strength |
Skazalski, 2018 [24] | Indoor | 13 8 22 | Qatar First Division Recreational | M/adults | Vert Classic | Iliac crest Sternum Tibia | Competition Structured practice | Frequency Height |
Skazalski, 2018b [53] | Indoor | 14 | Qatar First Division | M/adults | Vert Classic | Iliac crest | Competition Training | Frequency Height |
Vlantes, 2017 [54] | Indoor | 11 | NCAA Division I | F/19.99 | Catapult Optimeye S5 | Between scapulae | Competition | Frequency Height Derivatives |
Study | Aim of the Study | Relevant Results | Applications of IMUs |
---|---|---|---|
Borges, 2017 [36] | Determine IMU reliability | Differences in attacking jumps 70.9 ± 8.2 and 76.3 ± 7.5 cm (r = 0.75); Differences in blocking jumps 53.7 ± 6.1 and 58.5 ± 5.7 cm (r = 0.75); IMU overestimation of the attack (7.1%) and blocking (8.2%) jumps. | Caution in assessing specific jumps. |
Charlton et al., 2017 [10] | Determine validity and reliability of IMU | High correlation between devices IMUs (r = 0.83–0.97); Differences between devices and motion analysis (3.57 and 4.28 cm); Lack of accuracy for height measurement Accuracy for counting 0.998 (0.995–1.000%). | Usefulness for external training load control; caution for evaluating jumps; algorithm proposal to quantify external training load. |
Damji, 2021 [37] | Determine reliability for measuring landing impacts between IMUs | Low concordance values (−84.13% and 52.37%) and high bias between IMUs (average bias of −15.88%). | Caution to control external training load, taking into account landings. |
de Leeuw, 2022 [38] | Identify and correlate injury risks through external load and wellbeing indicators in a season | 70% of players indicating “difficulty in training” were related to jumping loads; high differences between players. | Caution to use jumping frequency as a predictor of injury if thresholds are not individualized. |
Gageler, 2015 [39] | Determine validity and reliability of IMU for counting jumps | 99% of jumps were identified;Underestimated flight times (0.015 s ± 0.058 s). | Useful for control and individualization of external load; caution in assessing heights. |
Gielen, 2022 [40] | Determine the relationship between internal and external load over the course of a season | Significant correlations between maximum accelerations and maximum HR in the warm-up jumps (p = 0.62/0.49) not significant in the game; high correlation between activity and average HR in matches (p = 0.67). | Usefulness for external load control; caution with the relationship between external and internal load. |
Jarning, 2015 [41] | Determine whether acceleration measured with accelerometer identifies jumps | The service serve and the smash could not be distinguished as movements without jumping (p = 0.422 and 0.999). | The methodology used is not useful for skip counting. |
Joao, 2021 [42] | Quantifying the external load of players | Difference between playing positions in external load parameters (p = 0.000) and in jump height between sets (p = 0.004). | Usefulness for external load and fatigue monitoring in competition. |
Kupperman, 2021 [43] | Quantify external and internal load in a season and describe differences between playing positions | High correlation between RPE and IMU data (p ≤ 0.001); Significant differences in IMU data between playing position (p ≤ 0.001/>0.004). | Usefulness for monitoring and individualization of training load and fatigue. |
