Design of a Microwave Heating and Permittivity Measurement System Based on Oblique Aperture Ridge Waveguide
Abstract
:1. Introduction
2. Materials and Methods
2.1. System Design
2.2. Core Measurement Equipment Design
2.3. Artificial Neural Network Design
3. Results
3.1. Room Temperature Experiment
3.2. Increasing Temperature Experiment
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rodriguez-Morales, F.; Occhiogrosso, V.; Arnold, E. Multichannel UWB microwave radar front-end for fine-resolution measurements of terrestrial snow cover. In Proceedings of the 2021 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), Bandung, Indonesia, 23–24 November 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 120–124. [Google Scholar] [CrossRef]
- David, N.; Liu, Y.; Kumah, K.K.; Hoedjes, J.C.; Su, B.Z.; Gao, H.O. On the power of microwave communication data to monitor rain for agricultural needs in Africa. Water 2021, 13, 730. [Google Scholar] [CrossRef]
- Han, Z.; Li, Y.; Luo, D.-H.; Zhao, Q.; Cheng, J.-H.; Wang, J.-H. Structural variations of rice starch affected by constant power microwave treatment. Food Chem. 2021, 359, 129887. [Google Scholar] [CrossRef] [PubMed]
- Mansoori, A.; Isleifson, D.; Desmond, D.; Stern, G. Development of Dielectric Measurement Techniques for Arctic Oil Spill Studies. In Proceedings of the 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, Montreal, Canada, 5–10 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 883–884. [Google Scholar] [CrossRef]
- Kossenas, K.; Podilchak, S.K.; Comite, D.; Re, P.D.H.; Goussetis, G.; Pavuluri, S.K.; Griffiths, S.J.; Chadwick, R.J.; Guo, C.; Bruns, N.; et al. A methodology for remote microwave sterilization applicable to the coronavirus and other pathogens using retrodirective antenna arrays. IEEE J. Electromagn. RF Microw. Med. Biol. 2021, 6, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhu, J.; Xu, W.; Chen, Y.; Zhou, J. Highly efficient H2 and S production from H2S decomposition via microwave catalysis over a family of TiO2 modified MoxC microwave catalysts. Fuel Process. Technol. 2022, 226, 107069. [Google Scholar] [CrossRef]
- Mohamed, B.A.; Bilal, M.; Salama, E.S.; Periyasamy, S.; Fattah, I.M.R.; Ruan, R.; Awasthi, M.K.; Leng, L. Phenolic-rich bio-oil production by microwave catalytic pyrolysis of switchgrass: Experimental study, life cycle assessment, and economic analysis. J. Clean. Prod. 2022, 366, 132668. [Google Scholar] [CrossRef]
- Guzik, P.; Kulawik, P.; Zając, M.; Migdał, W. Microwave applications in the food industry: An overview of recent developments. Crit. Rev. Food Sci. Nutr. 2022, 62, 7989–8008. [Google Scholar] [CrossRef]
- Harid, V.; Kim, H.; Li, B.Z.; Lei, T. A method for non-destructive microwave focusing for deep brain and tissue stimulation. PLoS ONE 2023, 18, e0278765. [Google Scholar] [CrossRef] [PubMed]
- Ochi, H.; Shimamoto, S.; Liu, J.; Yamaoka, Y. Non-contact Blood Pressure Estimation with Pulse Wave employing Microwave Reflection. In Proceedings of the 2021 IEEE International Conference on Communications Workshops (ICC Workshops), Online, 14–23 June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Choe, H.-S.; Lee, J.-S.; Kweon, J.-H.; Nam, Y.-W.; Choi, W.-H. High-performance microwave absorption heating honeycomb sandwich composite with electroless nickel-plated glass fiber. Compos. Struct. 2022, 283, 115138. [Google Scholar] [CrossRef]
- Hosseini, M.H.; Heidar, H.; Shams, M.H. Wideband nondestructive measurement of complex permittivity and permeability using coupled coaxial probes. IEEE Trans. Instrum. Meas. 2016, 66, 148–157. [Google Scholar] [CrossRef]
- Kalisiak, M.; Wiatr, W.; Papis, R. Design of a Waveguide Test Cell for Q Band Liquid Permittivity Measurements. In Proceedings of the 2022 24th International Microwave and Radar Conference (MIKON), Gdansk, Poland, 12–14 September 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Lu, Z.H.; Zheng, M.X.; Chen, G.P.; Xu, J.H.; Huang, G.L. Planar Scanning Measurement System of Material Properties Based on Free Space Method. In Proceedings of the 2022 IEEE Conference on Antenna Measurements and Applications (CAMA), Guangzhou, China, 14–17 November 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–3. [Google Scholar] [CrossRef]
- Park, Y.J. Short-ended coaxial cylinder probe measuring bulk dielectric constant using TDR. Microw. Opt. Technol. Lett. 2009, 51, 1638–1640. [Google Scholar] [CrossRef]
- Neumayer, M.; Flatscher, M.; Bretterklieber, T. Coaxial Probe for Dielectric Measurements of Aerated Pulverized Materials. IEEE Trans. Instrum. Meas. 2019, 68, 1402–1411. [Google Scholar] [CrossRef]
