New Biosensor for Determination of Neuropilin-1 with Detection by Surface Plasmon Resonance Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Biological Materials
- –
- blood plasma samples from patients with diagnosed multiple sclerosis and from smokers (Podlasie Psychogeriatric Center in Bialystok and the Department of Neurology, Medical University of Białystok, Poland);
- –
- saliva samples from patients before endodontic treatment and from healthy volunteers (Ortho-Dent and Dentalblue, Bialystok, Poland).
2.3. Instrumentation
2.4. Procedures
2.4.1. Sensor Preparation
2.4.2. SPRi Measurement
2.4.3. QCM Measurements
2.4.4. ELISA—Measurements
3. Results
3.1. Optimization of Conditions for NRP-1 Determination
3.2. Establishment of the Standard Curve
3.3. Recovery and Precision of the SPRi Method for Determination of Neuropilin-1
3.4. Selectivity of Biosensor
3.5. QCM Studies of the Biosensor Surface
3.6. Determination of NRP-1 in Natural Samples
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kolodkin, A.L.; Levengood, D.V.; Rowe, E.G.; Tai, Y.T.; Giger, R.J.; Ginty, D.D. Neuropilin is a semaphorin III receptor. Cell 1997, 90, 753–762. [Google Scholar] [CrossRef]
- He, Z.; Tessier-Lavigne, M. Neuropilin is a receptor for the axonal chemorepellent semaphorin III. Cell 1997, 90, 739–751. [Google Scholar] [CrossRef]
- Soker, S.; Takashima, S.; Miao, H.Q.; Neufeld, G.; Klagsbrun, M. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform- specific receptor for vascular endothelial growth factor. Cell 1998, 92, 735–745. [Google Scholar] [CrossRef]
- Parker, M.W.; Guo, H.F.; Li, X.; Linkugel, A.D.; Vander Kooi, C.W. Function of members of the neuropilin family as essential pleiotropic cell surface receptors. Biochemistry 2012, 51, 9437–9446. [Google Scholar] [CrossRef]
- Broz, M.; Kolarič, A.; Jukič, M.; Bren, U. Neuropilin (NRPs) Related Pathological Conditions and Their Modulators. Int. J. Mol. Sci. 2022, 23, 8402. [Google Scholar] [CrossRef]
- Pellet-Many, C.; Frankel, P.; Jia, H.; Zachary, I. Neuropilins: Structure, function and role in disease. Biochem. J. 2008, 411, 211–226. [Google Scholar] [CrossRef]
- Sulpice, E.; Plouët, J.; Bergé, M.; Allanic, D.; Tobelem, G.; Merkulova-Rainon, T. Neuropilin-1 and neuropilin-2 act as coreceptors, potentiating proangiogenic activity. Blood 2008, 111, 2036–2045. [Google Scholar] [CrossRef]
- Wild, J.R.L.; Staton, C.A.; Chapple, K.; Corfe, B.M. Neuropilins: Expression and roles in the epithelium. Int. J. Exp. Pathol. 2012, 93, 81–103. [Google Scholar] [CrossRef]
- Roy, S.; Bag, A.K.; Singh, R.K.; Talmadge, J.E.; Batra, S.K.; Datta, K. Multifaceted role of neuropilins in the immune system: Potential targets for immunotherapy. Front. Immunol. 2017, 8, 1228. [Google Scholar] [CrossRef]
- Benwell, C.J.; Johnson, R.T.; Taylor, J.A.G.E.; Price, C.A.; Robinson, S.D. Endothelial VEGFR Coreceptors Neuropilin-1 and Neuropilin-2 Are Essential for Tumor Angiogenesis. Cancer Res. Commun. 2022, 2, 1626–1640. [Google Scholar] [CrossRef]