Lima, 2019a [25] | Describe jumps in playing positions and sets | Difference between positions and types and intensities of jumping; No differences in heights between sets. | Usefulness to control and individualize the external training load. |
Lima, 2019b [44] | Describe load, playing positions and microcycle | Setter jumps more than middle blockers and outside hitters; Differences within the microcycle. | Usefulness to control and individualize the external training load. |
Lima, 2020 [45] | Comparing internal and external load | Positive relationship between RPE and number of jumps (r = 0.17). | Usefulness for external training load and fatigue monitoring. |
Markovic, 2021 [46] | Determine validity and reliability of IMU | High levels of validity for estimating jump height (CMJ t = 0.897, p = 379; ICC = 0.975; SQJ t = 0.564, p = 0.578; ICC = 0.921) and reliability (ICC > 0.872). | Usefulness for assessing jump heights. |
McDonald, 2017 [47] | Determine validity and reliability of IMU | Overestimation of count in competition; High sensitivity in practice (96.8%); Underestimated height (2.5 to 4.1 cm). | Usefulness for external training load control; caution for measuring jumps and counting jumps in training and competition by the minimum threshold of 15 cm. |
Montoye, 2018 [48] | Determine validity of IMU | Moderately high correlations between criterion and IMU (r = 0.67–0.69); Underestimation of jump height (9.2–10.0 cm/19.8–21.0%) | Caution in measuring jumps due to underestimation and low sensitivity to detect changes. |
Piatti et al., 2022 [49] | Describe the frequency and intensity of jumps in playing positions in a season. | Differences between playing positions (95% CI); +Frequency of jumps in training—matches; +Intensity in matches (95% CI). | Usefulness for external load control, individualization and specificity of training. |
Schleitzer, 2022 [50] | Determine validity and reliability of IMU on sand surfaces | Jump detection accuracy (100/97.5%); Height validity (ICC = 0.937/0.946). | Utility for external load control of sand training. |
Schmidt, 2021 [51] | Determine validity and reliability of IMU on sand surfaces | Excellent accuracy (0.975) for counting jumps and good to excellent correlations for blocking (r = 0.81) and spiked jumps (r = 0.90). | Usefulness for external load control and jump evaluation in beach volleyball. |
Setuain, 2021 [52] | To evaluate vertical jump mechanics before and after a controlled load (volume and intensity) of a training session | A 10% decrease in post-training vertical ground reaction force was observed (p = 0.02). | Useful for controlling fatigue through jumping ability. |
Skazalski, 2018 [24] | Determine validity and reliability of IMU | Counting accuracy (99.3%); Overestimation of jump (5.5 cm, 12% of average height). | Utility for external load control; caution in assessing jump heights. |
Skazalski, 2018b [53] | Compare jumps and playing positions | Setters performed more jumps; Opposites more high intensity jumps. | Usefulness for control and individualization of external training load. |
Vlantes, 2017 [54] | Describe internal and external loads and relate them to each other | Differences between playing positions in internal and external load (p < 0.01); Difference between sets of matches (p < 0.05). | Usefulness for individualization of training load. |
Study | Environment | Instrument 1 (Criterion) | Variables Measured | Instrument 2 (Validated) | Type of Analysis | Value |