- Dilman, I.; Akinci, M.N.; Yilmaz, T.; Çayören, M.; Akduman, I. A Method to Measure Complex Dielectric Permittivity With Open-Ended Coaxial Probes. IEEE Trans. Instrum. Meas. 2022, 71. [Google Scholar] [CrossRef]
- Hasar, U.C. A new calibration-independent method for complex permittivity extraction of solid dielectric materials. Electronics 2008, 18, 788–790. [Google Scholar] [CrossRef]
- Li, C.; Wu, C.; Shen, L. Complex Permittivity Measurement of Low-Loss Anisotropic Dielectric Materials at Hundreds of Megahertz. Electronics 2022, 11, 1769. [Google Scholar] [CrossRef]
- Chen, Q.; Long, Z.; Shinohara, N.; Liu, C.J. A substrate integrated waveguide resonator sensor for dual-band complex permittivity measurement. Processes 2022, 10, 708. [Google Scholar] [CrossRef]
- Bartley, P.G. Permittivity Measurement of Low-Loss Materials using Embedded Resonance. In Proceedings of the 2022 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Ottawa, Canada, 16–19 May 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Kik, A. Complex permittivity measurement using a ridged waveguide cavity and the perturbation method. IEEE Trans. Microw. Theory Tech. 2016, 64, 3878–3886. [Google Scholar] [CrossRef]
- Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Puzyrev, V. Deep learning electromagnetic inversion with convolutional neural networks. Geophys. J. Int. 2019, 218, 817–832. [Google Scholar] [CrossRef]
- Liu, B.; Guo, Q.; Li, S.; Liu, B.; Ren, Y.; Pang, Y.; Guo, X.; Liu, L.; Jiang, P. Deep learning inversion of electrical resistivity data. IEEE Trans. Geosci. Remote Sens. 2020, 58, 5715–5728. [Google Scholar] [CrossRef]
- El Ogri, O.; Karmouni, H.; Sayyouri, M.; Qjidaa, H. 3D image recognition using new set of fractional-order Legendre moments and deep neural networks. Signal Process. Image Commun. 2021, 98, 116410. [Google Scholar] [CrossRef]
- Tan, Q.; Zhu, H.C.; Ma, W.Q.; Yang, Y.; Huang, K.M. High temperature dielectric properties measurement system at 915 MHz based on deep learning. Int. J. RF Microw. Comput. Aided Eng. 2019, 29, e21948. [Google Scholar] [CrossRef]
- Chen, Q.; Huang, K.M.; Yang, X.; Luo, M.; Zhu, H. An artificial nerve network realization in the measurement of material permittivity. Prog. Electromagn. Res. 2011, 116, 347–361. [Google Scholar] [CrossRef]
- Nelson, S.O. Measurement and applications of dielectric properties of agricultural products. IEEE Trans. Instrum. Meas. 1992, 41, 116–122. [Google Scholar] [CrossRef]
- Gregory, A.P.; Clarke, R. Tables of the Complex Permittivity of Dielectric Reference Liquids at Frequencies up to 5 GHz; NPL Report MAT 23; National Physical Laboratory (NPL): Teddington, UK, 2012; Volume 23, p. 87. [Google Scholar]
Parameter | Values (mm) |
---|---|
L1 | 237 |
W1 | 109.22 |
H1 | 54.61 |
L2 | 180 |
W2 | 34 |
H2 | 20 |
Media (Volume Ratio) | Reference ε′ | Measurement ε′ | Errors (%) |
---|---|---|---|
Methanol:Ethanol = 0:5 | 8.94 | 9.69 | +8.4% |
Methanol:Ethanol = 1:4 | 11.26 | 12.06 | +7.1% |
Methanol:Ethanol = 2:3 | 14.09 | 15.48 | +9.8% |
Methanol:Ethanol = 3:2 | 17.37 | 17.36 | −0.06% |
Methanol:Ethanol = 4:1 | 21.03 | 20.79 | −1.1% |
Methanol:Ethanol = 5:0 | 24.97 | 24.96 | −0.04% |
Media (Volume Ratio) | Reference tanδ | Measurement tanδ | Errors (%) |
---|---|---|---|
Methanol:Ethanol = 0:5 | 0.85 | 0.80 | −5.9% |
Methanol:Ethanol = 1:4 | 0.78 | 0.74 | −5.1% |
Methanol:Ethanol = 2:3 | 0.72 | 0.71 | −1.4% |
Methanol:Ethanol = 3:2 | 0.66 | 0.70 | +6.1% |
Methanol:Ethanol = 4:1 | 0.62 | 0.63 | +1.6% |
Methanol:Ethanol = 5:0 | 0.58 | 0.59 | +1.7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gou, M.; Chen, Q.; Dong, P.; Liu, C.; Huang, K. Design of a Microwave Heating and Permittivity Measurement System Based on Oblique Aperture Ridge Waveguide. Sensors 2023, 23, 4035. https://doi.org/10.3390/s23084035
Gou M, Chen Q, Dong P, Liu C, Huang K. Design of a Microwave Heating and Permittivity Measurement System Based on Oblique Aperture Ridge Waveguide. Sensors. 2023; 23(8):4035. https://doi.org/10.3390/s23084035
Chicago/Turabian StyleGou, Mingyi, Qian Chen, Penghao Dong, Changjun Liu, and Kama Huang. 2023. "Design of a Microwave Heating and Permittivity Measurement System Based on Oblique Aperture Ridge Waveguide" Sensors 23, no. 8: 4035. https://doi.org/10.3390/s23084035
APA StyleGou, M., Chen, Q., Dong, P., Liu, C., & Huang, K. (2023). Design of a Microwave Heating and Permittivity Measurement System Based on Oblique Aperture Ridge Waveguide. Sensors, 23(8), 4035. https://doi.org/10.3390/s23084035