- Lyu, Z.; Jin, H.; Yan, Z.; Hu, K.; Jiang, H.; Peng, H.; Zhuo, H. Effects of nrp1 on angiogenesis and vascular maturity in endothelial cells are dependent on the expression of sema4d. Int. J. Mol. Med. 2020, 46, 1321–1334. [Google Scholar] [CrossRef]
- Abebe, E.C.; Ayele, T.M.; Muche, Z.T.; Dejenie, T.A. Neuropilin 1: A novel entry factor for SARS-CoV-2 infection and a potential therapeutic target. Biol. Targets Ther. 2021, 15, 143–152. [Google Scholar] [CrossRef]
- Grandclement, C.; Borg, C. Neuropilins: A new target for cancer therapy. Cancers 2011, 3, 1899–1928. [Google Scholar] [CrossRef]
- Jubb, A.M.; Strickland, L.A.; Liu, S.D.; Mak, J.; Schmidt, M.; Koeppen, H. Neuropilin-1 expression in cancer and development. J. Pathol. 2012, 226, 50–60. [Google Scholar] [CrossRef]
- Rachner, T.D.; Kasimir-Bauer, S.; Goebel, A.; Erdmann, K.; Hoffmann, O.; Rauner, M.; Hofbauer, L.C.; Kimmig, R.; Bittner, A.K. Soluble Neuropilin-1 is an independent marker of poor prognosis in early breast cancer. J. Cancer Res. Clin. Oncol. 2021, 147, 2233–2238. [Google Scholar] [CrossRef]
- Jin, Q.; Ren, Q.; Chang, X.; Yu, H.; Jin, X.; Lu, X.; He, N.; Wang, G. Neuropilin-1 predicts poor prognosis and promotes tumor metastasis through epithelial-mesenchymal transition in gastric cancer. J. Cancer 2021, 12, 3648–3659. [Google Scholar] [CrossRef]
- Chaudhary, B.; Elkord, E. Novel expression of Neuropilin 1 on human tumor-infiltrating lymphocytes in colorectal cancer liver metastases. Expert Opin. Ther. Targets 2015, 19, 147–161. [Google Scholar] [CrossRef]
- Zalpoor, H.; Akbari, A.; Samei, A.; Forghaniesfidvajani, R.; Kamali, M.; Afzalnia, A.; Manshouri, S.; Heidari, F.; Pornour, M.; Khoshmirsafa, M.; et al. The roles of Eph receptors, neuropilin-1, P2X7, and CD147 in COVID-19-associated neurodegenerative diseases: Inflammasome and JaK inhibitors as potential promising therapies. Cell. Mol. Biol. Lett. 2022, 27, 10. [Google Scholar] [CrossRef]
- Daneshvar Kakhaki, R.; Kouchaki, E.; Dadgostar, E.; Behnam, M.; Tamtaji, O.R.; Nikoueinejad, H.; Akbari, H. The correlation of helios and neuropilin-1 frequencies with parkinson disease severity. Clin. Neurol. Neurosurg. 2020, 192, 105833. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, Y.; Mangalam, A.K.; Guo, Y.; LaFrance-Corey, R.G.; Gamez, J.D.; Atanga, P.A.; Clarkson, B.D.; Zhang, Y.; Wang, E.; et al. Neuropilin-1 modulates interferon-γ-stimulated signaling in brain microvascular endothelial cells. J. Cell Sci. 2016, 129, 3911–3921. [Google Scholar] [CrossRef]
- Chapoval, S.P.; Keegan, A.D. Perspectives and potential approaches for targeting neuropilin 1 in SARS-CoV-2 infection. Mol. Med. 2021, 27, 162. [Google Scholar] [CrossRef]
- Gudowska-sawczuk, M. The Role of Neuropilin-1 (NRP-1) in SARS-CoV-2 Infection: Review. J. Clin. Med. 2021, 1, 2772. [Google Scholar] [CrossRef]