---|---|---|---|---|---|---|
Jarning, 2015 [41] | Structured practice (n = 1) | Observers (n = 1) | 4 specific jumps and 3 movements without jumps | ActiGraph GT3X+ | Anova | >0.05 |
Gageler, 2015 [39] | Training (n = 1) | Observers (n = 1) | Movements with jumps * and without jumps | GPSports Systems | Instrument 1 (n=) | 1201 |
Instrument 2 (n=) | 1198 | |||||
True+ | 114 (95%) | |||||
False+ | 54 (4%) | |||||
False− | 57 (5%) | |||||
Charlton et al., 2017 [10] | Structured practice; (n = 1) Training (n = 1); Competition (n = 1) | Observers (n = 2); Intra-obs (k = 0.953) | Jumps * | Vert Classic | Instrument 1 (n=) | 1487 |
Instrument 2 (n=) | 1307 | |||||
False+ | 2 | |||||
False− | 180 | |||||
Precision | 0.998 | |||||
Recall | 0.879 | |||||
McDonald, 2017 [47] | Structured practice (n = 1) | Observers (n = 1) Blinded | 6 specific jumps and 6 non-jumping movements | Vert Classic | Instrument 1 (n=) | 728 |
Instrument 2 (n=) | 705 | |||||
Sensitivity | 96.80% | |||||
Specificity | 100% | |||||
Positive predictive value | 100% | |||||
Negative predictive value | 94% | |||||
Mean difference | −2 (−4.3 a 0.2) | |||||
LOA | −9.0 a 5.0 | |||||
ME | 0.70% | |||||
% ME | 0.1% | |||||
Competition (n = 1) | Observers (n = 1) Blinded | Jumps > 15cm | Vert Classic | Instrument 1 (n=) | 977 | |
Instrument 2 (n=) | 1032 | |||||
Difference of means | 5 (0.7 a 8.5) | |||||
LOA | −8 a 17 | |||||
Skazalski, 2018 [24] | Trainings (n = 3); Matches (n = 2) | Observers (n = 2) Blinded | Jumps * | Vert Classic | Instrument 1 (n=) | 3637 |
Instrument 2 (n=) | 3612 | |||||
False+ | 12 | |||||
False− | 25 | |||||
Schleitzer, 2022 [50] | Structured and unstructured practice (n = 1) | Observers (n = 1) | block, attack, serve | Suunto movesense original | Instrument 1 (n=) | 319 |
Instrument 2 (n=) | 306 | |||||
True+ | 306 (95.9%) | |||||
False− | 13 (4.1%) | |||||
False + | 14 (4.4%) | |||||
Laboratory (n = 3) | Observers (n = 1) | CMJ | Suunto movesense original | Instrument 1 (n=) | 200 | |
Instrument 2 (n=) | 200 | |||||
True+ (%) | 100 | |||||
False− (%) | 0 | |||||
Instrument 1 (n=) | ||||||
Schmidt, 2021 [51] | Competition (n = 2–4/1 set) | Observers (n = 2) | Spike, block, serve, set, other | Vert TM Classic | Instrument 1 | 439 |
Instrument 2 | 392 | |||||
False+ | 10 | |||||
False− | 47 | |||||
Precision | 0.975 | |||||
Recall | 0.893 |
Study | Instrument 1 (Criterion) | Instrument 2 (Validated) | Logarithm | Variables Measured | Type of Analysis | Value |
---|---|---|---|---|---|---|
Gageler, 2015 [39] | Force platform (Kistler 9287BA) 1000 Hz | GPSports Systems | JH = gravity × ToF2/8 | Blocks, spikes | Mean error (s). | −0.015 ± 0.058 |
Borges, 2017 [36] | VERTEC (Sports Imports, USA) | Vert Classic | Not specified | Jumping, blocking, attacking | Instrument 1 (cm); | 70.9 ±8.2 |
Instrument 2 (cm); | 76.3 ±7.5 | |||||
Pearson’s r; | 0.75 | |||||
Standard error (cm); | 5.3 (4.8 a 6.0) | |||||
Coefficient of variation. | 7.80% | |||||
Charlton et al., 2017 [10] | 3D analysis (Vicon, Oxford, UK) 250 Hz; | Vert Classic 1 | Not specified | set, spike, block and serve | Pearson’s r; | 0.83 |
Mean bias (cm). | 3.57 | |||||
3D analysis (Vicon, Oxford, UK) 250 Hz | Vert Classic 2 | Not specified | set, spike, block and serve | Pearson’s r; | 0.97 | |
Mean bias (cm). | 4.28 | |||||