- Karczmarczyk, A.; Bilska, S.; Korpysz, M.; Purkot, J.; GrzĄŚko, N.; Hus, M.; Giannopoulos, K. Expression and Clinical Significance of Neuropilin-1 in Patients With Multiple Myeloma. Anticancer Res. 2020, 40, 5437–5443. [Google Scholar] [CrossRef]
- Ruffini, F.; D’Atri, S.; Lacal, M.P. Neuropilin-1 expression promotes invasiveness of melanoma cells through vascular endothelial growth factor receptor-2-dependent and -independent mechanisms. Int. J. Oncol. 2013, 43, 297–306. [Google Scholar] [CrossRef]
- Rzepakowska, A.; Żurek, M.; Grzybowski, J.; Kotula, I.; Pihowicz, P.; Górnicka, B.; Demkow, U.; Niemczyk, K. Serum and tissue expression of neuropilin 1 in precancerous and malignant vocal fold lesions. PLoS ONE 2020, 15, e0239550. [Google Scholar] [CrossRef]
- Lu, Y.; Xiang, H.; Liu, P.; Tong, R.R.; Watts, R.J.; Koch, A.W.; Sandoval, W.N.; Damico, L.A.; Wai, L.W.; Meng, Y.G. Identification of circulating neuropilin-1 and dose-dependent elevation following anti-neuropilin-1 antibody administration. MAbs 2009, 1, 364–369. [Google Scholar] [CrossRef]
- Gadermaier, E.; Tesarz, M.; Wallwitz, J.; Berg, G.; Himmler, G. Characterization of a sandwich ELISA for quantification of total human soluble neuropilin-1. J. Clin. Lab. Anal. 2019, 33, e22944. [Google Scholar] [CrossRef]
- Torres-Salido, M.T.; Sanchis, M.; Solé, C.; Moliné, T.; Vidal, M.; Vidal, X.; Solà, A.; Hotter, G.; Ordi-Ros, J.; Cortés-Hernández, J. Urinary neuropilin-1: A predictive biomarker for renal outcome in lupus nephritis. Int. J. Mol. Sci. 2019, 20, 4601. [Google Scholar] [CrossRef]
- Šípová, H.; Homola, J. Surface plasmon resonance sensing of nucleic acids: A review. Anal. Chim. Acta 2013, 773, 9–23. [Google Scholar] [CrossRef]
- Garoli, D.; Calandrini, E.; Giovannini, G.; Hubarevich, A.; Caligiuri, V.; De Angelis, F. Nanoporous gold metamaterials for high sensitivity plasmonic sensing. Nanoscale Horiz. 2019, 4, 1153–1157. [Google Scholar] [CrossRef]
- Sreekanth, K.V.; Alapan, Y.; Elkabbash, M.; Ilker, E. Health Research Alliance. Nat. Mater. 2016, 15, 621–627. [Google Scholar] [CrossRef] [PubMed]
- Altug, H.; Oh, S.H.; Maier, S.A.; Homola, J. Advances and applications of nanophotonic biosensors. Nat. Nanotechnol. 2022, 17, 5–16. [Google Scholar] [CrossRef] [PubMed]
- Gorodkiewicz, E.; Sankiewicz, A.; Laudański, P. Surface plasmon resonance imaging biosensors for aromatase based on a potent inhibitor and a specific antibody: Sensor development and application for biological material. Cent. Eur. J. Chem. 2014, 12, 557–567. [Google Scholar] [CrossRef]
- United Nations Office on Drugs and Crime. A Commitment to Quality and Continuous Improvement; United Nations: New York, NY, USA, 2009; ISBN 9789211482430. [Google Scholar]
- Babkina, A.S.; Yadgarov, M.Y.; Ostrova, I.V.; Zakharchenko, V.E.; Kuzovlev, A.N.; Grechko, A.V.; Lyubomudrov, M.A.; Golubev, A.M. Serum Levels of VEGF-A and Its Receptors in Patients in Different Phases of Hemorrhagic and Ischemic Strokes. Curr. Issues Mol. Biol. 2022, 44, 4888–4901. [Google Scholar] [CrossRef]