Vert Classic 1 | Vert Classic 2 | Not specified | set, spike, block and serve | Pearson’s r; | 0.96–0.99 | |
Mean bias (cm); | −0.83 | |||||
LoA (cm). | −4.55–2.89 | |||||
McDonald, 2017 [47] | 3D analysis (Motion Analysis, Rohnert Park, CA, USA) 240 Hz | Vert Classic | Not specified | Maximum and sybmaximum jumps with 1 and 2 hands | Difference in means (cm); | 2.5 (−4.7 a 9.7) |
ME (cm); | 2.6 | |||||
% ME. | 4.40% | |||||
Skazalski, 2018 [24] | Vertec (Sports Imports, USA) | Vert Classic 1 | Not specified | Jumps with 1 and 2 hands and with 2–3 steps | CCI; | 0.85 (0.80 to 0.89) |
MDC (cm); | 9.7 | |||||
Error (cm). | 5.5 (4.5 to 6.5) | |||||
Force platform (ForceDecks, NMP) | Vert Classic1 | Not specified | CMJ | CCI; | 0.93 (0.89 to 0.96) | |
MDC (cm); | 5.5 | |||||
Error (cm). | 9.1 (8.1 to 10) | |||||
Vert Classic1 | Vert Classic2 | Not specified | Jumps with 1 and 2 hands and with 2–3 steps | CCI; | 0.99 (0.98 to 0.99) | |
MDC (cm); | 2.3 | |||||
Error (cm). | −0.3 (−0.6 to 0.0) | |||||
Montoye, 2018 [48] | Vertec (Sports Imports, USA) | Blast athletic performance | Not specified | CMJ with arms; CMJ with arms and a previous step. | Pearson’s r | r = 0.68 |
Mean absolute error (cm); | 9.1 (8.5 to 9.5) | |||||
Error %. | 19.9 | |||||
Schleitzer, 2022 [50] | Force platform (9287C, Switzerland) 1500 Hz | Suunto movesense original | CMJ | Blas; | −1.44 | |
LoA-; | −7.17 | |||||
LoA+; | 4.29 | |||||
ICC; | 0.866 (0.817–0.902) | |||||
Pearson’s r. | 0.866 (0.807–0.908), p < 0.001 | |||||
Markovic, 2021 [46] | Force platform (AMTI. USA) 1000 Hz | Personalizado | SJ CMJ | Blas (cm); | −0.18 (−0.6; 0.24) CMJ | |
LoA− (cm); | −2.26 (−2.99; −1.54) CMJ | |||||
LoA+ (cm); | 1.9 (1.17; 2.63) | |||||
ICC; | 0.975 (0.944; 0.989) | |||||
t-test (t, p, d); | (0.897, 0.379, 0.176) | |||||
McV (%). | 1.896 | |||||
Damji, 2021 [37] | Shimmer3 | G-Vert | Not specified | Maximum and sub-maximum CMJ | Limit of agreement %; | −84.13 y 52.37 |
Mean bias %; | −15.88 | |||||
Confidence interval; | −35.99% a 4.23% | |||||
ICC; | 0.49 | |||||
CCC. | 0.37 | |||||
Schmidt, 2021 [51] | Force platform (AMTI. USA) 1000 Hz | VertTM | Not specified | Spike, block | Typical error estimate (cm); | 3.02–3.13 |
Mean bias (cm); | 2.61–7.69 | |||||
LoA (cm). | 7.65–6.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villarejo-García, D.H.; Moreno-Villanueva, A.; Soler-López, A.; Reche-Soto, P.; Pino-Ortega, J. Use, Validity and Reliability of Inertial Movement Units in Volleyball: Systematic Review of the Scientific Literature. Sensors 2023, 23, 3960. https://doi.org/10.3390/s23083960
Villarejo-García DH, Moreno-Villanueva A, Soler-López A, Reche-Soto P, Pino-Ortega J. Use, Validity and Reliability of Inertial Movement Units in Volleyball: Systematic Review of the Scientific Literature. Sensors. 2023; 23(8):3960. https://doi.org/10.3390/s23083960
Chicago/Turabian StyleVillarejo-García, Diego Hernán, Adrián Moreno-Villanueva, Alejandro Soler-López, Pedro Reche-Soto, and José Pino-Ortega. 2023. "Use, Validity and Reliability of Inertial Movement Units in Volleyball: Systematic Review of the Scientific Literature" Sensors 23, no. 8: 3960. https://doi.org/10.3390/s23083960
APA StyleVillarejo-García, D. H., Moreno-Villanueva, A., Soler-López, A., Reche-Soto, P., & Pino-Ortega, J. (2023). Use, Validity and Reliability of Inertial Movement Units in Volleyball: Systematic Review of the Scientific Literature. Sensors, 23(8), 3960. https://doi.org/10.3390/s23083960