- Gagnon, M.L.; Bielenberg, D.R.; Gechtman, Z.; Miao, H.Q.; Takashima, S.; Soker, S.; Klagsbrun, M. Identification of a natural soluble neuropilin-1 that binds vascular endothelial growth factor: In vivo expression and antitumor activity. Proc. Natl. Acad. Sci. USA 2000, 97, 2573–2578. [Google Scholar] [CrossRef]
- Prieto, D.; Maurer, G.; Sáez, M.; Cáceres, F.; Pino-Lagos, K.; Chaparro, A. Soluble Neuropilin-1 in gingival crevicular fluid from periodontitis patients: An exploratory cross-sectional study. J. Oral Biol. Craniofacial Res. 2021, 11, 84–87. [Google Scholar] [CrossRef]
- Sankiewicz, A.; Tokarzewicz, A.; Gorodkiewicz, E. Regeneration of surface plasmone resonance chips for multiple use Regeneration of surface plasmone resonance chips for multiple use. Bulgar. Chem. Commun. 2015, 47, 477–482. [Google Scholar]
Method | Linear Dynamic Range | R2 | LOD | LOQ |
---|---|---|---|---|
SPRI biosensor | 0.01–2.50 ng/mL | 0.9891 | 0.011 ng/mL | 0.032 ng/mL |
ELISA | 78.1–5000 pg/mL | 0.9794 | n/d | 9.330 pg/mL |
Series | Spiked (ng/mL) | Found (ng/mL) | SD (ng/mL) | CV (%) | Recovery (%) |
---|---|---|---|---|---|
1 | 0.05 | 0.052 | 0.003 | 5.8 | 104 |
2 | 0.50 | 0.517 | 0.025 | 4.8 | 103 |
3 | 1.00 | 0.965 | 0.044 | 4.6 | 97 |
4 | 2.00 | 1.955 | 0.097 | 4.7 | 98 |
5 | 2.50 | 2.439 | 0.084 | 3.4 | 98 |
Cinterferent (ng/mL) | Added CNRP-1 (ng/mL) | Found CNRP-1 (ng/mL) | Recovery (%) | |
---|---|---|---|---|
STAGE1 | Mixture NRP1 + VEGF-A | |||
0.01 | 1 | 0.98 | 98 | |
0.10 | 0.85 | 85 | ||
1.00 | 0.36 | 36 | ||
10.0 | <0.01 | <1 | ||
STAGE 2 | NRP-2 | |||
1.00 | not added | not found | 0 | |
10.0 | 0 | |||
VEGF-A | ||||
0.01 | not added | not found | 0 | |
0.10 | 0 | |||
1.00 | 0 | |||
10.0 | 0 | |||
Albumin | ||||
1.00 | not added | not found | 0 | |
10.0 | 0 | |||
100 | 0 | |||
STAGE 3 | VEGF-A | |||
0.01 | 1 | 1.04 | 103 | |
0.10 | 1.06 | 106 | ||
1.00 | 1.07 | 107 | ||
10.0 | 1.05 | 105 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sankiewicz, A.; Zelazowska-Rutkowska, B.; Gorska, E.; Hermanowicz, A.; Gorodkiewicz, E. New Biosensor for Determination of Neuropilin-1 with Detection by Surface Plasmon Resonance Imaging. Sensors 2023, 23, 4118. https://doi.org/10.3390/s23084118
Sankiewicz A, Zelazowska-Rutkowska B, Gorska E, Hermanowicz A, Gorodkiewicz E. New Biosensor for Determination of Neuropilin-1 with Detection by Surface Plasmon Resonance Imaging. Sensors. 2023; 23(8):4118. https://doi.org/10.3390/s23084118
Chicago/Turabian StyleSankiewicz, Anna, Beata Zelazowska-Rutkowska, Ewelina Gorska, Adam Hermanowicz, and Ewa Gorodkiewicz. 2023. "New Biosensor for Determination of Neuropilin-1 with Detection by Surface Plasmon Resonance Imaging" Sensors 23, no. 8: 4118. https://doi.org/10.3390/s23084118
APA StyleSankiewicz, A., Zelazowska-Rutkowska, B., Gorska, E., Hermanowicz, A., & Gorodkiewicz, E. (2023). New Biosensor for Determination of Neuropilin-1 with Detection by Surface Plasmon Resonance Imaging. Sensors, 23(8), 4118. https://doi.org/10.3390/s23084118